
Simulating Language: Lab 10 Worksheet
Download bayes2.py from the usual place. This simulation implements a simplified version of
the language model from Kirby, Dowman & Griffiths (2007) using an explicit agent-based
simulation, and embeds this language model in a slightly more sophisticated population model.

Following Kirby, Dowman & Griffiths (2007), we assume a language is made up of a set of
variables, each of which can exist in a number of different variant forms. This is a rather general
characterisation that actually applies well to a number of linguistic phenomena. For example, we
can think of the variables as different syntactic categories, and the variants as word orders.
Alternatively, the variables could be verb-meanings and the variants different realisations of the past
tense, and so on. Agents will produce (and learn from) data which simply exemplifies which variant
they have for a particular variable (with the possibility of noise on transmission). We will group
languages into two classes: regular languages (where the same variant is used for all variables) and
irregular languages (where more than one variant is used).

As usual, the new code starts with a set of parameter declarations:

Production of data

The function produce takes a language, selects a random variable, and produces the relevant
variant from the language.

• By looking at this code, can you tell how languages are represented in the simulation?
• Can you see how ‘noise’ - errors on production - works?

learning = 'sample' # The type of learning ('map' or 'sample')
bias = log(0.6) # The preference for regular languages
variables = 2 # The number of different variables in the language
variants = 2 # The number of different variants each variable can take
noise = log(0.05) # The probability of producing the wrong variant
population_size = 1000 # Size of population
teachers = 'single' # Either 'single' or 'multiple'
method = 'chain' # Either 'chain' or 'replacement'

def produce(language):
 '''
 Produces a variant for a particular language and randomly-selected variable.
 With log-probability given by the parameter noise, an incorrect randomly-
 selected variant is produced instead of the variant specified in language
 '''
 variable = rnd.randrange(len(language))
 correct_variant = language[variable]
 if log(rnd.random()) > noise:
 return [variable,correct_variant]
 else:
 possible_noise_variants = range(variants)
 possible_noise_variants.remove(correct_variant)
 noisy_variant = rnd.choice(possible_noise_variants)
 return [variable,noisy_variant]

Classifying languages

In this language model, prior probability is determined by language class: regular languages differ
from irregular languages in their prior probability, and ultimately we are interested in the proportion
of our simulated population who use regular languages. We therefore need a function to take a
language and classify it as regular or not - the function regular does this. We also want to be
able to calculate the proportion of individuals in a population who use a regular language (for
plotting simulation results), which is done by proportion_regular_language.

The Bayesian bits

The function logprior returns the prior probability (as a log probability) of a particular
language . The strength of preference for regular languages depends on the simulation parameter
bias - if bias is over 0.5 (when converted back from a log probability), regular languages have
higher prior probability.

def regular(language):
 '''
 Classifies a language as either regular (all variables expressed with the
 same variant) or irregular (multiple variants used)
 '''
 regular = True
 first_variant = language[0]
 for variant in language:
 if variant != first_variant:
 regular = False
 return regular

def proportion_regular_language(population):
 '''
 A population is a list of languages, this just counts how many of them are
 regular - used for outputting proportion of regular languages in our
 iterated learning simulation.
 '''
 regular_count = 0
 for agent in population:
 if regular(agent):
 regular_count += 1
 return regular_count / float(len(population))

def logprior(language):
 '''
 Calculates the log probability in the prior for a particular language. Note
 that this must sum to log(1) for all languages, so there is some normalisation
 in here.
 '''
 if regular(language):
 number_of_regular_languages = variants
 return bias - log(number_of_regular_languages) #subtracting logs = dividing
 else:
 number_of_irregular_languages = pow(variants, variables) - variants
 return log_subtract(0,bias) - log(number_of_irregular_languages)
 #log(1) is 0, so log_subtract(0,bias) is equivalent to (1-bias) in the
 #non-log domain

• Why are we dividing the bias by the number of regular and irregular languages in this
function? Check you understand how these numbers are calculated.

• How does this function differ from the prior from the Kirby, Dowman & Griffiths (2007)
paper? (Hint: consider the case of more than two variables.)

The function loglikelihood takes a language and a list of data and works out the (log)
likelihood of the data given the language. We allows some small probability (given by the
simulation parameter noise) that a speaker will produce the ‘wrong’ variant, i.e. a variant other
than that specified by their language.

Learning

Bayesian learners calculate the posterior probability of each language based on some data, then
select a language (‘learn’) based on those posterior probabilities. learn implements this. As
discussed in the lecture, there are two ways you could select a language based on the posterior
probability distribution:

1. You could pick the best language - i.e. the language with the highest posterior probability.
This is called MAP (“maximum a posteriori”) learning.
2. Alternatively, you could pick a language probabilistically based on its posterior
probability, without necessarily going for the best one every time (e.g. if language 0 has
twice the posterior probability of language 1, you are twice as likely to pick it). This is
called sampling (for “sampling from the posterior distribution”).

