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I Introduction

Attempts to explain the particular structure of language often appeal to a “conventional
neo-Darwinian process” [21], whereby humans have evolved an innate, genetically
encoded language device in the brain which is specifically tailored to the acquisition
and maintenance of language [5]. More recently, however, researchers have begun to
develop models which emphasize the repeated process of language learning and use it
as the driving force behind the emergence of linguistic structures. For example, Kirby
[12] explores in detail how certain language universals [9] can be explained elegantly
by focusing on how processing complexity affects the transmission of language.

Much recent work in the field of language evolution has focused on the evolution of
syntactic structure as the crucial event which marks both the genesis of language and
the defining criterion which separates it from animal communication systems. Kirby
[13], for example, demonstrates that syntax can arise from unstructured communication
systems by creating generalized rules from the analysis of signal-meaning pairs, and
Brighton [4] shows that pressures such as the poverty of the stimulus [5] lead to the
emergence of syntactic structure when the process of language production and learning
is repeated over generations.

There are, however, some major problems with the assumptions behind simulations
such as these. Firstly, syntax develops only because signals in the simulations are cou-
pled to pre-existing, innate, structured meanings, and so it is no surprise to find that
the structure of the emergent syntax directly parallels that of the predefined semantics,
as discussed by Nehaniv [19]. Explanations of the origin of these meanings, and of how
they become associated with signals, are conspicuously absent. Secondly, communica-
tion consists of the simultaneous transfer of signals and meanings; thus the simulations
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ignore one of the most crucial features of real language acquisition, namely that mean-
ings are not transferred with words, and yet learners do manage to infer meanings and
associate words with them. Thirdly, the simulations rely on variants of reinforcement
learning to guide the agents [26], although the existence of reliable error signals in
language learning is widely rejected [3]. In contrast, I argue that constructing meanings
and learning which of them are most relevant is a crucial part of the language learning
process which should not be overlooked.

The article is divided into six main parts. In Section 2, I discuss the assumption of ex-
plicit meaning transfer and its implications for models of communication and learning.
In Section 3, I report details of the model of meaning creation and communication,
describing how the problem of explicit meaning transfer can be overcome. In Sec-
tion 4, I show the importance of meaning similarity for the emergence of successful
communicative systems, and describe a baseline for meaning similarity. Finally, in Sec-
tions 5-7, I investigate how cognitive biases, communicative biases, and environmental
factors such as the agents’ experience and the structure of the world affect levels of
meaning similarity, and therefore levels of successful communication.

2 Explicit Meaning Transfer

Kirby [13] and Batali [2] have shown separately how the simple ability to create general
rules, by taking advantage of coincidental correspondences between parts of utterances
and parts of meanings, can result in the emergence of a compositional, syntactic com-
munication system. In a nutshell, this occurs when the agents are subject to pressures
which limit their exposure to the language, such as the poverty of the stimulus; general
rules can generate more utterances than idiosyncratic rules, are more likely to be en-
countered, and are therefore replicated in greater numbers in following generations. I
have already noted, however, that the successful emergence of syntax in these models
is dependent on the signals being coupled to structured meanings. The structure of the
meanings is assumed by the model, and it is not coincidental that the syntactic structure
which emerges parallels exactly the pre-existing semantic structure.

At the heart of any kind of communication system is what constitutes observable
behavior during linguistic transfer, or what is actually transmitted between speakers
and hearers. In Figure 1, which represents the linguistic transfer in a standard model,
we can see that the speaker (on the left of the picture) utters a signal “zknvrt,” but that
simultaneously, the meaning in the speaker’s brain (represented by three apples) is
transferred directly to the hearer’s brain. The hearer learns the association between
signal and meaning, and crucially, it knows that this association is appropriate to
make because the signal and meaning are explicitly linked in each communicative
episode.

This kind of model of associative learning sidesteps one of the most important and
difficult problems facing researchers into the acquisition of language, namely Quine’s
[22] famous gavagai problem of determining the meaning of an unfamiliar word from a
set which is, in principle, infinite. The consequences of this idealization of the learning
process are considerable, not least because if meanings are explicitly and accurately
transferable by telepathy as in Figure 1, then the signals are not being used to convey
meaning. If the signals do not convey meaning, then their role in the model is far from
obvious. In fact, we can see that the inclusion of signals in the model is a complicating
factor, and yet removing them brings us uncomfortably close to creating a model which
bears very little resemblance to a languagelike communication system. We are left,
therefore, with the conclusion that meanings cannot be explicitly transferred, but must
instead be inferred by the hearer from the signal and the context in which they are
heard.
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( zknvrt )~

Figure I. A communicative episode which consists of the explicit transfer of both a signal “zknvrt” and a meaning
“three apples” from speaker to hearer.

