1

Genetic Algorithms: An Overview

Science arises from the very human desire to understand and control the
world. Over the course of history, we humans have gradually built up
a grand edifice of knowledge that enables us to predict, to varying ex-
tents, the weather, the motions of the planets, solar and lunar eclipses,
the courses of diseases, the rise and fall of economic growth, the stages
of language development in children, and a vast panorama of other natu-
ral, social, and cultural phenomena. More recently we have even come to
understand some fundamental limits to our abilities to predict. Over the
eons we have developed increasingly complex means to control many as-
pects of our lives and our interactions with nature, and we have learned,
often the hard way, the extent to which other aspects are uncontrollable.

The advent of electronic computers has arguably been the most revolu-
tionary development in the history of science and technology. This ongo-
ing revolution is profoundly increasing our ability to predict and control
nature in ways that were barely conceived of even half a century ago. For
many, the crowning achievements of this revolution will be the creation—
in the form of computer programs—of new species of intelligent beings,
and even of new forms of life.

The goals of creating artificial intelligence and artificial life can be
traced back to the very beginnings of the computer age. The earliest com-
puter scientists—Alan Turing, John von Neumann, Norbert Wiener, and
others—were motivated in large part by visions of imbuing computer
programs with intelligence, with the life-like ability to self-replicate, and
with the adaptive capability to learn and to control their environments.
These early pioneers of computer science were as much interested in biol-
ogy and psychology as in electronics, and they looked to natural systems
as guiding metaphors for how to achieve their visions. It should be no sur-
prise, then, that from the earliest days computers were applied not only
to calculating missile trajectories and deciphering military codes but also
to modeling the brain, mimicking human learning, and simulating bio-
logical evolution. These biologically motivated computing activities have
waxed and waned over the years, but since the early 1980s they have
all undergone a resurgence in the computation research community. The

first has grown into the field of neural networks, the second into machine
learning, and the third into what is now called “evolutionary computa-
tion,” of which genetic algorithms are the most prominent example.

1.1 A BRIEF HISTORY OF EVOLUTIONARY COMPUTATION

In the 1950s and the 1960s several computer scientists independently
studied evolutionary systems with the idea that evolution could be used
as an optimization tool for engineering problems. The idea in all these
systems was to evolve a population of candidate solutions to a given
problem, using operators inspired by natural genetic variation and nat-
ural selection.

In the 1960s, Rechenberg (1965, 1973) introduced “evolution strategies”
(Evolutionsstrategie in the original German), a method he used to optimize
real-valued parameters for devices such as airfoils. This idea was further
developed by Schwefel (1975, 1977). The field of evolution strategies has
remained an active area of research, mostly developing independently
from the field of genetic algorithms (although recently the two communi-
ties have begun to interact). (For a short review of evolution strategies, see
Béack, Hoffmeister, and Schwefel 1991.) Fogel, Owens, and Walsh (1966)
developed “evolutionary programming,” a technique in which candidate
solutions to given tasks were represented as finite-state machines, which
were evolved by randomly mutating their state-transition diagrams and
selecting the fittest. A somewhat broader formulation of evolutionary pro-
gramming also remains an area of active research (see, for example, Fogel
and Atmar 1993). Together, evolution strategies, evolutionary program-
ming, and genetic algorithms form the backbone of the field of evolution-
ary computation.

Several other people working in the 1950s and the 1960s developed
evolution-inspired algorithms for optimization and machine learning. Box
(1957), Friedman (1959), Bledsoe (1961), Bremermann (1962), and Reed,
Toombs, and Baricelli (1967) all worked in this area, though their work
has been given little or none of the kind of attention or followup that evo-
lution strategies, evolutionary programming, and genetic algorithms have
seen. In addition, a number of evolutionary biologists used computers to
simulate evolution for the purpose of controlled experiments (see, e.g.,
Baricelli 1957, 1962; Fraser 1957a,b; Martin and Cockerham 1960). Evolu-
tionary computation was definitely in the air in the formative days of the
electronic computer.

