Simulating Language: Lab 8 Annotations

Question 1:

We can study the effect of prior biases on the learning of a single individual in two
different ways: either by creating a data set and a prior ourselves and feeding these into
the learn() function (but remember that the learn() function gives a log probability as
output, so we have to use exp() to turn this into a normal probability), or by using the
iterate() function with just 1 generation. I will use the second alternative here.

What we want to do here is to see how, given enough data, learners with very different
biases can still get to the same conclusion as to what the ‘real’ probability of word 1 is.
As you should have noticed when plotting the priors, all values of alpha below 1 create a
U-shaped curve (bias for regularity, favouring a very high or very low frequency of word
1), an alpha of exactly 1 creates a straight line (unbiased/uniform prior) and all values of
alpha above 1 create a bell-shaped curve (bias for variability, favouring a frequency of
word 1 close to that of word 0). For now let’s explore the alphas 0.1 (regularity bias), 1
(uniform prior) and 5 (variability bias).

We can use the usage example given at the top of bayes1.py and change the input so that
we run a simulation with a uniform prior, a data set of 10 words in which word 1 occurs 7
times, and just 1 generation:

In [1]: pWl by generation,data by generation = iterate(1,10,7,1)

The value for pW1 that the learner has inferred is now stored in the variable
pWI1 by generation:

In [2]: pWl by generation
Out[2]: [nan, 0.725]

The first value in this list is ‘nan’ (Python code for ‘not a number’) because this is the
pWI for generation 0. The second value is the pW1 that our learner has inferred. As we
can see, this estimate is not very accurate (since we know that the real probability of
word 1 in our data is 0.7). If we run this same simulation a couple of times we will see
that the outcome is always around 0.7, but still quite variable (probably varying between
about 0.5 and 0.9). (Have a look at the learn() function and the log_roulette_wheel()
function to see where this variability comes from.)

Now to explore the effect of the prior biases, let’s do a little for loop to see what happens
with an alpha of 0.1:

In [3]: for r in range(10):
pWl by generation,data_ by generation = iterate(.1,10,7,1)
print pWl by generation

This should give you numbers that push closer towards 1.0. This is what we expected
given the bias for regularity. You can do the same for alpha=5, which should give you
numbers that are closer to .5, as we expect based on the variability bias.

So when the learner learns from a small set of data, we can see the effects of the different
biases. But now let’s see what happens if we give the learner a very large dataset, for
instance 1,000 words, with 700 occurrences of word 1.

In [4]: pWl by generation,data by generation = iterate(1,1000,700,1)

What you should find is that we this data set, the three different alphas we explored
above come up with very similar results.
We can also put this into a nice plot by doing:

import matplotlib.pyplot as plt

uniform accumulator = []
regularity accumulator = []
variability accumulator = []

for r in range(50):
pWl by generation uniform,data by generation = iterate(1,10,7,1)
pWl by generation regularity,data by generation =
iterate(.1,10,7,1)
pWl by generation variability,data by generation =
iterate(5,10,7,1)
uniform accumulator.append(pWl by generation uniform[1])
regularity accumulator.append(pWl by generation regularity[1])
variability accumulator.append(pWl by generation variability[1])

plt.plot(uniform accumulator, color='b', label="uniform (alpha=1)")
plt.plot(regularity accumulator, color='r', label="regularity
(alpha=0.1)")

plt.plot(variability accumulator, color='g', label="variability
(alpha=5)")

plt.ylim((0,1))

plt.xlabel("runs")

plt.ylabel("pWl")

plt.title("Effect of Bias on pWl, Words = 10, Word 1 = 7")
plt.legend()

plt.show()

(The code above shows you how to do it directly in your code, but you can also do it in
the interpreter by first calling figure() and then doing all the above but leaving out the
‘plt.” prefixes.)

Now we can do this for our 10 word data set and for our 1,000 word data set, and see
what happens:

Effect of Bias on pW1, Words = 10, Word 1 = 7

1.0
— uniform (alpha=1)
— regularity (alpha=0.1)
0.8 | variability (alpha=5) ||
LM U AT AT R TR
LIRS AL
oo\ V| ? ma
: [
0.4+ g
0.2}
00 ! L L !
0 10 20 30 40 50
runs
10 Effect of Bias on pwW1, Words = 1,000, Word 1 = 700
— uniform (alpha=1)
— regularity (alpha=0.1)
08l — variability (alpha=5)

pwW1

0.4}

0.2}

0.0
0

10 20 30 40 50
runs

Although the differences between the priors in the first plot are not super clear, we do see

that the red line is generally a bit higher up than the green line, and that the blue line
varies freely around 0.7. In the second plot we see no differences at all. With all three
priors the learner gets to a pretty good estimate of pW1 every time.