So how, then, does a hearer know which meaning to associate with a signal, and
where do the private meanings it uses come from? Firstly, if it is assumed that meanings
are not transferable, then the agents must be able at least to infer them from elsewhere.
I assume that the obvious, and most general, source for this is the world around the
agent, or the environment in which it is placed. This in turn suggests that at least some
of the meanings which agents talk about are used to refer to objects and events which
actually happen in the environment. Binding the subjects of communication to events
in the agents’ world means that the agents’ meanings are grounded in the world [10].

It is worth noting that the need to infer meanings from the environment has interest-
ing implications for models such as those described by Kirby [13] and Batali [2]. These
models contain no environment, and indeed nothing accessible and external to the
agents, so the “meanings” used must necessarily be abstract, predefined tokens. Be-
cause they can have no reference (cannot identify any thing in the world), they cannot
be inferred, and so can only be communicated through explicit transfer. In order to
avoid explicit meaning transfer, therefore, there must be some kind of external world
for the agents to experience in the model.

The existence of an external world in itself, however, does not mean that the problem
of explicit meaning transfer is automatically avoided; for this there must be at least three
separate levels of representation in the model: the external, public world, a private,
agent-specific internal semantic representation, and a set of signals, which can again
be publicly observed. The mappings between the public and private sections of the
model must be specific to each agent and unobservable to the others; otherwise the
private representations become public, making the signals unnecessary.

In Hutchins and Hazlehurst’s famous neural network model of the development of
a shared vocabulary [11], for instance, there is an external world made up of events,
or “scenes.” These scenes, however, are themselves used as the meanings for which
the agents learn signals; although they are not explicitly transferred, they are publicly
accessible in the communication process, and there is therefore no level of the model
which is private to each agent. Brighton [4], too, presents a model with an external
world made up of communicatively relevant situations. But although the environment
is defined as the source of the meanings used by the agents, this relationship plays
no role in the simulations; the agents never interact with the environment, and the
mapping from environment to meanings is predetermined and identical for all agents.
Again, there is no private level in the model, and the environment is effectively merely
a complicating factor in the simulation.
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Secondly, there are two possible explanations for how the agents come to have
meanings which refer to things: either the meanings are innate, and have somehow
evolved biologically, or they are created by the agents themselves, as a result of their
interactions with the environment. Innate meanings are not inherently implausible, and
they are used as a simplification in many models of aspects of language evolution (see
for instance Arita and Koyama [1]), but they seem in reality to require either that the
number of meanings useful to the agents be small and fixed, or that the world in which
the agents exist be very stable and unchanging. If the world is dynamic, then the agents
may have evolved innate meanings for something that was useful to their ancestors,
but these may not be of use to them now. In practice, then, I assume that it is more
reasonable to assume that the agents create meanings de novo in each generation,
based on empirical testing of their environment, to discover which distinctions are
communicatively relevant.

This paper, therefore, departs from previous accounts, which assume that language
learning is equivalent to learning a mapping between signals and predefined meanings.
Instead, I argue that there are at least three necessary levels of representation: a public
environment, a private semantic representation, and public signals. Language learning
involves the empirical creation of private meanings based on the environment, learning
which of these meanings are relevant, and learning the mapping between signals and
the relevant meanings which underpins communication.

3 Details of the Model

3.1 Meaning Creation
My model of independent, grounded meaning creation is based on that described by
Steels [25]. T establish a simple world made up of a number of objects, which can be
described in terms of the values of their features. In the results reported here, the world
contains twenty objects unless otherwise specified. Feature values in the model are real
numbers, pseudo-randomly generated in the range [0,1]. These features are abstract
and do not have any specified meaning in the model, but can be profitably thought of in
terms of perceptual features such as smell or color. The agents in the world interact with
the objects using sensory channels. They have the same number of sensory channels
as the objects have features, and there is a one-to-one mapping between channels and
features. Sensory channels are sensitive to the feature values, and in particular can
detect whether a particular feature value falls between two bounds. Meaning creation
happens by splitting the sensitivity range of a channel into two discrete segments,
resulting in two separate categories, or meanings, each sensitive to half the original
range. After repeated splitting or refinement, we can represent the semantic structure
on a dendrogram, as shown in Figure 2, where the nodes on the tree represent the
meanings.