Genetic algorithms (GAs) were invented by John Holland in the 1960s
and were developed by Holland and his students and colleagues at the
University of Michigan in the 1960s and the 1970s. In contrast with evo-
lution strategies and evolutionary programming, Holland's original goal
was not to design algorithms to solve specific problems, but rather to for-
mally study the phenomenon of adaptation as it occurs in nature and to

Chapter 1

develop ways in which the mechanisms of natural adaptation might be
imported into computer systems. Holland’s 1975 book Adaptation in Natu-
ral and Artificial Systems presented the genetic algorithm as an abstraction
of biological evolution and gave a theoretical framework for adaptation
under the GA. Holland’s GA is a method for moving from one popu-
lation of “chromosomes” (e.g., strings of ones and zeros, or “bits”) to a
new population by using a kind of “natural selection” together with the
genetics-inspired operators of crossover, mutation, and inversion. Each
chromosome consists of “genes” (e.g., bits), each gene being an instance
of a particular “allele” (e.g., 0 or 1). The selection operator chooses those
chromosomes in the population that will be allowed to reproduce, and on
average the fitter chromosomes produce more offspring than the less fit
ones. Crossover exchanges subparts of two chromosomes, roughly mim-
icking biological recombination between two single-chromosome (“hap-
loid”) organisms; mutation randomly changes the allele values of some
locations in the chromosome; and inversion reverses the order of a con-
tiguous section of the chromosome, thus rearranging the order in which
genes are arrayed. (Here, as in most of the GA literature, “crossover” and
“recombination” will mean the same thing.)

Holland'’s introduction of a population-based algorithm with crossover,
inversion, and mutation was a major innovation. (Rechenberg’s evolu-
tion strategies started with a “population” of two individuals, one parent
and one offspring, the offspring being a mutated version of the parent;
many-individual populations and crossover were not incorporated un-
til later. Fogel, Owens, and Walsh’s evolutionary programming likewise
used only mutation to provide variation.) Moreover, Holland was the first
to attempt to put computational evolution on a firm theoretical footing
(see Holland 1975). Until recently this theoretical foundation, based on
the notion of “schemas,” was the basis of almost all subsequent theoret-
ical work on genetic algorithms

In the last several years there has been widespread interaction among
researchers studying various evolutionary computation methods, and the
boundaries between GAs, evolution strategies, evolutionary program-
ming, and other evolutionary approaches have broken down to some
extent. Today, researchers often use the term “genetic algorithm” to de-
scribe something very far from Holland’s original conception. In this book
I adopt this flexibility. Most of the projects I will describe here were re-
ferred to by their originators as GAs; some were not, but they all have
enough of a “family resemblance” that I include them under the rubric of
genetic algorithms.

1.2 THE APPEAL OF EVOLUTION

Why use evolution as an inspiration for solving computational problems?
To evolutionary-computation researchers, the mechanisms of evolution

Genetic Algorithms: An Overview

seem well suited for some of the most pressing computational problems
in many fields. Many computational problems require searching through
a huge number of possibilities for solutions. One example is the problem
of computational protein engineering, in which an algorithm is sought
that will search among the vast number of possible amino acid sequences
for a protein with specified properties. Another example is searching for
a set of rules or equations that will predict the ups and downs of a finan-
cial market, such as that for foreign currency. Such search problems can
often benefit from an effective use of parallelism, in which many different
possibilities are explored simultaneously in an efficient way. For example,
in searching for proteins with specified properties, rather than evaluate
one amino acid sequence at a time it would be much faster to evaluate
many simultaneously. What is needed is both computational parallelism
(i.e., many processors evaluating sequences at the same time) and an in-
telligent strategy for choosing the next set of sequences to evaluate.

