Simulating Language Lab 7

Question 1

This should be pretty straight forward. With the default parameters, you should have a graph like this:

1.0

0.8} R

o
o

©
IS

Communicative accuracy

o
N

0.0 L L L L
0 100 200 300 400 500

Generation number

To produce a nice graph | added axis labels, set the y-axis to cover the whole of the interval [0, 1] (so that all
our graphs are comparable), and set the x-axis values to range(0, 501, 10) which gives us the numbers from 0O
to 500 in increments of 10.

But of course, the graph above could be misleading. If you try running the simulation a bunch of times, you'll
see that we get a wide variety of results (as you can see in the following graph).

1.0

0.8

o
o

I
»

Communicative accuracy

o
N

0.0

0 100 200 300 400 500
Generation number



Some of the runs end up with an optimal system, but most of them don‘t. So in this case it's safe to assume
that the default learning rule [1, 0, 0, 0] is not a constructor.

Question 2

Rather than trying rules at random, let's try all 81 possible learning rules and put them on one plot. To do this,
| added an extra argument (rule) to the definition of the simulation() function and then ran the following bit of
code:

for alpha in [-1, 0, 1]:
for beta in [-1, 0, 1]:
for gamma in [-1, O, 1]:
for delta in [-1, 0, 1]:
pop, ca = simulation(500, 1000, 10, [alpha, beta, gamma, deltal)
if cal[-1] ==
plot(range(0, 501, 10), ca, color='red')
print [alpha, beta, gamma, deltal
else:
plot(range(0, 501, 10), ca, color='blue')

This goes through every combination of a, 3, y, and & and runs the simulation for that rule combination. The
if statement at the end checks the last ca result; if itis 1, it uses red for the plot and prints the learning rule for
you (otherwise it uses the classic blue). Here's what the result looks like:

1.0

0.8

o
[=2]
T

I
»

Communicative accuracy

0.2

0.0

0 100 200 300 400 500
Generation number

Note that 9 of the learning rules construct an optimal system (the ones in red), while the others either construct
an ambiguous system or hover around chance level. (Slight problem with this: one of the non-constructor
rules could by chance produce an optimal system (as we saw in Question 1) - so this approach isn't fool-proof
- instead you probably want to run each of the rules a few times and average them together or something).

Questions 3

The following graph shows the default parameters with the chain method.



1.0

o o o
H (o)} [e0]
T T T

Communicative accuracy

o
N

2 NAN A AN A TN

00 L L L L
0 100 200 300 400 500

Generation number

Hmmm... not much going on here. But if we do as the question suggests and increase the number of interac-
tions by a factor of 100 and reduce the number of generations by a factor of 10, look what happens now.

1.0

o
o

I
~

Communicative accuracy

o
N

00 I I I
0 10 20 30 40 50

Generation number

It looks like the chain method can evolve some good systems, but only if you have a lot more interactions at
each generation. Why do you think this is? How does the population get updated with the chain method?
How does the interactions parameter influence what a new generation will look like?

Question 4

The following graph shows the chain method (blue), closed method (red), and the replacement method
(green) superimposed on one plot (5 runs of each method with default parameters).



1.0

o o
o o)

©
~

Communicative accuracy

o
[N)

00 L L L L
0 100 200 300 400 500

Generation number

It looks like the closed method (red) evolves most quickly, the replacement method (green) evolves the
strongest system, while the chain method (blue) is stuck at chance. Of course, as we saw above, the chain
method seems to require more interactions - so you should take this result with a pinch of salt. Perhaps try
running all three methods with more interactions and compare the results on a single plot.

Question 5

To answer this, you want to ensure the agents start with an optimal system, so first change the global parameter
'initial_language_type’ to ‘optimal’. You can then test out a given learning rule to see if the agents maintain the
initial optimal language. What you should find is that all constructors are maintainers, but not all maintainers
are constructors. In other words, constructors are a subset of maintainers. So, if a rule fails the construction
test, it won't necessarily fail the maintenance test, and if a rule passes the construction test, it will definitely
pass the maintenance test.

Question 6

This is a pretty conceptual question, but | think what we're looking for is some kind of setup where the language
is passed on culturally while the learning rule is passed on genetically. In this way, the agents could evolve the
best learning rule to learn, construct, and maintain an optimal language, while simultaneously evolving the
optimal language culturally.

Spatial organization could not only determine which agents you communicate with (as we've experimented
within lab 3), butalso who your‘cultural parents’ are (i.e. who you learn your language from). And we could add
a fitness-like factor where agents with higher communicative accuracy have more ‘cultural children’ (i.e. teach
their language to more newborns).

Reinforcement learning could be incorporated rather straightforwardly by having the number of interactions
depend on the communicative accuracy of the population at a given point in time. Or, if you wanted to make
it more complex, you could evaluate the communicative accuracy for the different meanings separately and
train the new agent/generation specifically on the meanings that they're not doing very well on yet.