The agents interact with their environment through discrimination games [25], in
which they try to distinguish one particular randomly chosen object from a context of
five randomly chosen objects through the following algorithm:

e The agent investigates all its sensory channels to categorize all the objects in the
context.

o If the target object is uniquely identified by any single category, then this meaning
is called the discriminatory meaning and the game succeeds.

o If the game fails, the agent refines a randomly chosen sensory channel.
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Figure 2. Meanings represented on a Steelsian dendrogram, which has been refined twice. Each node on the tree
shows the bounds between which it is sensitive.

Table I. The categorization of objects during a discrimination game. Meanings are given in the notation c—p, where
¢ identifies the sensory channel and p traces the path along the discrimination tree from the root to the node in
question, with 0 signifying a lower branch and | an upper branch.

Object Categories/Meanings
Channel 0 1 2
A 0-0 1-00 2-111
B 0-11 1-1 2-110
C 0-0 1-1 2-111
D 0-10 1-01 2-10
E 0-10 1-00 2-0

Table 1 shows an agent’s categorization of objects during a discrimination game; the
agent is investigating five objects, and has three sensory channels on which the objects
are being categorized. If the aim of this game is to discriminate B from the context
ACDE, then the game can succeed, as both 0—11 and 2-110 are possible discriminatory
meanings. On the other hand, if the aim is to distinguish C from the context ABDE, then
the game will fail, as there is no single category into which C falls which distinguishes
it from all the other objects.

Failure in such a discrimination game triggers the refinement of a randomly chosen
sensory channel, and therefore the creation of another level of conceptual structure in
the agent. Because the sensory channel is chosen randomly, the newly created mean-
ings may be, but are not necessarily, useful for future discrimination games. Given
enough discrimination games in a static world, the agents will always develop a suc-
cessful conceptual structure, although the precise details of this structure are of course
not fixed, and will vary between agents and between runs of the simulation.

This semantic representation has an obvious hierarchical structure, allowing the im-
mediate use of real semantic sense relationships such as hyponymy and antonymy to
be investigated, which are not readily available in other representations. Meanings
nearer the root of the tree are clearly more general than those nearer the leaves of the
tree, which are more specific. Concept creation is clearly directly driven by the agents’
interactions with their world, so that the meanings are not imposed from outside. The
agents, therefore, have a mechanism for constructing concepts which is grounded in
the environment, is based on experience, creates meanings which are useful to the
agents in allowing them to discriminate between the objects they find, and results in
conceptual structure which can be measured and compared. We quantify the similarity
of two agents’ meaning structures by averaging the similarity of the particular discrim-
ination trees built on each of their sensory channels in turn. In greater detail, if &(, u)
is the number of nodes which trees ¢t and « have in common, and #7(?) is the total
number of nodes on tree ¢, then we describe the similarity between any two trees ¢
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and u using the following formula:

L (R u) k(2 w)
=3 (S5 ) v

We can use this general measure of tree similarity 7 to develop an overall measure of
meaning similarity o between two agents, by averaging over all their sensory channels.
If a,1; identifies channel j on agent 4, and each agent has ¢ sensory channels, then the
meaning similarity o between agents a; and a, is defined as follows:

c—1

1
o(ay, a) = - Z t(anti, axl;) 2

i=0

If two agents a; and a, have identical conceptual structures, where o (a;, a;) = 1, then
we refer to their meanings as being synchronized.

3.2 Communication

In this section, I extend the meaning creation model to investigate whether the agents
can communicate with each other, using the meanings they have constructed. In order
to simulate communication between the agents, I endow them with the ability to create
signals, or words, which they use to express the meanings. I assume, for simplicity,
that the agents can both express and understand these words without difficulty, that
is, that the signals can be transmitted without error. The agents also have a dynamic
lexicon of associations between words and meanings, which they use both to decide
which signals to send, and to decide on an interpretation for the signals they receive.
Each entry in the lexicon contains a signal s, a meaning 2, a count # of how many
times the pair has been used, and a confidence probability p representing the agent’s
confidence in the association between the signal and meaning, or the proportion of
times in which s has been used that it has been associated with m. More formally,
p(s, m) can be expressed as

u(s, m)
p(s,m) = ——— 3
Zi:l U(S, Z)
where / is the number of entries in the lexicon.!

