
Simulating Language: Lab 4 Worksheet
This simulation implements the evolution of an innate signalling system, using the same basic 
signalling system code from last time. Make sure that you are familiar with the way in which agents 
and signalling systems were encoded; the same data structures are used here. On this worksheet, the 
program is relatively long, so only the new code is reproduced here - note that there is a long 
comment that appears at the start of the code that explains what it does and how to run it, and I have 
added comments at the start of each function from signalling2.py to remind you what they 
do. The file evolution1.py nevertheless contains all the code we have already  seen in 
signalling2.py.  Copy evolution1.py from the website, and save it to your own file 
space as before.

Copying Lists

The first part of the new code imports the deepcopy 
function; this is needed because of the way in which 
Python treats copies of lists. Have a look at the code in 
the example below, and see if you can understand what 
is happening. 

First, list a is created, then is ‘copied’ to b, then one of 
the values in a is changed. But note that the value in b 
is also changed! 

When copying compound objects (i.e. lists), by 
default Python fills the new list (here: b)with 
references to elements in the old list (a); this 
means that the contents of b is actually the 
same  as that of a, even if we change a after 
we ‘copied’ it. 

If, instead, we want to ensure that the copied 
list contains new and different items, then we 
need to make a deep copy, using the deepcopy 
function from the copy module rather than 
simple assignment. Look at the next example to 
see how this works.

Make sure that you understand the difference, given a list x, between the statements y = x and    
y = deepcopy(x).

from copy import deepcopy

In [1]: a = [1, 2, 3]
In [2]: b = a
In [3]: b
Out[3]: [1, 2, 3]
In [4]: a[1] = 5
In [5]: b
Out[5]: [1, 5, 3]

In [6]: from copy import deepcopy
In [7]: x = [1, 2, 3]
In [8]: y = deepcopy(x)
In [9]: y
Out[9]: [1, 2, 3]
In [10]: x[1] = 5
In [11]: y
Out[11]: [1, 2, 3]
In [12]: x
Out[12]: [1, 5, 3]



Simulation Parameters 

The next section defines a number of variables which are used as parameters in the simulation, with 
comments explaining what  they are used for (remember that anything after the hash sign (#) is a 
comment, and thus ignored by  the Python interpreter). We define the variables individually, and 
then refer to them by name in the following functions, so that when we want to run the simulation 
with different parameters, all we need do is either change the values here and re-run the module, or 
enter new values at the prompt in Canopy and run a new simulation. Note that, in the comments, 
there is a stern rejoinder about not messing with the simulation parameters elsewhere - if you just 
restrict yourself to editing them in the editor, or entering new values at the prompt, you’ll be fine.

 How would you change the number of agents in the population? 

Fitness Functions

Evolutionary  algorithms require a function which measures fitness and helps determine which 
agents will reproduce into the next generation. The two functions in the box  above define fitness 
for an individual agent (fitness) and for the whole population (sum_fitness); study them 
and see if you can figure out how they work.

"""
The following values are the parameters for the simulation - ...
"""
mutation_rate = 0.001   # probability of mutation per weight
mutation_max = 1       # maximum value of a random weight
send_weighting = 10    # weighting factor for send score
receive_weighting = 10 # weighting factor for receive score
meanings = 3           # number of meanings
signals = 3            # number of signals
interactions = 1000    # number of interactions per generation
size = 100             # size of population

def fitness(agent):
    send_success = agent[2][0] 
    send_n = agent[2][1]       
    receive_success = agent[2][2]
    receive_n = agent[2][3]
    if send_n == 0: 
        send_n = 1
    if receive_n == 0: 
        receive_n = 1
    return ((send_success/send_n) * send_weighting +
            (receive_success/receive_n) * receive_weighting) + 1

def sum_fitness(population):
    total = 0
    for agent in population:
        total += fitness(agent)
    return total

Anon


Anon
we just discovered in class today (29/1) that in fact this doesn’t work as expected in Canopy - for some reason that I am yet to figure out, variables in the script can’t be over-written at the prompt (or rather they can, but when you call functions from the script it uses the values that were specified at the time you ran the script). That means that, if you want to change the parameters, you have to do it in the script, and then re-run the script. Sorry!



 Why are the variables send_n and receive_n sometimes set to 1 in the fitness 
function? 

 What do the send_weighting and receive_weighting variables do?

 What variables does the fitness function depend on? Why is there a “+1” here?

