Simulating Language: Lab 5 Worksheet

The simulation in learningl.py implements the learning of a signalling system. In the
previous simulations, an individual agent’s signalling system was provided innately, and didn’t
change in its lifetime. Populations of agents evolved through natural selection according to the
fitness function we specified, to be ‘optimal’ in some way for communication.

In this simulation, we’re ignoring evolution, and instead allowing the weights in an agent’s
signalling system to change through learning, as a result of their experiences.

First though, a quick comment on some problems we had in Lab 4 with modifying simulation
parameters at the prompt - if you don’t want to read this, just skip ahead to the bit where it says
“you should either”.

%run and simulation parameters

When you hit the green “play” button in Canopy, you will have noticed that this runs a command at
the prompt - it’s called a ‘magic command’, and appears as $run then a filename. There is
documentation for %run online if you want to look. %run executes the code in a your .py file in a
completely pristine namespace - so any variables you typed in at the prompt will be ignored, only
variables introduced in the .py file will be available. This is nice, because it means that your code
will still work even if you accidentally create a name clash by typing stuff at the prompt. Even
nicer, once the code has executed, it copies any variables it created during execution over to the
interactive namespace - so if your .py file creates a variable called population, you can inspect
this by typing population at the prompt once your code has run.

We ran into problems in lab 4 because %run has some slightly counter-intuitive properties. In
particular, if you change simulation parameters at the prompt (by just typing in new values) and
then call one of the functions from your code which refers to that parameter, it will use the value the
parameter had when you last clicked %run, rather than the value you typed in at the prompt
(because the function exists in a separate, pristine namespace, as mentioned above). I have put a
little example piece of code called run_example.py on the webpage, you can play around with
this to see this behaviour for yourself.

This means you have to be slightly careful about how you change simulation parameters. You

should either:

1. Continue to use the “play” button and %run, and only change parameters in your .py file - if you
want to change a parameter, edit that file and click play to %run it.

2. Instead of hitting the play button, type $run -i at the prompt, followed by the name of
your .py file - this executes your code in infteractive mode, which means that your code runs in
the interactive namespace and will have access to any variables you have created, including new
versions of the simulation parameters that you typed at the prompt.


http://ipython.org/ipython-doc/dev/interactive/magics.html%23magic-run
http://ipython.org/ipython-doc/dev/interactive/magics.html%23magic-run

On to this week’s lab

The first section of the 1learningl.py code is similar to the code we used in our first simulation
(signallingl.py), when we introduced the following:

. a signalling system is represented as a list of lists - you can think of this as a matrix or
as a neural network.

. how to produce a signal to express a meaning, using winner-take-all;

. how to decide which meaning a received signal is expressing, using winner-take-all;

. communication as a measure of how well the speaker’s meaning matches the hearer’s

meaning after being transmitted via a signal.

These should all be very familiar by now. We have made one major change to the code though. In
signallingl.py we had separate matrices for production and reception. From now on we are
going to use a model where we just have a single matrix which handles both processes. There are
some small changes to the code to accomplish this.

Identify the changes required to go from a two-matrix model to a one-matrix model, and
figure out why they have been made.

Learning

def learn(system, meaning, signal):
system[meaning][signal] += 1

In learning, agents store the association between the meaning and signal. We need one simple
function to implement learning.The function learn takes three arguments and is just two lines of
code. The arguments are:

1. a signalling system

2. a meaning

3. a signal

The function finds the appropriate cell in the signalling system matrix indexed by the meaning and
signal, and adds one to the value of the weight in this cell.

Make sure you understand how this learning function works, what the parameters mean, and how
the function updates the correct cell in the matrix.



In [1]: s = [[0,0,0],[0,0,0],[0,0,0],[0,0,0]] | Enterthe code in the box
and try it out.

In [2]: learn(s,0,2)
Create a signalling

In [3]: learn(s,1,1) system, then modify it by
learning some random
In [4]: learn(s,0,2) meaning-signal pairs.

In [5]: learn(s,3,0) Make sure you understand

how and why the weights
in the matrix have
changed.

In [6]: s
Out(6]: [[0,0,2],[0,1,01,(0,0,0],[1,0,0]]

Training

def train(system, ms_pair list):
for pair in ms_pair_ list:
learn(system, pair[0], pair[1l])

Rather than input each learning episode individually (which is a bit laborious), we can give an agent
a list of meaning-signal pairs, and learn them all through the single function train. This function
goes through each item in the list, and learns each meaning-signal pair individually.

Create a signalling system, then provide it with a list of learning exposures and check that the
system has learnt from the data you gave it.

Questions

1. How good is this model of learning? How can you test it?

2. Learning is implemented as a frequency count of associations. Are there other reasonable ways of
updating the matrix? How else might you change weights in response to observations?

3. Can you write some code to test how well an agent has learnt a language?