Many computational problems require a computer program to be adap-
tive—to continue to perform well in a changing environment. This is typ-
ified by problems in robot control in which a robot has to perform a task
in a variable environment, and by computer interfaces that must adapt
to the idiosyncrasies of different users. Other problems require computer
programs to be innovative—to construct something truly new and origi-
nal, such'as a new algorithm for accomplishing a computational task or
even a new scientific discovery. Finally, many computational problems
require complex solutions that are difficult to program by hand. A strik-
ing example is the problem of creating artificial intelligence. Early on,
Al practitioners believed that it would be straightforward to encode the
rules that would confer intelligence on a program; expert systems were
one result of this early optimism. Nowadays, many Al researchers believe
that the “rules” underlying intelligence are too complex for scientists to
encode by hand in a “top-down” fashion. Instead they believe that the
best route to artificial intelligence is through a “bottom-up” paradigm in
which humans write only very simple rules, and complex behaviors such
as intelligence emerge from the massively parallel application and inter-
action of these simple rules. Connectionism (i.e., the study of computer
programs inspired by neural systems) is one example of this philosophy
(see Smolensky 1988); evolutionary computation is another. In connec-
tionism the rules are typically simple “neural” thresholding, activation
spreading, and strengthening or weakening of connections; the hoped-for
emergent behavior is sophisticated pattern recognition and learning. In
evolutionary computation the rules are typically “natural selection” with
variation due to crossover and/or mutation; the hoped-for emergent be-
havior is the design of high-quality solutions to difficult problems and the
ability to adapt these solutions in the face of a changing environment.

Biological evolution is an appealing source of inspiration for address-
ing these problems. Evolution is, in effect, a method of searching among

Chapter 1

an enormous number of possibilities for “solutions.” In biology the enor-
mous set of possibilities is the set of possible genetic sequences, and the
desired “solutions” are highly fit organisms—organisms well able to sur-
vive and reproduce in their environments. Evolution can also be seen as
a method for designing innovative solutions to complex problems. For ex-
ample, the mammalian immune system is a marvelous evolved solution
to the problem of germs invading the body. Seen in this light, the mecha-
nisms of evolution can inspire computational search methods. Of course
the fitness of a biological organism depends on many factors—for exam-
ple, how well it can weather the physical characteristics of its environ-
ment and how well it can compete with or cooperate with the other organ-
isms around it. The fitness criteria continually change as creatures evolve,
so evolution is searching a constantly changing set of possibilities. Search-
ing for solutions in the face of changing conditions is precisely what is re-
quired for adaptive computer programs. Furthermore, evolution is a mas-
sively parallel search method: rather than work on one species at a time,
evolution tests and changes millions of species in parallel. Finally, viewed
from a high level the “rules” of evolution are remarkably simple: species
evolve by means of random variation (via mutation, recombination, and
other operators), followed by natural selection in which the fittest tend
to survive and reproduce, thus propagating their genetic material to fu-
ture generations. Yet these simple rules are thought to be responsible, in
large part, for the extraordinary variety and complexity we see in the bio-
sphere.

1.3 BIOLOGICAL TERMINOLOGY

At this point it is useful to formally introduce some of the biological ter-
minology that will be used throughout the book. In the context of genetic
algorithms, these biological terms are used in the spirit of analogy with
real biology, though the entities they refer to are much simpler than the
real biological ones.

All living organisms consist of cells, and each cell contains the same set
of one or more chromosomes—strings of DNA—that serve as a “blueprint”
for the organism. A chromosome can be conceptually divided into genes—
functional blocks of DNA, each of which encodes a particular protein.
Very roughly, one can think of a gene as encoding a trait, such as eye color.
The different possible “settings” for a trait (e.g., blue, brown, hazel) are
called alleles. Each gene is located at a particular locus (position) on the
chromosome.

Many organisms have multiple chromosomes in each cell. The com-
plete collection of genetic material (all chromosomes taken together) is
called the organism’s genome. The term genotype refers to the particular
set of genes contained in a genome. Two individuals that have identical

Genetic Algorithms: An Overview

genomes are said to have the same genotype. The genotype gives rise, un-
der fetal and later development, to the organism’s phenotype—its physical
and mental characteristics, such as eye color, height, brain size, and intel-
ligence.

Organisms whose chromosomes are arrayed in pairs are called diploid;
organisms whose chromosomes are unpaired are called haploid. In nature,
most sexually reproducing species are diploid, including human beings,
who each have 23 pairs of chromosomes in each somatic (non-germ) cell
in the body. During sexual reproduction, recombination (or crossover) oc-
curs: in each parent, genes are exchanged between each pair of chromo-
somes to form a gamete (a single chromosome), and then gametes from the
two parents pair up to create a full set of diploid chromosomes. In hap-
loid sexual reproduction, genes are exchanged between the two parents’
single-strand chromosomes. Offspring are subject to mutation, in which
single nucleotides (elementary bits of DNA) are changed from parent to
offspring, the changes often resulting from copying errors. The fitness of
an organism is typically defined as the probability that the organism will
live to reproduce (viability) or as a function of the number of offspring the
organism has (fertility).