Mutation

This function mutates the signalling system by going through each cell in the matrix, deciding 
whether a mutation should take place, and, if so, assigning a new value to the cell. Note that this 
function contains a new random function rnd.randint(x, y); this returns a random integer between 
x and y, including both x and y; rnd.randint(x, y) is therefore equivalent to 
rnd.randrange(x, y + 1)

How does the program make sure that it goes through each cell in the matrix?

How frequently does mutation happen?

Breeding the next generation of agents

    
def mutate(system):
    for row_i in range(len(system)):
        for column_i in range(len(system[0])):
            if rnd.random() < mutation_rate:
                system[row_i][column_i] = rnd.randint(0, mutation_max)

def pick_parent(population,sum_f):
    accumulator = 0
    r = rnd.uniform(0, sum_f)
    for agent in population:
        accumulator += fitness(agent)
        if r < accumulator:
            return agent

def new_population(population):
    new_p = []
    sum_f = sum_fitness(population)
    for i in range(len(population)):
        parent=pick_parent(population, sum_f)
        child_production_system = deepcopy(parent[0])
        child_reception_system = deepcopy(parent[1])
        mutate(child_production_system)
        mutate(child_reception_system)
        child=[child_production_system,
               child_reception_system,
               [0., 0., 0., 0.]]
        new_p.append(child)
    return new_p



The next two functions create a new population of agents based on the fitness of the existing agents. 
The probability of being picked as a parent agent is proportional to the agent’s fitness.   There is 
another new random function rnd.uniform(x, y), which returns a random floating-point number 
between x and y; rnd.uniform(0,1) is equivalent to rnd.random().  Make sure you 
understand how the pick_parent  function works - it’s quite clever, you might need paper and pencil 
to work it out!

 
How does the program ensure that the probability of being picked as a parent is proportional 
to fitness?

Why is deepcopy used in new_population?

Establishing a random population of agents

The function random_system generates a random signalling system, and this is used to generate 
a random population of agents (random_population). 

Running the simulation

def random_system(rows,columns):
    system = []
    for i in range(rows):
        row = []
        for j in range(columns):
            row.append(rnd.randint(0, mutation_max))
        system.append(row)
    return system

def random_population(size):
    population = []
    for i in range(size):
        population.append([random_system(meanings,signals),
                           random_system(signals,meanings),
                           [0., 0., 0., 0.]])
    return population

def simulation(generations):
    accumulator=[]
    population = random_population(size)
    for i in range(generations):
        for j in range(interactions):
            pop_update(population)
        average_fitness=(sum_fitness(population)/size)
        accumulator.append(average_fitness)
        print '.', #this prints out a dot every generation
                   #if this annoys you, comment this line out with a #
        #print i, average_fitness #uncomment this line if you would like updates 
                                  #on average fitness during runs
        population = new_population(population)
    return [population,accumulator]



This function runs the main simulation. Make sure that you understand how it works, by studying 
the above functions again if necessary. After having loaded this code into the interpreter (by 
clicking the green play/run button), run the simulation by simply  typing simulation(n) at the 
prompt, where n specifies the number of generations you want  to simulate. Or you can be nifty, as 
sugges t ed i n t he u sage no t e s i n t he commen t s , and t ype some th ing l i ke 
my_pop,fitness_list=simulation(n).

  
How often does the population communicate in each generation?

At what point are agents assessed for fitness?

Run the simulation for a few generations: what do values returned by simulation signify?

Run it again, with different numbers of generations: how long does it take for a stable, 
successful communication system to emerge? (Note: 1000 generations takes 15-20 seconds on 
my laptop, so be wary of starting very very long runs)

 
Questions
Everyone should attempt questions 1 and 2, and have a think about question 4. 

1. Under what conditions does stable, successful communication evolve? (Note that it  is a very 
good idea to run the simulation a few times, and plot the results).

2. Can you speed up evolution (or slow it down)? How? Is there a limit to how fast  evolution can 
happen in the model?

3. In earlier worksheets we gave you the option of modelling production and reception using a 
single matrix of weights, or of modelling populations in a more structured way (e.g. where each 
individual communicated with their neighbours).  What difference do you think these factors will 
make to the evolution of communication?  Make the necessary adjustments to the code and find 
out.

4. In this model a parent’s signalling system is transmitted directly to their offspring - this is our 
model of the genetic transmission of an innate signalling system.  How else might a signalling 
system be transmitted from parent to offspring, and how might you model that process?


