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Abstract
Previous analytic results (Griffiths & Kalish, 2007) show that
repeated learning and transmission of languages in populations
of Bayesian learners results in distributions of languages which
directly reflect the biases of learners. This result potentially
has profound implications for our understanding of the link
between the human language learning apparatus and the dis-
tribution of languages in the world. It is shown here that a
variation on these models (such that learners learn from the
linguistic behaviour of multiple individuals, rather than a sin-
gle individual) changes this transparent relationship between
learning bias and typology. This suggests that inferring learn-
ing bias from typology (or population behaviour from labora-
tory diffusion chains) is potentially unsafe.
Keywords: language learning; iterated learning; Bayesian
learning; cultural evolution; language universals

Introduction
What is the relationship between the biases of language learn-
ers and the observed distribution of languages in the world?
Under the standard generative account (e.g. Chomsky, 1965),
a direct mapping is assumed between the mental apparatus
of language learners and language structure. In the strongest
possible form (e.g. Baker, 2001), the claim is that we can read
off the structure of the language faculty from the typological
distribution of languages in the world.
A second account which posits a similarly close match be-

tween the biases of language learners and the structure of lan-
guage arises from considerations of cultural evolution (Chris-
tiansen & Chater, 2008). Rather than language structure
being strongly constrained by a highly restrictive domain-
specific learning apparatus, the idea is that languages have
adapted over repeated episodes of learning and production
in response to much weaker (and possibly domain-general)
constraints arising from the biases of language learners. This
process is sometimes called iterated learning: the outcome
of learning at one generation provides the input to learning
at the next. While typologically unattested languages might
be both possible and even learnable, the languages we see in
the world will typically be selected from the restricted set of
highly learnable languages: languages which are hard to learn
will tend to change, and those which are easy to learn will be
preserved, eventually yielding languages which are uniformly
well-fitted to the biases of language learners. We have previ-
ously termed this evolutionary pressure cultural selection for
learnability (Brighton, Kirby, & Smith, 2005).
Are learner biases the only factor shaping the distribu-

tion of languages in the world? It has been argued (see
e.g. Kirby, 2002; Zuidema, 2003; Brighton, Kirby, & Smith,
2005; Kirby, Dowman, & Griffiths, 2007) that, at a minimum,
language must be seen as a compromise between two fac-
tors: the biases of learners, and other constraints acting on

languages during their transmission. The classic example of
this second constraint is the mismatch between the infinite ex-
pressivity of languages and the finite set of data from which
such languagesmust be learned. This transmission bottleneck
favours languages which can be recreated from a subset via
generalisation. Recursive compositionality is one such gen-
eralisation (e.g. Kirby, 2002; Brighton, 2002), and therefore
represents an adaptation by language in response to pressure
arising from transmission factors external to the human mind.
While this evolutionary process requires certain learner biases
(e.g. ability to generalise), it does not arise as a consequence
of these learning biases alone, but is modulated by the trans-
mission bottleneck (Brighton, Smith, & Kirby, 2005). This
suggests that the biases of language learners can’t simply be
read off from typological distributions.
However, this transmission-mediated view of the relation-

ship between learning biases and typology has recently been
thrown into doubt by some modelling work in the Bayesian
framework. As discussed below, Griffiths and Kalish (2007)
show that iterated learning in populations of Bayesian learn-
ers produces outcomes which are solely determined by the
biases of language learners: in other words, in the linguis-
tic case, the relationship between learning bias and language
typology might be a transparent one after all.
It is shown here that a variant of Griffiths & Kalish’s model

(where each learner selects a single grammar after observing
data produced by multiple individuals, rather than a single in-
dividual) leads to a blurring of the relationship between prior
biases of learners and outcomes of cultural evolution: popu-
lations of Bayesian agents converge on distributions of lan-
guages which are dependent on both the biases of language
learners and transmission factors (such as the diversity of
models a learner is exposed to).