The next bit of code implements both these ways of learning, using the familiar wta function to do
MAP learning and using log_roulette_wheel to do sampling (from bayes1.py, which
assumed learners sample from the posterior). all_languages enumerates all possible languages
using a cute recursive method (don’t worry too much if you can’t figure out how it works!), learn
implements hypothesis selection.

def loglikelihood(data, language):
 '''
 Calculates the (log) likelihood of data given a language, which is simply
 the product of the likelihoods of the individual data items.
 '''
 loglikelihoods = []
 logp_correct = log_subtract(0,noise) #probability of producing correct form
 logp_incorrect = noise - log((variants - 1)) #logprob of each incorrect variant
 for utterance in data:
 variable = utterance[0]
 variant = utterance[1]
 if variant == language[variable]:
 loglikelihoods.append(logp_correct)
 else:
 loglikelihoods.append(logp_incorrect)
 return sum(loglikelihoods) #summing log likelihoods = multiplying likelihoods

The simulation

There are two main functions to actually carry out the relevant simulation runs. The first is
pop_learn, creates a new population of a specified size who learn a language from data produced

>>> x = [1, 2, 3, 4]
>>> 3 in x
True
>>> 5 in x
False
>>> 0 not in x
True
>>> 2 in x[2:]
False

def pop_learn(adult_population,bottleneck,number_of_learners):
 '''
 Generates a new population, consisting of a specified number_of_learners,
 who learn from data generated by the adult population - either from a single
 parent, or the whole population.
 '''
 new_population = []
 for n in range(number_of_learners):
 if teachers == 'single':
 potential_teachers = [rnd.choice(adult_population)]
 if teachers == 'multiple':
 potential_teachers = adult_population
 data = []
 for n in range(bottleneck):
 teacher = rnd.choice(potential_teachers)
 utterance = produce(teacher)
 data.append(utterance)
 learner_grammar = learn(data)
 new_population.append(learner_grammar)
 return new_population

def all_languages(n)log_:
 '''
 Generates a list of all possible languages for expressing n variables.
 '''
 if n == 0:
 return [[]]
 else:
 result = []
 smaller_langs = all_languages(n - 1)
 for l in smaller_langs:
 for v in range(variants):
 result.append(l + [v])
 return result

def learn(data):
 '''
 Calculates the posterior probability for all languages, then picks a language.
 This will either be the maximum a posteriori language ('map')
 or a language sampled from the posterior.
 '''
 list_of_all_languages = all_languages(variables)
 list_of_posteriors = []
 for language in list_of_all_languages:
 this_language_posterior = loglikelihood(data,language) + logprior(language)
 list_of_posteriors.append(this_language_posterior)
 if learning == 'map':
 map_language_index = wta(list_of_posteriors)
 map_language = list_of_all_languages[map_language_index]
 return map_language
 if learning == 'sample':
 normalized_posteriors = normalize_logprobs(list_of_posteriors)
 sampled_language_index = log_roulette_wheel(normalized_posteriors)
 sampled_language = list_of_all_languages[sampled_language_index]
 return sampled_language

by an adult population. It calls on the teachers global parameter to decide whether these
learners should learn from a single individual in the adult population, or whether they learn each
utterance from a randomly-selected member of the adult population (i.e. learns from multiple
teachers).

• How is the difference between single and multiple teachers implemented? In the
multiple-teacher version, is each data item guaranteed to be produced by a separate
teacher?

initial_population is a subsidiary function which generates a population of a specified size
of individuals speaking randomly-selected languages.

The second main function is iterate, which is the top-level function which actually runs
simulations. This function calls on the method parameter, to run either chain simulations (where
a population consists of a series of generations, where the entire population is replaced at each
generation) or replacement simulation (where a single individual is replaced at each
‘generation’). It returns a list of two things: the final population, and a (plottable) list of the
proportion of each generation which uses a regular language.

def initial_population(n):
 '''
 Returns a list of n randomly-generated languages
 '''
 population = []
 possible_languages = all_languages(variables)
 for agent in range(n):
 language=rnd.choice(possible_languages)
 population.append(language)
 return population

def iterate(generations, bottleneck, report_every):
 '''
 Returns a list of two elements: final population, and accumulated data,
 which is expressed in terms of proportion of the population using a regular
 language
 '''
 population = initial_population(population_size)
 accumulator=[proportion_regular_language(population)]
 for g in range(1,generations+1):
 print '.',
 if method == 'chain': # Replace whole population
 population = pop_learn(population, bottleneck, population_size)
 if method == 'replacement': #Replace one individual at a time
 population = population[1:]
 new_agent = pop_learn(population, bottleneck, 1)[0]
 population.append(new_agent)
 if (g % report_every == 0):
 accumulator.append(proportion_regular_language(population))
 return population,accumulator

Questions

Note: Running the simulations takes a little time, particularly if you run large populations for large
numbers of generations. In general, you probably want to keep the bottleneck values between 1 and
10, in which case you should get representative results within 100 to 500 generations (for chain
populations). Larger populations (e.g. 1000 individuals) generally give you cleaner results (have a
think about why this is).

1. Using the default parameters (single teacher, chain method), check that you can replicate the
standard results for sampling and MAP learners: convergence to the prior for samplers,
exaggeration of the prior for MAP.

2. What happens if you switch from single teachers to multiple teachers? Does the sampler result
change? Does the MAP result change? How does the bottleneck effect these results?

3. Finally, what happens if you switch from the chain method to the replacement method? Don’t
forget that each ‘generation’ in a replacement simulation just replaces a single individual, so
you’ll have to run the simulations for lots more generations to get equivalent results to those you
got under the chain method.