In genetic algorithms, the term chromosome typically refers to a candi-
date solution to a problem, often encoded as a bit string. The “genes”
are either single bits or short blocks of adjacent bits that encode a par-
ticular element of the candidate solution (e.g., in the context of multi-
parameter function optimization the bits encoding a particular parameter
might be considered to be a gene). An allele in a bit string is either 0
or 1; for larger alphabets more alleles are possible at each locus. Cross-
over typically consists of exchanging genetic material between two single-
chromosome haploid parents. Mutation consists of flipping the bit at a
randomly chosen locus (or, for larger alphabets, replacing a the symbol
at a randomly chosen locus with a randomly chosen new symbol).

Most applications of genetic algorithms employ haploid individuals,
particularly, single-chromosome individuals. The genotype of an individ-
ual in a GA using bit strings is simply the configuration of bits in that indi-
vidual’s chromosome. Often there is no notion of “phenotype” in the con-
text of GAs, although more recently many workers have experimented
with GAs in which there is both a genotypic level and a phenotypic level
(e.g., the bit-string encoding of a neural network and the neural network
itself).

14 SEARCH SPACES AND FITNESS LANDSCAPES
The idea of searching among a collection of candidate solutions for a de-
sired solution is so common in computer science that it has been given its

own name: searching in a “search space.” Here the term “search space”
refers to some collection of candidate solutions to a problem and some

Chapter 1

notion of “distance” between candidate solutions. For an example, let us
take one of the most important problems in computational bioengineer-
ing: the aforementioned problem of computational protein design. Sup-
pose you want use a computer to search for a protein—a sequence of
amino acids—that folds up to a particular three-dimensional shape so it
can be used, say, to fight a specific virus. The search space is the collection
of all possible protein sequences—an infinite set of possibilities. To con-
strain it, let us restrict the search to all possible sequences of length 100 or
less—still a huge search space, since there are 20 possible amino acids at
each position in the sequence. (How many possible sequences are there?)
If we represent the 20 amino acids by letters of the alphabet, candidate
solutions will look like this:

AGGMCGBL....

We will define the distance between two sequences as the number of po-
sitions in which the letters at corresponding positions differ. For example,
the distance between AGGMCGBLand MGGMCGBLis 1, and the
distance between AGGMCGBLand LBMP AFG Ais 8. An algo-
rithm for searching this space is a method for choosing which candidate
solutions to test at each stage of the search. In most cases the next candi-
date solution(s) to be tested will depend on the results of testing previous
sequences; most useful algorithms assume that there will be some corre-
lation between the quality of “neighboring” candidate solutions—those
close in the space. Genetic algorithms assume that high-quality “parent”
candidate solutions from different regions in the space can be combined
via crossover to, on occasion, produce high-quality “offspring” candidate
solutions.

Another important concept is that of “fitness landscape.” Originally
defined by the biologist Sewell Wright (1931) in the context of population
genetics, a fitness landscape is a representation of the space of all possible
genotypes along with their fitnesses.

Suppose, for the sake of simplicity, that each genotype is a bit string of
length /, and that the distance between two genotypes is their “Hamming
distance”—the number of locations at which corresponding bits differ.
Also suppose that each genotype can be assigned a real-valued fitness. A
fitness landscape can be pictured as an (I + 1)-dimensional plot in which
each genotype is a point in / dimensions and its fitness is plotted along
the (I + 1)st axis. A simple landscape for / =2 is shown in figure 1.1. Such
plots are called landscapes because the plot of fitness values can form
“hills,” “peaks,” “valleys,” and other features analogous to those of physi-
cal landscapes. Under Wright's formulation, evolution causes populations
to move along landscapes in particular ways, and “adaptation” can be
seen as the movement toward local peaks. (A “local peak,” or “local opti-
mum,” is not necessarily the highest point in the landscape, but any small

Genetic Algorithms: An Overview

10 1

Figure 1.1 A simple fitness landscape for I = 2. Here £(00) =0.7, £(01) = 1.0, f(10) =0.1,
and f£(11) =0.0.

movement away from it goes downward in fitness.) Likewise, in GAs the
operators of crossover and mutation can be seen as ways of moving a pop-
ulation around on the landscape defined by the fitness function.