Summary of iterated learning results for
Bayesian learners

Bayesian learners select a hypothesis h according to its pos-
terior probability in light of some data d:

P(h|d) =
P(d|h)P(h)

∑h P(d|h)P(h)
(1)

P(d|h) gives the likelihood of data d being produced un-
der hypothesis h, and P(h) gives the prior probability of each
hypothesis. For models of iterated learning of language, the
set of hypotheses are interpreted as the set of possible gram-
mars, data are sets of utterances from which learners must
induce a language, and the prior probability distribution over
grammars arises from the bias (domain-specific or domain-
general, innate or learned) of learners.
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Previous analytic and numerical results in this framework
(primarily Griffiths & Kalish, 2007; Kirby et al., 2007) show
that the relationship between the prior biases of learners and
the outcomes of cultural evolution depends critically on how
learners select a grammar given the posterior probability dis-
tribution over possible grammars.
When learners select a grammar with probability propor-

tional to its posterior probability (known as sampling from
the posterior), the stable outcome of cultural evolution (the
stationary distribution) is simply the prior distribution (Grif-
fiths & Kalish, 2007). This is true regardless of the initial
distribution over grammars or transmission factors such as
the amount of data learners receive or the amount of noise
on transmission: iterated learning in populations of samplers
results in convergence on the prior. As discussed above, this
suggests a transparent relationship between the prior bias of
learners and the observed distribution of languages in the
world: the typological distribution exactly reflects the biases
of learners.
On the other hand, when learners select the hypothesis with

the maximum a posteriori probability (MAP selection), the
relationship between prior bias and the stationary distribu-
tion is more complex (Griffiths & Kalish, 2007; Kirby et al.,
2007). The distribution of languages produced by cultural
evolution will reflect the ordering of hypotheses in the prior,
but differences in prior probability are magnified, such that
the a priori most likely hypothesis is overrepresented in the
stationary distribution. Furthermore, different priors can lead
to the same stationary distribution, and changing transmission
factors (amount of data, noise, etc) can result in convergence
to a different stationary distribution. In MAP populations, the
relationship between learner biases and typological distribu-
tions is therefore somewhat opaque.
These models suggest that the sampling / MAP opposition

is a critical one for understanding the relationship between
learner biases and the distribution of languages in the world.
While the true nature of the human hypothesis selection strat-
egy is ultimately an empirical question, it is worth probing
the assumptions behind the formal results presented above.
Griffiths & Kalish’s sampling result holds in two cases:

1. Populations are treated as long thin chains, with a single
individual per generation, and transmission occurring be-
tween adjacent generations in the chain (in the classic iter-
ated learning model configuration). In this case, the tem-
poral distribution of grammars over multiple generations
converges to the prior: while any grammar may be in use
in the chain at a particular generation, on average the usage
of the various grammars reflects their prior probability.

2. Populations are infinitely large, organised into discrete
generations, and each individual learns from a single model
at the previous generation.1 In this case the distribution of
1It is worth noting that a number of non-Bayesian, population-

biology inspired models of language evolution similarly focus on
situations where learners learn from a single model (e.g. Nowak,
Komarova, & Niyogi, 2001).

interest is the proportion of individuals in the population
using each grammar at a particular generation, which con-
verges to the prior over time.

This equivalence between chains and populations is an in-
teresting and potentially important one, since it suggests that
we can obtain useful insights into the behaviour of real-world
populations by studying long thin diffusion chains (either for-
mally or in the laboratory: Griffiths, Kalish, & Lewandowsky,
2008).

A two-grammar model
Given the potential implications of these results, it would be
interesting to know whether the equivalence between chains
and populations holds in situations where each learner learns
from more than a single model, potentially including models
from the same generation. A simple two-grammar model can
be used to explore (at present, numerically) this issue.

Model details
We assume that populations are infinitely large, and are or-
ganised into discrete generation. Learners observe a set of b
utterances, produced by (one or more) models selected from
the immediately preceding generation of the population, and
subsequently select a grammar with probability proportional
to its posterior probability in light of that data (i.e. they sam-
ple from the posterior). Note that, importantly, learners are
required to select a single grammar, despite potentially being
provided with data produced by multiple grammars, an issue
we return to in the discussion.
There are two grammars, h0 and h1, and two utterances,

d0 and d1. Individuals produce single utterances as follows
(where ε gives the probability of noise on production):

P(dx|hx) = 1− ε

P(dy"=x|hx) = ε (2)

Given that the population is infinitely large and there are
only two grammars, we simply track pt , which is the propor-
tion of individuals at generation t who select hypothesis h0
after learning (1− pt gives the proportion selecting h1).
If learners at generation t + 1 learn from a single model

selected at random from generation t, the proportion of indi-
viduals using h0 at time t+1 will be

pt+1 =∑
d
P(h0|d).