Having successfully undertaken a discrimination game and found a discriminatory
meaning, one agent (the speaker) utters a signal which represents this meaning. A
second agent (the hearer) receives the signal together with the original context of
objects used by the speaker. The hearer does not know which object was the speaker’s
target object, but tries despite this to infer the intended meaning solely from the context
and from its own previous experiential history, stored in its lexicon as described above.
Having inferred a meaning, the hearer then deduces the object to which it thinks the
speaker was referring; successful communication occurs when the speaker’s original
target object is the same object as that which is identified by the hearer’s meaning. It is
not necessary that the agents use the same agent-internal meaning, only that both agents
refer to the same object, or pick out the same object in the world. Importantly, neither
speaker nor hearer is given any feedback on whether the meaning was successfully
interpreted.

I Further details of this communication model and of the structure of the agents’ lexicons can be found in [23].
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This kind of communicative model, therefore, relies neither on the explicit transfer
of meaning nor on feedback to guide the learning. The algorithms for deciding which
signal to choose to express a meaning, and for deciding which meaning to interpret
a signal as, are therefore crucial to the success of the model. Oliphant and Batali [20]
have demonstrated an ideal strategy for achieving an accurate communication system
between two agents under these circumstances, which they dub obverter. Essentially,
this strategy boils down to the speaker choosing signals which it knows the hearer will
understand correctly. Unfortunately, true obverter learning assumes that the speaker
has access to the lexicons of the other members of the population, so that it can choose
the optimal signal for each meaning. Such mind-reading is of course unrealistic, and
more damagingly returns us to a telepathic world in which communication using signals
is not actually necessary. In order to avoid this, we modify the obverter strategy, by
allowing the agent to read only ifs own mind, and using this as a basis for decision
making; the speaker therefore chooses the signal that it itself would be most likely to
understand if it heard the signal in this context.

The hearer, on the other hand, on hearing a signal, has only one source of informa-
tion apart from the signal itself: the context in which the word was heard. It knows
neither the target object to which the speaker is referring, nor the meaning which the
speaker has in mind for the signal. The hearer creates a list of possible meanings,
namely every meaning in its conceptual structure which identifies any one of the ob-
jects in the context and distinguishes it from all the other objects in the context. The
hearer has no reason to prefer any one of these possible meanings over another yet, so
each of them is paired with the signal and lexicalized, that is, its usage and confidence
probabilities in the lexicon are updated. Once all the possible meanings have been
lexicalized, the hearer searches through the list of possible meanings, and chooses the
one in which it has the highest confidence. If the agent has equally high confidence
in more than one meaning, then it chooses one of those meanings at random. The
object which this meaning identifies is then compared with the original target object
of the speaker’s discrimination game, to determine the success of the communicative
episode. Neither agent receives any information, however, about the success or failure
of the episode.

3.3 Meaning Structure and Communication

Before investigating the interactions between meaning creation and communication,
we need to verify that the modified obverter strategy can deliver successful communi-
cation without explicit meaning transfer. In order to do this, we therefore temporarily
dispense with the meaning creation algorithms, and instead predefine the agents’ con-
ceptual systems. Figure 3 shows the communicative success rates for two agents whose
meanings have a similarity measure of 80% (left) (o = 0.8), and for two agents with
identical, synchronized meanings (right) (6 = 1). The communicative success rate is
the proportion of communicative episodes in which the target object described by the
speaker is identified by the hearer.

We can immediately see on the right of Figure 3 that when o = 1, the communicative
success rate rises rapidly from zero, stabilizing as it approaches 1. In principle, the
success rate will reach 1, but this is not guaranteed in a particular population over a
finite time scale. On the left of Figure 3, we see that when o = 0.8, the communicative
success rate again rises rapidly in the initial period, and then stabilizes around the level
of 0. Given an infinite time scale, we can expect the communicative success rate to
equal the agent meaning similarity, and even over a finite time scale it forms a good
approximation.