The idea of evolution moving populations around in unchanging land-
scapes is biologically unrealistic for several reasons. For example, an or-
ganism cannot be assigned a fitness value independent of the other organ-
isms in its environment; thus, as the population changes, the fitnesses of
particular genotypes will change as well. In other words, in the real world
the “landscape” cannot be separated from the organisms that inhabit it. In
spite of such caveats, the notion of fitness landscape has become central
to the study of genetic algorithms, and it will come up in various guises
throughout this book.

15 ELEMENTS OF GENETIC ALGORITHMS

It turns out that there is no rigorous definition of “genetic algorithm”
accepted by all in the evolutionary-computation community that differ-
entiates GAs from other evolutionary computation methods. However, it
can be said that most methods called “GAs” have at least the following
elements in common: populations of chromosomes, selection according to
fitness, crossover to produce new offspring, and random mutation of new"
offspring. Inversion—Holland’s fourth element of GAs—is rarely used in
today’s implementations, and its advantages, if any, are not well estab-
lished. (Inversion will be discussed at length in chapter 5.)

The chromosomes in a GA population typically take the form of bit
strings. Each locus in the chromosome has two possible alleles: 0 and 1.

Chapter 1

Each chromosome can be thought of as a point in the search space of
candidate solutions. The GA processes populations of chromosomes, suc-
cessively replacing one such population with another. The GA most often
requires a fitness function that assigns a score (fitness) to each chromo-
some in the current population. The fitness of a chromosome depends on
how well that chromosome solves the problem at hand.

Examples of Fitness Functions

One common application of GAs is function optimization, where the goal
is to find a set of parameter values that maximize, say, a complex multi-
parameter function. As a simple example, one might want to maximize
the real-valued one-dimensional function

fO)=y+|sin(32y)|, O0<y<m

(Riolo 1992). Here the candidate solutions are values of y, which can be
encoded as bit strings representing real numbers. The fitness calculation
translates a given bit string x into a real number y and then evaluates the
function at that value. The fitness of a string is the function value at that
point.

As a non-numerical example, consider the problem of finding a se-
quence of 50 amino acids that will fold to a desired three-dimensional
protein structure. A GA could be applied to this problem by searching
a population of candidate solutions, each encoded as a 50-letter string
such as

IHCCVASASDMIKPVFTVASYLKNWTKAKGPNFEICISGRTPYWDNFPG],

where each letter represents one of 20 possible amino acids. One way
to define the fitness of a candidate sequence is as the negative of the
potential energy of the sequence with respect to the desired structure.
The potential energy is a measure of how much physical resistance the
sequence would put up if forced to be folded into the desired structure—
the lower the potential energy, the higher the fitness. Of course one would
not want to physically force every sequence in the population into the
desired structure and measure its resistance—this would be very difficult,
if not impossible. Instead, given a sequence and a desired structure (and
knowing some of the relevant biophysics), one can estimate the potential
energy by calculating some of the forces acting on each amino acid, so the
whole fitness calculation can be done computationally.

These examples show two different contexts in which candidate so-
lutions to a problem are encoded as abstract chromosomes encoded as
strings of symbols, with fitness functions defined on the resulting space
of strings. A genetic algorithm is a method for searching such fitness land-
scapes for highly fit strings.

Genetic Algorithms: An Overview

10

GA Operators

The simplest form of genetic algorithm involves three types of operators:
selection, crossover (single point), and mutation.

Selection This operator selects chromosomes in the population for re-
production. The fitter the chromosome, the more times it is likely to be
selected to reproduce.

Crossover This operator randomly chooses a locus and exchanges the
subsequences before and after that locus between two chromosomes to
create two offspring. For example, the strings 10000100 and 11111111 could
be crossed over after the third locus in each to produce the two offspring
10011111 and 11100100. The crossover operator roughly mimics biological
recombination between two single-chromosome (haploid) organisms.