(

pt .∏
x∈d

P(x|h0)+ (1− pt).∏
x∈d

P(x|h1)

)

(3)
where the sum is over all possible data sets and the products
are over the individual utterances in each data set. In other
words, each learner learns from an h0 model with probability
pt and an h1 model with probability 1− pt , and subsequently
selects h0 with probability determined by the data produced
by that model.
Alternatively, if a learner learns frommultiple models, each

utterance in their data set may be produced by a different in-
dividual, possibly using a different grammar. We will assume
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that the model for each item of data is independently selected
from the population at the preceding generation, which gives
the following expression for the proportion of individuals se-
lecting h0 at generation t+1:

pt+1 =∑
d
P(h0|d).∏

x∈d
(pt .P(x|h0)+ (1− pt).P(x|h1)) . (4)

Again, the sum is over all possible sets of data, and the
product is over the items in each data set, where each utter-
ance is produced by an individual using either grammar h0 or
h1 (according to the proportions of those two grammars in the
population).

Results
The main result (see Figure 1a) is that, when learners learn
from multiple models, the proportion of individuals using
each grammar (after cultural evolution has run its course) is
no longer the same as the prior distribution. Rather, one lan-
guage predominates, with the winning language being deter-
mined by the starting proportions of the two grammars and
their prior probability.2
Figure 1b shows this sensitivity to initial proportions of the

two languages in a little more detail. There is a critical value
of the initial proportion of h0 (at around 0.4465 for this com-
bination of parameters): for initial proportions below this, h1
eventually dominates, otherwise h0 dominates. This sensi-
tivity to initial conditions is not found in the single model
treatments discussed above.
When learners learn from multiple models, the insensitiv-

ity to transmission factors such as amount of data (b) nor-
mally seen in populations of samplers also disappears. This
is illustrated in Table 1. Notice that the effect of increased
amounts of data (higher b) runs in the opposite direction
to that seen in MAP populations: whereas in the chains of
MAP learners described in Kirby et al. (2007) less data gives
greater exaggeration of the prior, heremore data gives greater
exaggeration of the prior preference for h0. Note also that, as
b increases, the impact of the strength of prior preference for
h0 on the final proportion of h0 in the population diminishes
— in essence, when b ≥ 3, the population converges on h0
regardless of strength of prior bias in favour of that grammar.
This is reminiscent of the MAP phenomenon of insensitivity
to strength of prior bias, but is modulated by b.
Why does b, the amount of data learners receive, lead to

this departure from the known sampler results? In a mixed
population, increasing b increases the diversity of learner’s
sample of the population’s linguistic behaviour (unlike in
the case where learners learn from a single model, when
they simply receive an increasingly accurate reflection of the
grammar of that model). Consequently, if one grammar pre-
dominates in the population, this is likely to be reflected in
the data learners see.

2See Niyogi (2006) for a number of more general analytic results
providing the dynamics of transmission in populations associated
with various non-Bayesian learning algorithms.
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Figure 1: P(h0) = 0.6, b = 3, ε = 0.05. (a) When individ-
uals learn from a single model, the population converges to
the prior. When learners learn from (potentially) multiple
models, populations converge to one of two stable states, de-
pending on initial conditions. (b) When learners learn from
multiple models, the eventual distribution is sensitive to the
starting proportions of the two grammars.

Table 1: Stable proportions of h0 for various values of p(h0)
and b. Populations initialised with equal proportions of h0
and h1, ε= 0.05.

b
P(h0) 1 2 3 4 5
0.51 0.51 0.548 0.978 0.989 0.997
0.6 0.6 0.822 0.983 0.992 0.998
0.7 0.7 0.92 0.986 0.994 0.998
0.8 0.8 0.961 0.99 0.996 0.999
0.9 0.9 0.983 0.993 0.998 0.999

How do Bayesian learners respond to mixed samples? The
grammar which matches with the majority of the data has
higher posterior probability and is therefore likely to be se-
lected. Importantly, under a wide range of conditions, the
grammar matching the more common data is disproportion-
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ately preferred. Given a data set consisting of i d0 items and
j d1 items, i ≥ j, the ratio of likelihoods P(d|h0)/P(d|h1) is
( 1−εε )i− j. This quantity is generally greater than the corre-
sponding ratio of data items (i/ j) for low noise rates. In other
words, learners exposed to a mixed sample and required to
select a single grammar are disproportionately likely to pick
the more frequently represented grammar, making Bayesian
learning in this context a type of conformist frequency-
dependent learning (Boyd & Richerson, 1985). The well-
know consequence of conformist learning is the rich-get-
richer behaviour seen here, with the mismatch in frequencies
of the two grammars increasing generation on generation.
Conformity bias is not, however, the whole story. Increas-