Question 2:
To do this, we can use the usage example given at the top of the code:

In [11]: pWl by generation,data by generation = iterate(0.1,10,5,10)

And we can visualize how the inferred probability of word 1 changes over generations
using:

In [12]: plot(pWl_ by generation)

But we know that there will be variability in the outcome, so let’s do a couple of runs
with each different alpha:

import matplotlib.pyplot as plt

for r in range(10):
pWl_by_ generation_uniform,data_by generation = iterate(1,10,5,10)
pWl by generation regularity,data_ by generation =
iterate(.1,10,5,10)
pWl by generation variability,data by generation =
iterate(5,10,5,10)
plt.plot(pWl by generation uniform, label="uniform" if r ==

else "", color='b'")

plt.plot(pWl by generation regularity, label="regularity" if r ==
0 else "", color='r")

plt.plot(pWl by generation variability, label="variability" if r
== 0 else "", color='g'")

plt.ylim((0,1))
plt.xlabel("Generations")
plt.ylabel("pWl")

plt.title("Effect of Priors on pWl")
plt.legend()

plt.show()

This should give you a plot that looks something like this:

Effect of Priors on pW1

1.0 —
— uniform (alpha=1)
— regularity (alpha=0.1) H
0.8 — variability (alpha=5)
0.6
—~
3
0.4
0.2+
00 1 1 I 1
1 2 3 4 5 6 7 8 9 10

Generations

This is a very messy plot. (Have a think about why that is. What is it we see here? What
is the real value of pW1? What do we expect to happen to pW 1 under different priors?
What would happen if we would have more data or more generations?) We do however
see something different happening under the different priors. With a uniform prior there
is quite a lot of variability in what happens to pW 1. With the regularity bias pW1 gets
pushed towards the extremities (either p = 0.0 or p = 1.0), whereas with the variability
bias pW1 remains in the middle (around p = 0.5). These differences are hardly visible at
generation 1, but become more apparent over a couple of iterations.

To further explore the outcomes of different learning biases you can make some even
nicer plots using the bonus code that Kenny has kindly provided us with (download
bayes_histograms.py from the website; the new code for plotting is at the bottom).

Question 3:

Let’s make the same plot as above and see what happens with different amounts of data.
We can do this by changing the value of ‘n_productions’ that we give as input to the
iterate() function. But note that if we do this we also have to change the value of
‘starting_count_ w1’ to make sure that the input for generation 1 still consists of 50%
word 1 and 50% word 0. With 50 productions per generation (and 25 occurrences of
word 1 in the initial data set), we get the following graph:

10 Effect of Priors on pW1 (data = 50 words)

— uniform (alpha=1)
— regqularity (alpha=0.1)
— variability (alpha=5) ||

0.8

0.6

pw1

0.4 X

S a7y
\\‘\&.‘\:,»gé
0.2}
0.0 ! ! ! ! ! ! ! !
1 2 3 4 5 6 7 8 9 10

Generations

With only 2 words being transmitted between generations we get something like:

Effect of Priors on pW1 (data = 2 words)
T LN e J—

S : :
pa — uniform (alpha=1)

— regularity (alpha=0.1)7/
— variability (alpha=5) §\

NOVK
D Q! \\\\&\\ '

NNAV %
AR PN

1.0

0.8

0.6 F Y/~

pw1

0.4

0.2+

0.0

1 2 3 4 5 6 7 8 9 10
Generations

And with no data being transmitted at all we get something like:

Effect of Priors on pW1 (data =0 words)

1
— uniform (alpha 1)

— regqularity (alpha=0.1)
— variability (alpha 5)

(I\Y/‘

1.0

0.8

Ah:\\

= ..4 , "‘§§\\‘ ’O V(ls\’ A '/\
— (T\ 0"" v "‘“'/’:'fﬂff\
/ ‘-\\/ /\0/
/ “\‘ /\
0.0

Generations

So we can conclude that the more data being transmitted from generation to generation,
the more gradual the changes in pW1. The last simulation where no data is being
transmitted at all corresponds to a situation where the signalling behaviour of the agents
(i.e. how often they produce word 1) is somehow innate and doesn’t depend on the
behaviour they observe in the previous generation.

