

Simulating Language: Lab 10 Worksheet

Download `bayes2.py` from the usual place. This simulation implements a simplified version of the language model from Kirby, Dowman & Griffiths (2007) using an explicit agent-based simulation, and embeds this language model in a slightly more sophisticated population model.

Following Kirby, Dowman & Griffiths (2007), we assume a language is made up of a set of *variables*, each of which can exist in a number of different *variant* forms. This is a rather general characterisation that actually applies well to a number of linguistic phenomena. For example, we can think of the variables as different syntactic categories, and the variants as word orders. Alternatively, the variables could be verb-meanings and the variants different realisations of the past tense, and so on. Agents will produce (and learn from) data which simply exemplifies which variant they have for a particular variable (with the possibility of noise on transmission). We will group languages into two classes: regular languages (where the same variant is used for all variables) and irregular languages (where more than one variant is used).

As usual, the new code starts with a set of parameter declarations:

```
learning = 'sample'      # The type of learning ('map' or 'sample')
bias = log(0.6)          # The preference for regular languages
variables = 2             # The number of different variables in the language
variants = 2              # The number of different variants each variable can take
noise = log(0.05)         # The probability of producing the wrong variant
population_size = 1000    # Size of population
teachers = 'single'       # Either 'single' or 'multiple'
method = 'chain'          # Either 'chain' or 'replacement'
```

Production of data

```
def produce(language):
    """
    Produces a variant for a particular language and randomly-selected variable.
    With log-probability given by the parameter noise, an incorrect randomly-
    selected variant is produced instead of the variant specified in language
    """
    variable = rnd.randrange(len(language))
    correct_variant = language[variable]
    if log(rnd.random()) > noise:
        return [variable,correct_variant]
    else:
        possible_noise_variants = range(variants)
        possible_noise_variants.remove(correct_variant)
        noisy_variant = rnd.choice(possible_noise_variants)
        return [variable,noisy_variant]
```

The function `produce` takes a language, selects a random variable, and produces the relevant variant from the language.

- *By looking at this code, can you tell how languages are represented in the simulation?*
- *Can you see how 'noise' - errors on production - works?*

Classifying languages

In this language model, prior probability is determined by language class: regular languages differ from irregular languages in their prior probability, and ultimately we are interested in the proportion of our simulated population who use regular languages. We therefore need a function to take a language and classify it as regular or not - the function `regular` does this. We also want to be able to calculate the proportion of individuals in a population who use a regular language (for plotting simulation results), which is done by `proportion_regular_language`.

```
def regular(language):
    ...
    Classifies a language as either regular (all variables expressed with the
    same variant) or irregular (multiple variants used)
    ...
    regular = True
    first_variant = language[0]
    for variant in language:
        if variant != first_variant:
            regular = False
    return regular

def proportion_regular_language(population):
    ...
    A population is a list of languages, this just counts how many of them are
    regular - used for outputting proportion of regular languages in our
    iterated learning simulation.
    ...
    regular_count = 0
    for agent in population:
        if regular(agent):
            regular_count += 1
    return regular_count / float(len(population))
```

The Bayesian bits

```
def logprior(language):
    ...
    Calculates the log probability in the prior for a particular language. Note
    that this must sum to log(1) for all languages, so there is some normalisation
    in here.
    ...
    if regular(language):
        number_of_regular_languages = variants
        return bias - log(number_of_regular_languages) #subtracting logs = dividing
    else:
        number_of_irregular_languages = pow(variants, variables) - variants
        return log_subtract(0,bias) - log(number_of_irregular_languages)
        #log(1) is 0, so log_subtract(0,bias) is equivalent to (1-bias) in the
        #non-log domain
```

The function `logprior` returns the prior probability (as a log probability) of a particular language. The strength of preference for regular languages depends on the simulation parameter `bias` - if `bias` is over 0.5 (when converted back from a log probability), regular languages have higher prior probability.

- *Why are we dividing the bias by the number of regular and irregular languages in this function? Check you understand how these numbers are calculated.*
- *How does this function differ from the prior from the Kirby, Dowman & Griffiths (2007) paper? (Hint: consider the case of more than two variables.)*

```
def loglikelihood(data, language):
    """
    Calculates the (log) likelihood of data given a language, which is simply
    the product of the likelihoods of the individual data items.
    """
    loglikelihoods = []
    logp_correct = log_subtract(0, noise) #probability of producing correct form
    logp_incorrect = noise - log((variants - 1)) #logprob of each incorrect variant
    for utterance in data:
        variable = utterance[0]
        variant = utterance[1]
        if variant == language[variable]:
            loglikelihoods.append(logp_correct)
        else:
            loglikelihoods.append(logp_incorrect)
    return sum(loglikelihoods) #summing log likelihoods = multiplying likelihoods
```

The function `loglikelihood` takes a language and a list of data and works out the (log) likelihood of the data given the language. We allow some small probability (given by the simulation parameter `noise`) that a speaker will produce the ‘wrong’ variant, i.e. a variant other than that specified by their language.