ing b has a second effect: as well as increasing the repre-
sentativeness of the sample of the population’s linguistic be-
haviour, it also increases the fidelity of transmission of the
majority grammar in a sample of a fixed diversity (holding
i/ j constant, increasing b increases the quantity i− j). Both
these effects lead to an increase in the dominant grammar’s
share of the population. The impact of the two effects can
be probed by implementing a minor extension to the model
outlined above, where learners learn from a specified number
of models (c), with b/c data items from each parent. Table
2 shows the eventual proportion of h0 in converged popula-
tions for various c and b (for convenience we only consider
cases where b/c yields integer values). As can be seen from
the table, increasing c or b independently increases the dom-
inance of the winning grammar. Importantly, any diversity of
models (c≥ 2) results in a single grammar winning out. For
b = 2, the grammar favoured by the prior wins out in situa-
tions where learners received perfectly mixed input, and for
b > 2 the conformity effect outlined above also comes into
play.

Table 2: Stable proportion of h0 for various c and b. P(h0) =
0.6, ε= 0.05, both grammars initially equally frequent.

b
c 1 2 3 4 6 8 12
1 0.6 0.6 0.6 0.6 0.6 0.6 0.6
2 - 0.822 - 0.964 0.993 0.999 1
3 - - 0.983 - 0.999 - 1
4 - - - 0.992 - 1 1

A more complex model
While the results for the two-grammar model are potentially
interesting, one might reasonably worry that they are reliant
on some feature of the simplest possible two-grammar model.
Of particular interest are the models in the literature which
allow multiple grammars with equal prior probability. With
this in mind, the grammar model from Kirby et al. (2007)
is adopted here: similar results can be obtained for the 260-
grammar model of Griffiths and Kalish (2007).

The model
In this more complex model, a language consists of a sys-
tem for expressing m meanings, where each meaning can be
expressed using one of k means of expression, called signal
classes. In a perfectly regular (or systematic) language the
same signal class will be used to express each meaning— for
example, the same compositional rules will be used to con-
struct an utterance for each meaning. Following Kirby et al.
(2007), we assume that learners have a preference for lan-
guages which use a consistent means of expression, such that
each meaning is expressed using the same signal class. This
prior is given by the expression

P(h) =
Γ(kα)

Γ(α)kΓ(m+ kα)

k

∏
j=1

Γ(n j +α) (5)

where Γ(x) = (x−1)! when x is an integer,3 n j is the number
of meanings expressed using class j and α≥ 1 determines the
strength of the preference for regularity: low α gives a strong
preference for regular languages, higher α leads to a weaker
preference for such languages.
The probability of a particular meaning-form pair 〈x,y〉

(consisting of a meaning x and a signal class y) being pro-
duced by an individual with grammar h is:

P(〈x,y〉 |h) =
1
m

.

{

1− ε if y is the class for x in h
ε

k−1 otherwise (6)

where ε gives the noise probability on production and all
meanings are equiprobable (hence the scaling by 1/m).
We can then plug this production model into the two pop-

ulation learning models outlined above. pi,t gives the pro-
portion of individuals at generation t who select hi (again,
learners are required to select a single grammar). If learners
at generation t+1 learn from a single model:

pi,t+1 =∑
d
∑
j
P(hi|d).p j,t .∏

x∈d
P(x|h j) (7)

where the sums are over all possible data sets and all possible
model grammars, and the products are over the b items in
each data set. If a learner learns from multiple models:

pi,t+1 =∑
d
P(hi|d).∏

x∈d

(

∑
j
p j,t .P(x|h j)

)

. (8)

Results
The main features of the two-grammar model are preserved
in the more complex model: sensitivity to initial conditions, a
dependency on b, and an interaction between strength of prior
and b.
Figure 2 shows the final stable distribution over all gram-

mars for strong and weak prior preferences in favour of regu-
larity, for various values of b. For b= 1 the standard sampling

3We will only consider the case where α takes integer values.

700



result for learning from a single cultural parent is retrieved.
For high b, the majority of the population converges on one
of the a priori more likely grammars (with the identity of the
winning grammar depending on the initial frequencies). In-
deed, for b= 10 the strength of the prior preference in favour
of regularity makes little difference to the final distribution.
Finally, there appears to be a critical value of b required

for the population to converge on a single majority grammar.
For b below this critical value, the would-be dominant gram-
mar suffers from a lack of transmission fidelity: learners tend
to receive data sets which underspecify the target language,
and the posterior probabilities of the various languages are
therefore heavily constrained by the prior. Note, however,
that the stable distribution is not identical to the prior: the
differences in prior probability are smoothed out somewhat.
Above the critical value of b (which is around b = 2m, but is
somewhat sensitive to α), transmission fidelity becomes suf-
ficiently high to allow one grammar to dominate through the
processes discussed for the two-grammar model. This con-
straint on b is analogous to the coherence threshold described
in Nowak et al. (2001).

