
Simulating Language: Lab 6 Worksheet
Download learning2.py from the usual place. This simulation extends the previous model of
learning to allow for different ways of updating weights. In our initial model of learning we simply
increased the weight of connections between co-occurring signals and meanings. In our new model
we will be adjusting the weights in four different circumstances:

1. Where meaning and signal are both active (we’ll call the change to be made in this condition
‘alpha’).
2. Where only the meaning is active (we’ll call this beta).
3. Where only the signal is active (gamma).
4.Where neither meaning nor signal is active (delta)

This means we can express a weight-update rule as a list of four numbers, corresponding to the
weight changes in each of these circumstances: [alpha, beta, gamma, delta].

Learning rules

We have changed the learn function from learning1.py so that it takes an extra parameter
which specifies the weight-update rule to be used during learning.

As before, this function takes a signalling system, a meaning, and a signal and modifies the values
in the cells of the signalling matrix (or the connection weights in the network, depending on how
you look at it). The function potentially changes the values of every cell in the matrix. Can you see
how it is doing this (Hint: len(system) counts how many rows there are in a matrix,
len(system[m]) counts how many columns there are in row m)

Enter the code in the box and try it
out. This trains a 2x2 matrix on a
single utterance (meaning 0 paired
with signal 0) with a particular
(slightly weird) weight-update rule.

Try different rules. Which seem to make sense? Which corresponds to the one we used for the last
worksheet?

def learn(system, meaning, signal, rule):
 for m in range(len(system)):
 for s in range(len(system[m])):
 if m == meaning and s == signal: system[m][s] += rule[0]
 if m == meaning and s != signal: system[m][s] += rule[1]
 if m != meaning and s == signal: system[m][s] += rule[2]
 if m != meaning and s != signal: system[m][s] += rule[3]

In [1]: s = [[0, 0], [0, 0]]
In [2]: learn(s, 0, 0, [1, 0, 1, -1])
In [3]: s
Out[3]: [[1, 0], [1, -1]]

Learning in a population

The next part of the code allows us to go from a single agent to a population (if we wish).
pop_learn takes a list of signalling systems, a list of utterances (i.e. [meaning, signal] pairs),
some number of learning episodes, and a learning rule. For the number of learning episodes
specified, it trains a random individual in the population on a random utterance picked from the list
of data.

The reason we need a function like pop_learn might not be immediately obvious, but will be
clear when we come to the next worksheet! For the time being, you can use this function to train a
single agent by simply building a population that has a single agent in it. Alternatively, you can use
it to look at whether two or more agents may end up speaking similar languages when exposed to
utterances picked at random from a set of training data.

Why are there three square
brackets at the start of the
variable “p”?

Try different learning rules and
different data. How can we use
this way of training to model different frequencies of different types of utterance?

We have a way for a population to learn from some data, but how about getting them to produce
data, in order to evaluate how well they have learnt? pop_produce carries out this function. It
takes a population and a required number of productions, and returns a list of utterances (meaning-
signal pairs) generated by individuals picked randomly from the population:

Try generating data from a population that contains a single agent with a matrix made up of all
zeros as weights. Now try training another similar agent with the data that your first agent created.
What kind of data does the new agent produce after learning? The answer should depend on what
your learning rule is.

In [4]: p = [[[0, 0], [0, 0]]]
In [5]: pop_learn(p,[[0,0],[1,1]],100, [1,0,0,0])
In [6]: p
Out[6]: [[[48, 0], [0, 52]]]

def pop_learn(population, data, no_learning_episodes, rule):
 for n in range(no_learning_episodes):
 ms_pair = rnd.choice(data)
 learn(rnd.choice(population), ms_pair[0], ms_pair[1], rule)

def pop_produce(population, no_productions):
 ms_pairs = []
 for n in range(no_productions):
 speaker = rnd.choice(population)
 meaning = rnd.randrange(len(speaker))
 signal = wta(production_weights(speaker, meaning))
 ms_pairs.append([meaning,signal])
 return ms_pairs

Finally, we’ve added a population-based version of our Monte Carlo measure of communicative
accuracy: ca_monte_pop. This takes a population and a number of trials, and return a Monte
Carlo estimate of the chance that a random communication between members of the population will
be successful - note that it just returns a single value, rather than a list of values (which is different
from previous implementations of Monte Carlo evaluation).

Questions
Answering questions 1-3 involves playing with the model - for questions 4-5, you can just think
about it (although you can have a go at coding your ideas up if you like).

1. Which weight-update rules “work” as a model of learning in terms of output data being similar to
input data? Try this with an optimal language and a sub-optimal language.

2. What effect do the differences in weight-update rules have on generalisation? To find this out, try
holding some data back and see what signals an agent will produce for a meaning it has never been
trained on.

3.Which weight-update rules lead to better communication in the population?

4. In answering questions 1-3, you have probably been training agents on data that you provided. In
a proper model of language learning, where would this data come from? Could you use the code
above to model this?

5. Similarly, this code allows us to stipulate the weight-update rule that an agent or population of
agents uses. In a complete model, where might this weight-update rule come from? How could
you model this?

def ca_monte_pop(population, trials):
 total = 0.
 for n in range(trials):
 speaker = rnd.choice(population)
 hearer = rnd.choice(population)
 total += communicate(speaker, hearer, rnd.randrange(len(speaker)))
 return total / trials