Mutation This operator randomly flips some of the bits in a chromo-
some. For example, the string 00000100 might be mutated in its second
position to yield 01000100. Mutation can occur at each bit position in a
string with some probability, usually very small (e.g., 0.001).

1.6 A SIMPLE GENETIC ALGORITHM

Given a clearly defined problem to be solved and a bit string representa-
tion for candidate solutions, a simple GA works as follows:

1. Start with a randomly generated population of n I-bit chromosomes
(candidate solutions to a problem).

2. Calculate the fitness f(x) of each chromosome x in the population.
3. Repeat the following steps until n offspring have been created:

a. Select a pair of parent chromosomes from the current population, the
probability of selection being an increasing function of fitness. Selection
is done “with replacement,” meaning that the same chromosome can be
selected more than once to become a parent.

b. With probability p. (the “crossover probability” or “crossover rate”),
cross over the pair at a randomly chosen point (chosen with uniform prob-
ability) to form two offspring. If no crossover takes place, form two off-
spring that are exact copies of their respective parents. (Note that here the
crossover rate is defined to be the probability that two parents will cross
over in a single point. There are also “multi-point crossover” versions of
the GA in which the crossover rate for a pair of parents is the number of
points at which a crossover takes place.)

¢. Mutate the two offspring at each locus with probability py, (the muta-

Chapter 1

11

tion probability or mutation rate), and place the resulting chromosomes in
the new population.

If n is odd, one new population member can be discarded at random.
4. Replace the current population with the new population.
5. Go to step 2.

Each iteration of this process is called a generation. A GA is typically
iterated for anywhere from 50 to 500 or more generations. The entire set
of generations is called a run. At the end of a run there are often one or
more highly fit chromosomes in the population. Since randomness plays
a large role in each run, two runs with different random-number seeds
will generally produce different detailed behaviors. GA researchers often
report statistics (such as the best fitness found in a run and the generation
at which the individual with that best fitness was discovered) averaged
over many different runs of the GA on the same problem.

The simple procedure just described is the basis for most applications of
GAs. There are a number of details to fill in, such as the size of the popu-
lation and the probabilities of crossover and mutation, and the success of
the algorithm often depends greatly on these details. There are also more
complicated versions of GAs (e.g., GAs that work on representations other
than strings or GAs that have different types of crossover and mutation
operators). Many examples will be given in later chapters.

As a more detailed example of a simple GA, suppose that ! (string
length) is 8, that f(x) is equal to the number of ones in bit string x (an ex-
tremely simple fitness function, used here only for illustrative purposes),
that n (the population size) is 4, that p. = 0.7, and that pp, = 0.001. (Like the
fitness function, these values of / and n were chosen for simplicity. More
typical values of / and n are in the range 50-1000. The values given for p.
and pm are fairly typical.)

The initial (randomly generated) population might look like this:

Chromosome label Chromosome string Fitness

A 00000110 2
B 11101110 6
C 00100000 1
D 00110100 3

A common selection method in GAs is fitness-proportionate selection, in
which the number of times an individual is expected to reproduce is equal
to its fitness divided by the average of fitnesses in the population. (This is
equivalent to what biologists call “viability selection.”)

A simple method of implementing fitness-proportionate selection is
“roulette-wheel sampling” (Goldberg 1989a), which is conceptually
equivalent to giving each individual a slice of a circular roulette wheel
equal in area to the individual’s fitness. The roulette wheel is spun, the

Genetic Algorithms: An Overview

12

ball comes to rest on one wedge-shaped slice, and the corresponding in-
dividual is selected. In the n = 4 example above, the roulette wheel would
be spun four times; the first two spins might choose chromosomes B and
D to be parents, and the second two spins might choose chromosomes
B and C to be parents. (The fact that A might not be selected is just the
luck of the draw. If the roulette wheel were spun many times, the average
results would be closer to the expected values.)