Learning

Bayesian learners calculate the posterior probability of each language based on some data, then select a language (‘learn’) based on those posterior probabilities. `learn` implements this. As discussed in the lecture, there are two ways you could select a language based on the posterior probability distribution:

1. You could pick the best language - i.e. the language with the highest posterior probability. This is called MAP (“**maximum a posteriori**”) learning.
2. Alternatively, you could pick a language probabilistically based on its posterior probability, without necessarily going for the best one every time (e.g. if language 0 has twice the posterior probability of language 1, you are twice as likely to pick it). This is called sampling (for “sampling from the posterior distribution”).

The next bit of code implements both these ways of learning, using the familiar `wt` function to do MAP learning and using `log_roulette_wheel` to do sampling (from `bayes1.py`, which assumed learners sample from the posterior). `all_languages` enumerates all possible languages using a cute recursive method (don’t worry too much if you can’t figure out how it works!), `learn` implements hypothesis selection.

```

def all_languages(n):
    ...
    Generates a list of all possible languages for expressing n variables.
    ...
    if n == 0:
        return []
    else:
        result = []
        smaller_langs = all_languages(n - 1)
        for l in smaller_langs:
            for v in range(variants):
                result.append(l + [v])
        return result

def learn(data):
    ...
    Calculates the posterior probability for all languages, then picks a language.
    This will either be the maximum a posteriori language ('map')
    or a language sampled from the posterior.
    ...
    list_of_all_languages = all_languages(variables)
    list_of_posteriors = []
    for language in list_of_all_languages:
        this_language_posterior = loglikelihood(data,language) + logprior(language)
        list_of_posteriors.append(this_language_posterior)
    if learning == 'map':
        map_language_index = wta(list_of_posteriors)
        map_language = list_of_all_languages[map_language_index]
        return map_language
    if learning == 'sample':
        normalized_posteriors = normalize_logprobs(list_of_posteriors)
        sampled_language_index = log_roulette_wheel(normalized_posteriors)
        sampled_language = list_of_all_languages[sampled_language_index]
        return sampled_language

```

The simulation

There are two main functions to actually carry out the relevant simulation runs. The first is `pop_learn`, creates a new population of a specified size who learn a language from data produced

```

def pop_learn(adult_population,bottleneck,number_of_learners):
    ...
    Generates a new population, consisting of a specified number_of_learners,
    who learn from data generated by the adult population - either from a single
    parent, or the whole population.
    ...
    new_population = []
    for n in range(number_of_learners):
        if teachers == 'single':
            potential_teachers = [rnd.choice(adult_population)]
        if teachers == 'multiple':
            potential_teachers = adult_population
        data = []
        for n in range(bottleneck):
            teacher = rnd.choice(potential_teachers)
            utterance = produce(teacher)
            data.append(utterance)
        learner_grammar = learn(data)
        new_population.append(learner_grammar)
    return new_population

```

by an adult population. It calls on the `teachers` global parameter to decide whether these learners should learn from a single individual in the adult population, or whether they learn each utterance from a randomly-selected member of the adult population (i.e. learns from multiple teachers).

- *How is the difference between single and multiple teachers implemented? In the multiple-teacher version, is each data item guaranteed to be produced by a separate teacher?*

```
def initial_population(n):
    ...
    Returns a list of n randomly-generated languages
    ...
    population = []
    possible_languages = all_languages(variables)
    for agent in range(n):
        language=rnd.choice(possible_languages)
        population.append(language)
    return population
```

`initial_population` is a subsidiary function which generates a population of a specified size of individuals speaking randomly-selected languages.

```
def iterate(generations, bottleneck, report_every):
    ...
    Returns a list of two elements: final population, and accumulated data,
    which is expressed in terms of proportion of the population using a regular
    language
    ...
    population = initial_population(population_size)
    accumulator=[proportion_regular_language(population)]
    for g in range(1,generations+1):
        print '.',
        if method == 'chain': # Replace whole population
            population = pop_learn(population, bottleneck, population_size)
        if method == 'replacement': #Replace one individual at a time
            population = population[1:]
            new_agent = pop_learn(population, bottleneck, 1)[0]
            population.append(new_agent)
        if (g % report_every == 0):
            accumulator.append(proportion_regular_language(population))
    return population,accumulator
```

The second main function is `iterate`, which is the top-level function which actually runs simulations. This function calls on the `method` parameter, to run either `chain` simulations (where a population consists of a series of generations, where the entire population is replaced at each generation) or `replacement` simulation (where a single individual is replaced at each ‘generation’). It returns a list of two things: the final population, and a (plottable) list of the proportion of each generation which uses a regular language.

Questions

Note: Running the simulations takes a little time, particularly if you run large populations for large numbers of generations. In general, you probably want to keep the bottleneck values between 1 and 10, in which case you should get representative results within 100 to 500 generations (for chain populations). Larger populations (e.g. 1000 individuals) generally give you cleaner results (have a think about why this is).

1. Using the default parameters (single teacher, chain method), check that you can replicate the standard results for sampling and MAP learners: convergence to the prior for samplers, exaggeration of the prior for MAP.
2. What happens if you switch from single teachers to multiple teachers? Does the sampler result change? Does the MAP result change? How does the bottleneck effect these results?
3. Finally, what happens if you switch from the chain method to the replacement method? Don't forget that each 'generation' in a replacement simulation just replaces a single individual, so you'll have to run the simulations for lots more generations to get equivalent results to those you got under the chain method.