
Simulating Language: Lab 10 Worksheet
Download bayes2.py from the usual place.  This simulation implements a simplified version of 
the language model from Kirby, Dowman & Griffiths (2007) using an explicit agent-based 
simulation, and embeds this language model in a slightly more sophisticated population model.

Following Kirby, Dowman & Griffiths (2007), we assume a language is made up of a set of 
variables, each of which can exist in a number of different variant forms. This is a rather general 
characterisation that actually  applies well to a number of linguistic phenomena. For example, we 
can think of the variables as different syntactic categories, and the variants as word orders. 
Alternatively, the variables could be verb-meanings and the variants different realisations of the past 
tense, and so on. Agents will produce (and learn from) data which simply  exemplifies which variant 
they  have for a particular variable (with the possibility of noise on transmission).  We will group 
languages into two classes: regular languages (where the same variant is used for all variables) and 
irregular languages (where more than one variant is used).  

As usual, the new code starts with a set of parameter declarations:

Production of data 

The function produce takes a language, selects a random variable, and produces the relevant 
variant from the language. 

• By looking at this code, can you tell how languages are represented in the simulation?
• Can you see how ‘noise’ - errors on production - works?

learning = 'sample'     # The type of learning ('map' or 'sample')
bias = log(0.6)         # The preference for regular languages
variables = 2           # The number of different variables in the language
variants = 2            # The number of different variants each variable can take
noise = log(0.05)       # The probability of producing the wrong variant
population_size = 1000  # Size of population
teachers = 'single'     # Either 'single' or 'multiple' 
method = 'chain'        # Either 'chain' or 'replacement'

def produce(language):
    '''
    Produces a variant for a particular language and randomly-selected variable.
    With log-probability given by the parameter noise, an incorrect randomly-
    selected variant is produced instead of the variant specified in language
    '''
    variable = rnd.randrange(len(language))
    correct_variant = language[variable]
    if log(rnd.random()) > noise:
        return [variable,correct_variant]
    else:
        possible_noise_variants = range(variants)
        possible_noise_variants.remove(correct_variant)
        noisy_variant = rnd.choice(possible_noise_variants)
        return [variable,noisy_variant]



Classifying languages 

In this language model, prior probability  is determined by language class: regular languages differ 
from irregular languages in their prior probability, and ultimately we are interested in the proportion 
of our simulated population who use regular languages.  We therefore need a function to take a 
language and classify it as regular or not - the function regular does this.  We also want  to be 
able to calculate the proportion of individuals in a population who use a regular language (for 
plotting simulation results), which is done by proportion_regular_language. 

The Bayesian bits 

The function logprior returns the prior probability (as a log probability) of a particular 
language . The strength of preference for regular languages depends on the simulation parameter 
bias - if bias is over 0.5 (when converted back from a log probability), regular languages have 
higher prior probability.

def regular(language):
    '''
    Classifies a language as either regular (all variables expressed with the 
    same variant) or irregular (multiple variants used)
    '''
    regular = True
    first_variant = language[0]
    for variant in language:
        if variant != first_variant:
            regular = False
    return regular

def proportion_regular_language(population):
    '''
    A population is a list of languages, this just counts how many of them are 
    regular - used for outputting proportion of regular languages in our 
    iterated learning simulation.
    '''
    regular_count = 0
    for agent in population:
        if regular(agent):
            regular_count += 1
    return  regular_count / float(len(population))

def logprior(language):
    '''
    Calculates the log probability in the prior for a particular language. Note 
    that this must sum to log(1) for all languages, so there is some normalisation 
    in here.
    '''
    if regular(language):
        number_of_regular_languages = variants
        return bias - log(number_of_regular_languages) #subtracting logs = dividing
    else:
        number_of_irregular_languages = pow(variants, variables) - variants
        return log_subtract(0,bias) - log(number_of_irregular_languages)
        #log(1) is 0, so log_subtract(0,bias) is equivalent to (1-bias) in the 
        #non-log domain



• Why are we dividing the bias by the number of  regular and irregular languages in this 
function?  Check you understand how these numbers are calculated.

• How does this function differ from the prior from the Kirby, Dowman & Griffiths (2007) 
paper? (Hint: consider the case of more than two variables.)

The function loglikelihood takes a language and a list of data and works out the (log) 
likelihood of the data given the language. We allows some small probability (given by the 
simulation parameter noise) that a speaker will produce the ‘wrong’ variant, i.e. a variant other 
than that specified by their language. 

Learning

Bayesian learners calculate the posterior probability of each language based on some data, then 
select a language (‘learn’) based on those posterior probabilities.  learn implements this.  As 
discussed in the lecture, there are two ways you could select a language based on the posterior 
probability distribution:

1. You could pick the best language - i.e. the language with the highest posterior probability.  
This is called MAP (“maximum a posteriori”) learning.
2. Alternatively, you could pick a language probabilistically based on its posterior 
probability, without necessarily going for the best one every time (e.g. if language 0 has 
twice the posterior probability  of language 1, you are twice as likely to pick it).  This is 
called sampling (for “sampling from the posterior distribution”).

