Cost \& implicature in word use:
 Testing predictions of a game-theoretic model of alignment

Hannah Rohde (University of Edinburgh),
Scott Seyfarth (UC San Diego), Brady Clark (Northwestern University), Gerhard Jaeger (University of Tübingen), \& Stefan Kaufmann (Northwestern University)

Choice of referring expression

> "fish"?

Zebra Fish

Blue Paradise Fish

Question

- What contexts license the production and comprehension of otherwise ambiguous words?
- Intuition: Successful use of ambiguous words requires shared knowledge of...
- costs
- inferencing rules governing the communication game

Alignment

- Joint communication tasks yield alignment
[Garrod \& Anderson, 1987; Brennan \& Clark, 1996; Horton, 2008; Garrod \& Pickering, 2004]
- Role of common ground in establishing convention
- Predictions regarding form~meaning mappings?
- Use contexts in which production costs are part of common ground

Game Theory

- Framework for modelling strategic interaction [Benz, Jäger, \& van Rooij, 2005]
- Players have choices regarding behavior and preferences over possible outcomes
- Outcomes depend on both players' choices
- Games characterized by shared knowledge
- Prediction: ambiguous form conveys meaning if...
- unambiguous form is costly
- other meanings can be conveyed at low cost

Game-theoretic prediction

unambiguous:

"X" (\$)
"Y" (\$\$\$)

ambiguous:

"X-or-Y" (\$)

Conventional use of "some"

unambiguous forms:

"all" (\$)
"at least one but not all" (\$\$)

ambiguous form:

"some" (\$)

Wait, doesn't "some" just mean AT-LEAST-ONE-BUT-NOT-ALL ?

Some students came but not all of them.

Some students came In fact, all students came.

At-least-one-but-not-all students came \# but not all of them.

At-least-one-but-not-all students came \# In fact, all students came.

Communication game

- Pairs of participants take turns as Sender \& Receiver
- Goal: successful communication (hit target score)
- Word production costs points (score decreases)
- Successful comprehension yields a reward (score increase)

Score keeping

- Game continues for 20 minutes or until either player reaches 1000 points
- Sender sees highlighted object
- Sender sends a word (Sender score decreases)

"rose"	-60
"daisy"	-120
"tulip"	-280
"flower"	$-\mathbf{- 8 0}$

"apple tree"	$-\mathbf{6 0}$
"palm tree"	$-\mathbf{1 2 0}$
"pine tree"	-250
"tree"	$-\mathbf{8 0}$

- Receiver sees word and selects an object
- If match, reward (+85 for both players)
- Else, retry (no penalty)
- Shared knowledge of costs/rewards/scores

Results

- 10 pairs: 5 success, 5 ??
- Cost influences use of ambiguous words

Expt1: time course


```
*cost
*trial#
no interaction
```



```
* cost
*trial #
    no interaction
```

I	mid	daisy	"flower"
I	mid	daisy	"daisy"
$\mathbf{2}$	mid	palm	"palm tree"
I	mid	palm	"tree"
I	mid	palm	"palm tree"
$\mathbf{2}$	low	apple	"apple tree"
I	mid	palm	"tree"
I	mid	palm	"palm tree"
$\mathbf{2}$	mid	daisy	"flower"
I	high	tulip	"tulip"
$\mathbf{2}$	low	apple	"apple tree"
I	high	pine	"pine tree"
2	high	tulip	"flower"
2	high	tulip	"flower"
2	high	tulip	"flower"
I	high	pine	"pine tree"
2	high	pine	"tree"

Expt2: Same method, different costs

Expt1 Expt2

LOW	"rose"	-60	-80
MID	"daisy"	-120	-140
HIGH	"tulip"	-280	-165
	"flower	-80	-8

Expt1 Expt2

"apple	$\mathbf{- 6 0}$	-80
"palm tree"	-120	-135
"pine tree"	-250	-170
"tree"	$\mathbf{- 8 0}$	$\mathbf{- 8 0}$

- Expt2 imposes lower costs, easier to hit target score
- Reduced motivation to conventionalize?

Expt2: Results

- 10 pairs: 8 success, 2 ??
- As in Expt1, cost influences production and comprehension of ambiguous words

Expt2: Time course

* cost
 no trial\# effect no interaction

$$
\begin{aligned}
& \text { *cost } \\
& \text { *trial\# } \\
& \text { no interaction }
\end{aligned}
$$

Comparison of Expt1/Expt2

- As in Expt1, Expt2 showed a main effect of cost.
- However, Expt2 also led to greater use of ambiguous words.
- As in Expt1, ambiguity in Expt2 led to successful communication, but...
- 2 pairs assigned ambiguous word to object with mid-cost unambiguous name
- 2 pairs used 'tree' but not 'flower'

Inference or trial-and-error?

- Post-hoc analysis: Consider first trial where ambiguous word ("flower", "tree") was used
- Finding: Receivers guessed, more often than chance, that the
 intended object was the high-cost object.

Summary

- Beyond some/all: Ambiguous words can be used reliably for entities with costly unambiguous names, if other referents have low-cost unambiguous names.
- Sensitivity to cost: More ambiguous words in contexts where unambiguous names have more similar costs.
- Speaker's thoughts about the listener: Is choice of referring expression automatic/strategic? [Horton 2008]
- Role of reduction: Speakers make rational decisions about redundancy and reduction. Isee also Genzel \& Charniak, 2002; Jaeger 2010; Levy \& Jaeger 2007; Piantadosi, Tily, \& Gibson, 2011]
- Claim: Ambiguity arises from a rational process of communication, specifically when cost is part of speakers' shared common ground.

Thanks!