Once a pair of parents is selected, with probability p. they cross over
to form two offspring. If they do not cross over, then the offspring are ex-
act copies of each parent. Suppose, in the example above, that parents B
and D cross over after the first bit position to form offspring E = 10110100
and F = 01101110, and parents B and C do not cross over, instead forming
offspring that are exact copies of B and C. Next, each offspring is subject
to mutation at each locus with probability pm. For example, suppose off-
spring E is mutated at the sixth locus to form E’ = 10110000, offspring F
and C are not mutated at all, and offspring B is mutated at the first locus
to form B = 01101110. The new population will be the following:

Chromosome label Chromosome string Fitness

E 10110000 3
F 01101110 5
C 00100000 1
B’ 01101110 5

Note that, in the new population, although the best string (the one with
fitness 6) was lost, the average fitness rose from 12/4 to 14/4. Iterating this
procedure will eventually result in a string with all ones.

1.7 GENETIC ALGORITHMS AND TRADITIONAL SEARCH
METHODS

In the preceding sections I used the word “search” to describe what GAs
do. It is important at this point to contrast this meaning of “search” with
its other meanings in computer science.

There are at least three (overlapping) meanings of “search”:

Search for stored data Here the problem is to efficiently retrieve infor-
mation stored in computer memory. Suppose you have a large database of
names and addresses stored in some ordered way. What is the best way to
search for the record corresponding to a given last name? “Binary search”
is one method for efficiently finding the desired record. Knuth (1973) de-
scribes and analyzes many such search methods.

Search for paths to goals Here the problem is to efficiently find a set of
actions that will move from a given initial state to a given goal. This form

Chapter 1

13

of search is central to many approaches in artificial intelligence. A simple
example—all too familiar to anyone who has taken a course in AI—is the
“8-puzzle,” illustrated in figure 1.2. A set of tiles numbered 1-8 are placed
in a square, leaving one space empty. Sliding one of the adjacent tiles into
the blank space is termed a “move.” Figure 1.2a illustrates the problem
of finding a set of moves from the initial state to the state in which all
the tiles are in order. A partial search tree corresponding to this problem
is illustrated in figure 1.2b. The “root” node represents the initial state,
the nodes branching out from it represent all possible results of one move
from that state, and so on down the tree. The search algorithms discussed
in most Al contexts are methods for efficiently finding the best (here, the
shortest) path in the tree from the initial state to the goal state. Typical
algorithms are “depth-first search,” “branch and bound,” and “A*.”

Search for solutions This is a more general class of search than “search
for paths to goals.” The idea is to efficiently find a solution to a problem
in a large space of candidate solutions. These are the kinds of search prob-
lems for which genetic algorithms are used.

There is clearly a big difference between the first kind of search and
the second two. The first concerns problems in which one needs to find a
piece of information (e.g., a telephone number) in a collection of explicitly
stored information. In the second two, the information to be searched is
not explicitly stored; rather, candidate solutions are created as the search
process proceeds. For example, the Al search methods for solving the 8-
puzzle do not begin with a complete search tree in which all the nodes
are already stored in memory; for most problems of interest there are too
many possible nodes in the tree to store them all. Rather, the search tree is
elaborated step by step in a way that depends on the particular algorithm,
and the goal is to find an optimal or high-quality solution by examin-
ing only a small portion of the tree. Likewise, when searching a space
of candidate solutions with a GA, not all possible candidate solutions are
created first and then evaluated; rather, the GA is a method for finding op-
timal or good solutions by examining only a small fraction of the possible
candidates. :

“Search for solutions” subsumes “search for paths to goals,” since a
path through a search tree can be encoded as a candidate solution. For the
8-puzzle, the candidate solutions could be lists of moves from the initial
state to some other state (correct only if the final state is the goal state).
However, many “search for paths to goals” problems are better solved by
the Al tree-search techniques (in which partial solutions can be evaluated)
than by GA or GA-like techniques (in which full candidate solutions must
typically be generated before they can be evaluated). ‘

However, the standard Al tree-search (or, more generally, graph-search)
methods do not always apply. Not all problems require finding a path

Genetic Algorithms: An Overview

14

5 3 2 1 2 3
?

8 4 - 8 4

1 7 6 7 6 5
(a)

(b)

Figure 1.2 The 8-puzzle. (a) The problem is to find a sequence of moves that will go from
the initial state to the state with the tiles in the correct order (the goal state). (b) A partial
search tree for the 8-puzzle.

from an initial state to a goal. For example, predicting the three-
dimensional structure of a protein from its amino acid sequence does not
necessarily require knowing the sequence of physical moves by which a
protein folds up into a 3D structure; it requires only that the final 3D con-
figuration be predicted. Also, for many problems, including the protein-
prediction problem, the configuration of the goal state is not known ahead
of time.