Figure 3 shows very clearly the strong link between the level of meaning similarity
and the rate of successful communication. As we have eliminated both explicit meaning
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Figure 3. Levels of meaning similarity and communicative success.

transfer and also feedback from the agents to guide their interlocutors to the “correct”
answer, unlike models such as those described by Steels and Kaplan [26], we force
the agents to infer the meanings of words from the set of possible meanings in each
context. It is clear that it is impossible for an agent to attach a word to a meaning
which does not exist in its conceptual structure, and so we find inevitably that only
those words which refer to shared concepts are successfully used in communication. I
have also shown previously [23] how words referring to unshared meanings inevitably
suffer semantic drift over time, such that they come to refer to more general meanings
which are shared by the agents.

Agents, therefore, can learn communication systems without the explicit transfer
of meanings, without knowledge of the topic of conversation, and without feedback
about the success of the conversation guiding to the correct meaning. Successful com-
munication arises by the context-driven disambiguation of signals, as long as agents
can infer meaning from their experiences in the world. The level of communicative
success is very strongly dependent on the level of meaning similarity shared by speaker
and hearer.

4 The Standard (or Unbiased) Model

We have seen the importance of synchronized conceptual structure for the development
of successful communication without explicit meaning transfer, but how likely is it that
synchronization will occur? In this section I investigate the levels of meaning similarity,
and by implication communicative success, achieved in a standard, unbiased model.
This will also provide a baseline with which to compare the effects of adding cognitive
and communicative biases to the agents, as well as external environmental factors such
as the structure of the world and the experiences of the agents. The standard model is
built on a world with two agents and twenty randomly generated objects. Each object
is described in terms of ten features, and each agent has ten corresponding sensory
channels on which it can build discrimination trees. The agents play a fixed number
of discrimination games, with each agent having an equal probability of being chosen
to play the discrimination game. There are five objects in the context, including the
target object, unless otherwise stated.

If the size of the context increases, each discrimination game becomes a closer
approximation to picking out one individual object from the complete set of objects in
the world. An undesirable consequence of this is that the meanings created also identify
particular objects in the world. In real human languages, however, words (except
possibly some names) do not identify individuals, but rather kinds [8]. Experiments
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Figure 4. Agent meaning similarity (o) rates in the standard world. 100 runs overlaid, with each run represented
by one line on the graph. The mean (¢) at 1000 episodes is 0.62 (0.61-0.64), with a coefficient of variation of 0.10.

have shown that a level around five provides a suitable balance between developing
meanings which identify individuals (with large contexts) and providing the agents with
too much information (with small contexts).

Figure 4 shows the level of meaning similarity between the two agents. We can see
that overall there is a moderate amount of variation, with no runs producing very high
or very low levels of meaning similarity. Meaning similarity is always artificially high
at the beginning of each run, because both agents have sensory channels without any
tree growth, and therefore identical conceptual structure. As the agents fail in the dis-
crimination tasks, and create new meanings which are not necessarily the same as each
other’s, overall levels of meaning similarity fall. They then stabilize when the agents
have created sufficient conceptual structure to succeed in the discrimination tasks, and
there is no further need for much meaning creation. To measure the relative variation
we see in Figure 4, I have taken a cutoff point of 1000 episodes, and calculated the av-
erage (mean) agent meaning similarity ¢ and the coefficient of variation (CoV), which
is the standard deviation expressed as a percentage of the mean.? I express o together
with a 95% confidence interval, recognizing that the particular 100 runs of the simula-
tion we have carried out only represent a sample drawn from an infinite set of runs. In
the standard model, therefore, we expect to get meaning similarity rates of about 62%,
which is not high enough to produce a very successful communication system under
normal circumstances. In the following sections, I investigate how variations on this
standard model will affect the levels of meaning similarity which the agents achieve.

5 Cognitive Biases and Tree Growth Strategies

In order to explain the apparent paradox of child language acquisition, researchers
have regularly appealed to several particular cognitive biases, including the object bias
[16], which states that a child will assume that an unfamiliar word names a whole
object, rather than a particular property of it, and the shape bias [14], which states that
a child is more likely to assume that an unfamiliar word refers to the shape of an object
rather than to other properties such as its color or taste. In our model, the channels
are intrinsically meaningless, so we cannot speak in terms of particular properties,
but we can investigate how more abstract biases affect the construction of conceptual
categories.