The next bit of code implements both these ways of learning, using the familiar wta function to do 
MAP learning and using log_roulette_wheel to do sampling (from bayes1.py, which 
assumed learners sample from the posterior). all_languages  enumerates all possible languages 
using a cute recursive method (don’t worry too much if you can’t figure out how it  works!), learn 
implements hypothesis selection.

def loglikelihood(data, language):
    '''
    Calculates the (log) likelihood of data given a language, which is simply 
    the product of the likelihoods of the individual data items.
    '''
    loglikelihoods = []
    logp_correct = log_subtract(0,noise) #probability of producing correct form
    logp_incorrect = noise - log((variants - 1)) #logprob of each incorrect variant
    for utterance in data:
        variable = utterance[0]
        variant = utterance[1]
        if variant == language[variable]:
            loglikelihoods.append(logp_correct)
        else:
            loglikelihoods.append(logp_incorrect)
    return sum(loglikelihoods) #summing log likelihoods = multiplying likelihoods



The simulation

There are two main functions to actually carry out the relevant simulation runs. The first is 
pop_learn, creates a new population of a specified size who learn a language from data produced 

>>> x = [1, 2, 3, 4]
>>> 3 in x
True
>>> 5 in x
False
>>> 0 not in x
True
>>> 2 in x[2:]
False

def pop_learn(adult_population,bottleneck,number_of_learners):
    '''
    Generates a new population, consisting of a specified number_of_learners,
    who learn from data generated by the adult population - either from a single
    parent, or the whole population.
    '''
    new_population = []
    for n in range(number_of_learners):
        if teachers == 'single':
            potential_teachers = [rnd.choice(adult_population)]
        if teachers == 'multiple':
            potential_teachers = adult_population
        data = []
        for n in range(bottleneck):
            teacher = rnd.choice(potential_teachers)
            utterance = produce(teacher)
            data.append(utterance)
        learner_grammar = learn(data)
        new_population.append(learner_grammar)
    return new_population

def all_languages(n)log_:
    '''
    Generates a list of all possible languages for expressing n variables.
    '''
    if n == 0:
        return [[]]
    else:
        result = []
        smaller_langs = all_languages(n - 1)
        for l in smaller_langs:
            for v in range(variants):
                result.append(l + [v])
        return result

def learn(data):    
    '''
    Calculates the posterior probability for all languages, then picks a language.
    This will either be the maximum a posteriori language ('map')
    or a language sampled from the posterior.
    '''
    list_of_all_languages = all_languages(variables)
    list_of_posteriors = []
    for language in list_of_all_languages:
        this_language_posterior = loglikelihood(data,language) + logprior(language) 
        list_of_posteriors.append(this_language_posterior)
    if learning == 'map':
        map_language_index = wta(list_of_posteriors)
        map_language = list_of_all_languages[map_language_index]
        return map_language
    if learning == 'sample':
        normalized_posteriors = normalize_logprobs(list_of_posteriors)
        sampled_language_index = log_roulette_wheel(normalized_posteriors)
        sampled_language = list_of_all_languages[sampled_language_index]
        return sampled_language



by an adult population.   It calls on the teachers global parameter to decide whether these 
learners should learn from a single individual in the adult population, or whether they learn each 
utterance from a randomly-selected member of the adult population (i.e. learns from multiple 
teachers).

• How is the difference between single and multiple teachers implemented?  In the 
multiple-teacher version, is each data item guaranteed to be produced by a separate 
teacher?

initial_population is a subsidiary function which generates a population of a specified size 
of individuals speaking randomly-selected languages.   

The second main function is iterate, which is the top-level function which actually  runs 
simulations.  This function calls on the method parameter, to run either chain simulations (where 
a population consists of a series of generations, where the entire population is replaced at each 
generation) or replacement simulation (where a single individual is replaced at each 
‘generation’).  It returns a list  of two things: the final population, and a (plottable) list of the 
proportion of each generation which uses a regular language.  

def initial_population(n):
    '''
    Returns a list of n randomly-generated languages
    '''
    population = []
    possible_languages = all_languages(variables)
    for agent in range(n):
        language=rnd.choice(possible_languages)
        population.append(language)
    return population

def iterate(generations, bottleneck, report_every):
    '''
    Returns a list of two elements: final population, and accumulated data, 
    which is expressed in terms of proportion of the population using a regular 
    language
    '''
    population = initial_population(population_size)
    accumulator=[proportion_regular_language(population)]
    for g in range(1,generations+1):
        print '.',
        if method == 'chain': # Replace whole population
            population = pop_learn(population, bottleneck, population_size)
        if method == 'replacement': #Replace one individual at a time
            population = population[1:] 
            new_agent = pop_learn(population, bottleneck, 1)[0]
            population.append(new_agent)
        if (g % report_every == 0):
            accumulator.append(proportion_regular_language(population))
    return population,accumulator



Questions

Note: Running the simulations takes a little time, particularly  if you run large populations for large 
numbers of generations. In general, you probably want  to keep the bottleneck values between 1 and 
10, in which case you should get representative results within 100 to 500 generations (for chain 
populations).  Larger populations (e.g. 1000 individuals) generally  give you cleaner results (have a 
think about why this is).

1. Using the default parameters (single teacher, chain method), check that you can replicate the 
standard results for sampling and MAP learners: convergence to the prior for samplers, 
exaggeration of the prior for MAP.  

2. What happens if you switch from single teachers to multiple teachers?  Does the sampler result 
change?  Does the MAP result change?  How does the bottleneck effect these results?  

3. Finally, what happens if you switch from the chain method to the replacement method?  Don’t 
forget that each ‘generation’ in a replacement simulation just replaces a single individual, so 
you’ll have to run the simulations for lots more generations to get  equivalent results to those you 
got under the chain method.


