
Simulating Language: Lab 3 Worksheet
Download the file signalling2.py from the website and save it your usual working directory.
To open this file in Canopy, choose File-Open from the menu, and find the file you just saved.
Opening the signalling2.py file in the Canopy editor gives you access to the rather handy syntax
highlighting and automatic indentation that Canopy provides, and is much much better than editing
the code in something like notepad.

This worksheet extends the first signalling program by measuring communicative accuracy among
a population of agents. Most of the code is the same as the first, with the exception of the
pop_update function; we also store more information about each of the agents, as described in
the comments below.

Make sure you understand the complex embedded list structure described:

✤ a population is a list of agents;
✤ an agent is a list containing three items: a production system, a reception system, and a set
of scores;

✤ a production system is a matrix of association weights (i.e. a list of lists);
✤ a reception system is a matrix of association weights (i.e. a list of lists);
✤ the set of scores is a list of four integers.

"""
Simple innate signalling simulation - communication in a population

pop_update takes a list of agents and picks two at random to be
producer and receiver for a random meaning. Each agent consists of
a production system, a reception system and a list of 4 scores: the number of
times they have successfully been understood as speaker, the number of times
they have spoken, the number of times they have successfully understood as
hearer, and the number of times they have been hearer, respectively.

Usage example:

population = [[[[3, 1], [0, 2]], [[1,0], [2,4]], [0, 0, 0, 0]],
 [[[1, 0], [0, 1]], [[2,0], [0,1]], [0, 0, 0, 0]],
 [[[0, 1], [1, 0]], [[0,1], [1,0]], [0, 0, 0, 0]]]

for i in range(10000): pop_update(population)

print population

will do the following 10000 times: pick one of these three agents to be speaker
and another to be hearer, have them communicate, and update their scores
accordingly.

NOTE: there are two returns after the for loop in this usage example:
otherwise, Python will wait for you to add more code to the body of the for
loop.
"""

 How would you access the production matrix for the first agent in the population? How
 about the set of scores for the last agent in the population?

Have a look pop_update and check you understand how it works.

 How does the program ensure that the same agent does not play both roles?
 What scores are updated after a communication event, and why?

Work through the following questions: these go from easy to hard, everyone should answer 1 and 2,
3-5 are optional and can involve as much or as little coding as you like.

1. The two ways of scoring an agent's success depend on being understood (the first number), and
understanding (the third number). What are the ecological interpretations of these scores? Which
do you think are evolutionarily significant, and why?

2. Can you construct a population where every agent gets approximately the same score for being
understood, but different scores for understanding? What about the other way round?

import random as rnd

def wta(items):
 maxweight = max(items)
 candidates = []
 for i in range(len(items)):
 if items[i] == maxweight:
 candidates.append(i)
 return rnd.choice(candidates)

def communicate(speaker_system, hearer_system, meaning):
 speaker_signal = wta(speaker_system[meaning])
 hearer_meaning = wta(hearer_system[speaker_signal])
 if meaning == hearer_meaning:
 return 1
 else:
 return 0

----- new code below -----

def pop_update(population):
 speaker_index = rnd.randrange(len(population))
 hearer_index = rnd.randrange(len(population) - 1)
 if hearer_index >= speaker_index: hearer_index += 1 # ensure speaker
! ! ! ! ! ! ! ! # and hearer are different
 speaker = population[speaker_index]
 hearer = population[hearer_index]
 meaning = rnd.randrange(len(speaker[0]))
 success = communicate(speaker[0], hearer[1], meaning)
 speaker[2][0] += success
 speaker[2][1] += 1
 hearer[2][2] += success
 hearer[2][3] += 1

3. How would you adjust this code to keep a trial-by-trial record of the communicative accuracy of
the population by trial number? Hint: look at how this was achieved in signalling1.py.

4. Who communicates with who in a population? What other ways could you model this, and how
would you start adjusting the code to implement your model? Hint: what if people only talked to
people who were ‘near’ them?

5. Rather than explicitly providing a population to evaluate, can you come up with some code that
generates a population of a specified size with random production and reception matrices?