2 The standard deviation is scaled relative to the mean so that we can more accurately compare results from distributions with
different means.
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When a discrimination game fails, the agent chooses a channel on which a node
will be refined. This is done on the basis of the channel’s bias b, , where a identifies
the agent and # the number of that agent’s sensory channel. The bias is specified
when the agent is “born,” and does not change during the simulation; it is equivalent
to the probability of channel #n being chosen for refinement. In the standard model,
each channel bias is the same (i.e., there is a uniform bias distribution), and so the
agent essentially chooses a channel at random each time, but the channel biases can of
course be defined according to particular probability distributions. We will now look at
random biases, where the bias for each channel is chosen randomly at the start of the
simulation; and proportional biases, which are defined according to a fixed probability
distribution. With proportional bias allocation, the bias on each channel represents a
fixed proportion p of the remaining bias, taking into account biases which have already
been allocated, as follows:

if n=0, by, = p

Ap—1 (4)
if n>0, by, = p I—Zb,-

i=dy

Because the biases represent probabilities, they are always scaled after allocation so
that the sum of biases for each agent equals 1. For instance, if p were 0.5, and the
agent had five channels, then the biases would be allocated as in Table 2. We can also
see that the allocation of biases by proportions is deterministic, so if two agents have
the same value of p, then they will have identical cognitive biases. Unless specified
otherwise, p is set to 0.5 for all simulations reported here. Under proportional bias
allocation, channels with lower numbers always have higher biases, but this is purely
an artefact of the implementation, and nothing in the results relies on it.

As well as changing the biases, and therefore the likelihood of tree growth occurring
on particular channels, we can also define completely different strategies for the channel
choice. In addition to the probabilistic method, where the agent chooses a channel
at random based on the biases described above, we will investigate another strategy,
when the agent searches through its channels in order of their biases, until it finds a
refinement which would have resulted in successful discrimination i7 this particular
discrimination game, had the refinement already taken place. If no channel which
meets this criterion is found, then no refinement takes place.

A crucial feature of this strategy, which 1 call the intelligent tree growth strategy, is
that a refinement will always make a helpful distinction in at least the particular discrim-
ination game during which it was created, whereas refinements under the probabilistic
strategy are not guaranteed to be successful at all.

Table 3 shows the average rate of agent meaning similarity after 1000 episodes,
averaged over 100 runs of the simulations as above, with both the tree growth strate-
gies (probabilistic and intelligent) and the channel bias allocations (uniform, random,
and proportional) being varied.> Counterintuitively, we find that the best results are
achieved under the uniform, standard model which we looked at in Figure 4. The
same level is achieved if agents have proportionally allocated biases, suggesting that
the important factor is that in both these cases the agents’ biases are identical. When
the agents have random biases, on the other hand, then the level of meaning similarity
drops to just over 50%. Under the intelligent strategy, it is interesting that the level of

3 The combination of uniform biases and intelligent tree growth strategy is not included, because the intelligent tree growth strategy
is based on searching the channels in order of their probabilities; if these are all equal, then there is no obvious way to order them
except randomly, which makes the search equivalent to a random, or probabilistic, choice.

184 Artificial Life Volume 9, Number 2



A. D. M. Smith Intelligent Meaning Creation in a Clumpy World Helps Communication

Table 2. Allocation of biases under the fixed proportional method, with p = 0.5.

Channel n Bias b,, Scaled Bias
0.5 0.5161
0.25 0.2581
0.125 0.129
0.0625  0.0645
0.03125 0.0323

BN = O

Table 3. How different tree growth strategies and cognitive biases affect average agent meaning similarity rates.

Strategy Biases o CoV
Probabilistic Uniform 0.62  0.10
Random 0.52 0.18

Proportional  0.62  0.18

Intelligent Random 0.39 0.35
Proportional  0.43  0.30

meaning similarity is even lower, and the variation very high, with some runs producing
meaning structures with almost no similarity at all.

So why do agents produce very divergent conceptual structures when they use the
intelligent tree growth strategy? The intelligent strategy always focuses refinements on
channels which would have succeeded, and, other things being equal, channels which
already have high levels of tree growth are more likely to produce a discriminatory
meaning than those which have only very general meanings. Therefore, after a few
initial refinements have been made, the intelligent strategy tends to focus further refine-
ments on those channels on which trees have already been grown, and so divergence
is therefore almost inevitable under this strategy, unless the initial refinements made by
the agents happen to be the same.