The GA is a general method for solving “search for solutions” prob-
lems (as are the other evolution-inspired techniques, such as evolution
strategies and evolutionary programming). Hill climbing, simulated an-
nealing, and tabu search are examples of other general methods. Some of

15

these are similar to “search for paths to goals” methods such as branch-
and-bound and A*. For descriptions of these and other search meth-
ods see Winston 1992, Glover 1989 and 1990, and Kirkpatrick, Gelatt,
and Vecchi 1983. “Steepest-ascent” hill climbing, for example, works as
follows:

1. Choose a candidate solution (e.g., encoded as a bit string) at random.
Call this string current-string.

2. Systematically mutate each bit in the string from left to right, one at a
time, recording the fitnesses of the resulting one-bit mutants.

3. If any of the resulting one-bit mutants give a fitness increase, then set
current-string to the one-bit mutant giving the highest fitness increase (the
“steepest ascent”).

4. If there is no fitness increase, then save current-string (a “hilltop”) and
go to step 1. Otherwise, go to step 2 with the new current-string.

5. When a set number of fitness-function evaluations has been performed,
return the highest hilltop that was found.

In Al such general methods (methods that can work on a large vari-
ety of problems) are called “weak methods,” to differentiate them from
“strong methods” specially designed to work on particular problems. All
the “search for solutions” methods (1) initially generate a set of candidate
solutions (in the GA this is the initial population; in steepest-ascent hill
climbing this is the initial string and all the one-bit mutants of it), (2) eval-
uate the candidate solutions according to some fitness criteria, (3) decide
on the basis of this evaluation which candidates will be kept and which
will be discarded, and (4) produce further variants by using some kind of
operators on the surviving candidates.

The particular combination of elements in genetic algorithms—parallel
population-based search with stochastic selection of many individuals,
stochastic crossover and mutation—distinguishes them from other search
methods. Many other search methods have some of these elements, but
not this particular combination.

1.8 SOME APPLICATIONS OF GENETIC ALGORITHMS

The version of the genetic algorithm described above is very simple, but
variations on the basic theme have been used in a large number of scien-
tific and engineering problems and models. Some examples follow.
Optimization GAs have been used in a wide variety of optimization

tasks, including numerical optimization and such combinatorial optimiza-
tion problems as circuit layout and job-shop scheduling.

Genetic Algorithms: An Overview

16

Automatic programming GAs have been used to evolve computer pro-
grams for specific tasks, and to design other computational structures
such as cellular automata and sorting networks.

Machine learning GAs have been used for many machine learning ap-
plications, including classification and prediction tasks, such as the pre-
diction of weather or protein structure. GAs have also been used to evolve
aspects of particular machine learning systems, such as weights for neu-
ral networks, rules for learning classifier systems or symbolic production
systems, and sensors for robots.

Economics GAs have been used to model processes of innovation, the
development of bidding strategies, and the emergence of economic mar-
kets.

Immune systems GAs have been used to model various aspects of
natural immune systems, including somatic mutation during an individ-
ual’s lifetime and the discovery of multi-gene families during evolution-
ary time.

Ecology GAs have been used to model ecological phenomena such as
biological arms races, host-parasite coevolution, symbiosis, and resource
flow.

Population genetics GAs have been used to study questions in
population genetics, such as “Under what conditions will a gene for re-
combination be evolutionarily viable?”

Evolution and learning GAs have been used to study how individual
learning and species evolution affect one another.

Social systems GAs have been used to study evolutionary aspects of
social systems, such as the evolution of social behavior in insect colonies,
and, more generally, the evolution of cooperation and communication in
multi-agent systems.

This list is by no means exhaustive, but it gives the flavor of the kinds of
things GAs have been used for, both in problem solving and in scientific
contexts. Because of their success in these and other areas, interest in GAs
has been growing rapidly in the last several years among researchers in
many disciplines. The field of GAs has become a subdiscipline of com-
puter science, with conferences, journals, and a scientific society.

Chapter 1