6 The Principle of Contrast

Biases which may help explain language acquisition are not just proposed in relation to
meaning creation, but also to communication; Clark [6], for instance, proposed the prin-
ciple of contrast (PoC), that every difference in a signal corresponds to some difference
in meaning, whereas Markman [17] put forward the closely related mutual exclusivity
assumption (MEA), that children assume that objects do not belong to more than one
category. For example, Markman and Wachtel [18] describe how experimenters present
children with a banana and a whisk, and then ask them to “show me the fendle.” The
children tend to interpret fendle as referring to the whisk, and it is hypothesized that
this is because they already know a word for the banana, so they assume that the
unfamiliar word must refer to the unfamiliar object. More recently, these suggestions
have been complemented by further research showing how language itself appears, to
a certain extent, to shape the learner’s meaning structure despite innate biases [15].
The crucial idea underlying both the PoC and the MEA, which can be expressed
simply as “every difference in a signal corresponds to some difference in meaning”
and implies that there are therefore no true synonyms, can be implemented in our
model by ensuring that when an unfamiliar signal is encountered, an agent will create
a new meaning which corresponds to one of the objects in the context, and assume
that the new signal corresponds to this meaning. This means that meaning creation
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Figure 5. Meaning similarity rates with discrimination-driven meaning creation (left), = 0.43 (0.41-0.46), and with
the addition of communication-driven meaning creation (right), ¢ = 0.47 (0.46-0.48).

can therefore now be triggered by two mechanisms in the model: not only failure in
the discrimination game, but also failure in the interpretation of an unfamiliar word.
Figure 5 shows how adding meaning creation driven by failure in communication
to the model actually has very little effect on the overall level of meaning similarity.
We can see that there is a slight increase in o, but if we use the Kolmogorov-Smirnov
(KS) statistic, which expresses how different two distributions are [7], we find that there
is no statistical difference between the two sets of results. This would initially appear
somewhat surprising, given the frequency with which such heuristics are apparently
invoked in the learning of words by children, but in this model it is explained by the fact
that the extra information received by the hearer when it receives an unfamiliar word,
which it uses to create a new meaning, does not sufficiently help the hearer to build
a conceptual structure closer to that of the other agent. Because the words created in
the model do not identify individual objects, the occurrence of a new, unfamiliar word
is relatively rare. Even when this does occur, the meaning creation process itself is of
course unguided, so there is no guarantee that the hearer will build appropriate new
conceptual structure, as there is no external pressure to maximize meaning similarity.

7 Environmental Factors

7.1 Experience

This model of empirical meaning creation is based on the agents’ building their con-
ceptual structure in response to failures in their interactions with the world, and it
would seem reasonable therefore to investigate the importance of the particular situa-
tions which they experience. Humans who have similar experiences create distinctions
based on those experiences which can be unnoticed or irrelevant to others who have
not had them, leading to the creation of particular specialized terminology or jargon to
name these distinctions.

In order to investigate how much of the agents’ conceptual structure is influenced
by the order in which they encounter certain objects and sets of objects, I have imple-
mented simulations in which both agents are given identical discrimination games to
perform. Each discrimination game itself still consists of a random target object to be
distinguished from a random set of objects, but both agents now undertake the same
discrimination game, creating meanings when they fail as in previous experiments.
Table 4 shows the levels of meaning similarity achieved when the agents are given
identical discrimination games to perform, compared to the results in our reference
table (Table 3) when they have different, randomly chosen games. Large values of the
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Table 4. How the agents’ experiences affect average agent meaning similarity rates.

o
Strategy Biases Diff. exp. Same exp.
Probabilistic Uniform 0.62 0.63
Random 0.52 0.54
Proportional 0.62 0.64
Intelligent Random 0.39 0.54*
Proportional 0.43 1.00*

KS statistic show that the meaning similarity distributions are statistically significantly
different; in this article, distributions where p < 0.05 are denoted by an asterisk (*),
and those where p < 0.01 are denoted by a double asterisk (**).

We can clearly see that under the probabilistic strategy, there are no significant dif-
ferences when the agents have identical experiences, but that in contrast, the intelligent
strategy produces significantly increased levels in meaning similarity, under both ran-
dom and proportional biases. Indeed, if the agents have the same biases and the same
experience, we have in effect a deterministic situation, and so it is no surprise that we
find complete meaning synchronization (o = 1) in this case.

7.2 A Clumpy World

The world in which we live is not uniformly random; indeed, there are many constant
properties behind the phenomena we encounter, which can be described in terms of
physical and chemical laws. We know, for instance, that unsupported objects will
always fall until they reach a lower surface. Scientists can measure the gravitational
field which causes this, and we know that its magnitude decreases as the object moves
further from the center of the planet; yet in practical terms, the objects in our world do
not differ in the gravitational field applying to them. In terms of a space of possible
worlds, all the objects in our world are clumped together in one section of the space,
where the gravitational field is always constant.

Bloom [3] describes how babies use the structure in the world, such as the properties
of objects, to make sense of it through categorization and, ultimately, in deciphering
the meaning of words. K. Smith [24] has shown how compositional systems are more
likely to emerge in generalizing agents when the environment exhibits a high degree of
structure. In this model, I investigate how the agents fare in the meaning construction
task in a world which is structured or constrained in certain ways, and I explore how
the meaning similarity which emerges differs from that in a random world.

In a clumpy world, the objects are grouped together in some way and this is imple-
mented in our model by giving each member of a group identical feature values for
some particular feature (such as the gravitational field applying to them). This means
that the objects in a particular group are therefore a priori indistinguishable on this
channel, no matter how many times the discrimination tree is refined, and so the ob-
jects can only be told apart using meanings created on another sensory channel. In
the random world, we could consider each object as a group in itself, with each group
containing just one object; in the clumpy world, we choose the number of groups ar-
bitrarily according to the channel and the number of objects in the world. The number
of groups on channel c, g(c), is taken as follows:

(0 = -2 )
89 =7
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Table 5. Allocation of groups in a clumpy world.

Channel ¢ 0 1 2
Groups g(¢) | 20 10 7

3 4 5 6 7 8 9
5 4 4 3 3 3 2

Table 6. How the structure of the world affects average agent meaning similarity rates.

Strategy Biases Random world  Clumpy world
Probabilistic Uniform 0.62 0.70*
Random 0.52 0.59*
Proportional 0.62 0.68*
Intelligent Random 0.39 0.82**
Proportional 0.43 0.88*

where O is the number of objects in the world. If there is no exact division, then g(c)
is always rounded up to the next whole number.

In a world of 20 objects, therefore, the number of groups on each channel will be
as shown in Table 5. We can see that the channels toward the end of the list have few
groups, and so are much less likely to be of any use in a discrimination game, though
we also note that none is completely useless if all objects fall into one group (this would
only happen under this setup if the agents had more sensory channels than there were
objects in the world). The groups are arbitrarily biased so that more distinctions can be
made on low-numbered sensory channels, just as the proportional allocation of biases
was biased toward low-numbered sensory channels. If the structure of the world is
biased in a certain direction, it makes sense, if we want to appeal to some selectionist
motivation for the existence of the cognitive biases, for the channels to be biased in a
similar way.

Table 6 shows that all tree growth strategies produce significantly higher levels of
meaning similarity than in simulations under the same conditions in a uniformly random
world. The probabilistic strategy produces significantly increased levels of meaning
similarity under all conditions where the order of the agents’ experiences did not have
any significant effect. Under the intelligent strategy, the levels of meaning similarity
have more than doubled in comparison with those achieved in the uniformly random
world, and the differences are highly statistically significant (p < 0.01).

An intelligent meaning creation strategy, therefore, results in poor meaning similarity
levels if the agents are in a random world, but it is very good at taking advantage of any
structure in the world, and produces very high meaning similarity levels in a clumpy
world.

8 Summary

In this article, I have described a model of empirical meaning creation and of the
evolution of communication, in which successful communication can emerge without
innate meanings and without the explicit transfer of meanings; I have also described
the importance of meaning synchronization in the model. Furthermore, I have inves-
tigated meaning similarity levels under various conditions, experimenting with various
cognitive, communicative, and environmental factors, motivated by research into how
children acquire and learn what words mean.

The structure of the world plays a large role in determining which strategy of meaning
creation will create a conceptual structure which is most likely to result in successful
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communication. If the objects in the world are distributed randomly, then the agents
can do no better than create meanings based on their innate biases, and reasonably
high similarity will occur when the agents happen to have the same biases. If the
world is structured, on the other hand, then it is much better for the agents to use an
intelligent strategy for meaning creation, which takes account of the structure in the
world to a much greater degree.
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