Discussion
The two models described above represent a first attempt to
explore the impact of population structure on the outcomes
of iterated learning in populations of Bayesian agents. While
much remains to be done, they show that the analytic result
provided by Griffiths and Kalish (2007) can break down un-
der some model configurations. Before considering the im-
plications of this finding, it is worth considering some of the
model’s more serious limitations.
Learners are required to select a single grammar based

on exposure to a potentially diverse sample (or equivalently,
learners use each grammar probabilistically, with probabil-
ities determined by their posterior probability). It may be
that there are more sophisticated treatments of the hypothe-
sis selection task for which the Griffiths and Kalish (2007)
result can be retrieved. One obvious possibility is to consider
cases where learners have a structured model, such that they
appreciate that their data potentially comes from multiple in-
dividuals who may (or may not) use different grammars and
who may (or may not) exhibit consistent usage. Hierarchical
Bayesian approaches can be straightforwardly used to model
this type of learner, and can therefore be used to explore the
evolutionary consequences of learning from multiple models
in a more satisfying (and cognitively plausible) fashion than
that described here.
The population model used here also offers only a minimal

increase in complexity over its predecessors. Although it adds
the possibility of learners learning from multiple (equally-
weighted) models, it entirely ignores horizontal (within-
generation) transmission. Populations also lack any interest-
ing internal structure. Transmission in real-world populations
takes place over complex social networks, with implications
for language structure (see e.g. Kerswill & Williams, 2000),
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Figure 2: m = 3,k = 3,ε = 0.05. Stable proportions of all
27 grammars, grouped by prior probability (H are the highly
regular grammars, L are the low regularity grammars, M are
the grammars of intermediate regularity). The top row gives
prior probability distributions for two values of α. The re-
maining rows give the stable proportions for various values
of b. In all cases the population is initialised with one regu-
lar grammar having a slightly boosted frequency and all other
grammars being equally frequent. All proportions have un-
dergone a square root transformation to show the variability
among the less frequent grammars.
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a phenomenon little explored in the modelling literature.
The results presented here suggest that caution must

(at least at present) be used when extrapolating from cul-
tural evolution in convenient one-individual iterated learning
chains to larger populations. While diffusion chain experi-
ments provide a powerful tool for identifying the prior biases
of learners, in real populations those prior biases are fed in
to a population dynamic whose consequences are largely not
understood. Exploring transmission in larger and more com-
plex laboratory populations may prove necessary.
Secondly, the implication of this modelling work is that

assuming a straightforward or one-to-one mapping between
the biases of learners and the typological distributions of lan-
guages in the world may be unsafe. While the Griffiths and
Kalish (2007) result offers some hope in this direction (and
may indeed still hold given a more sophisticated treatment
of the multiple-model case, of the sort discussed above), the
results presented here shows that, under certain assumptions
about the nature of the learning problem, changing the pop-
ulation dynamic can change the outcomes of cultural evolu-
tion: the typological distribution of languages in these models
is emphatically not the prior.
Furthermore, in some situations the ranking of languages

in the prior is not even preserved in the final distribution of
languages. Previous work in the Bayesian framework sug-
gests that cultural evolution returns some distribution which
is the same shape as the prior distribution — either the prior
itself, or (in MAP populations) some stretched version of the
prior where the magnitudes of the differences are changed but
the overall rank ordering of hypotheses in the stationary dis-
tribution is the same as in the prior. However, close inspec-
tion of Figure 2 shows a different picture: some languages
with high or intermediate prior probability end up being less
frequent than languages with the lowest prior probability. In
other words, attempting to read off even the ranking of lan-
guages in the prior from this typological distribution would
lead to error. In the model this is largely due to competition in
a homogeneous population between the languages with high
prior probability, combined with the coupling of each mid-
ranking language to high-ranking languages with which they
overlap. However, the point remains: the outcome of cultural
transmission in populations where learners learn from multi-
ple models is not necessarily simply determined by the prior,
but also by transmission factors such as the amount of data
learners receive and the diversity of the set of models they re-
ceive it from. The relationship between prior biases of learn-
ers and observed typological distributions is not transparent.

Conclusions
Some work on the outcomes of cultural transmission in pop-
ulations of Bayesian learners suggests that cultural evolution
will deliver up the prior distribution. This implies that we can
gain insights into population behaviours by studying diffu-
sion chains (highly amenable to laboratory investigation), and
that we can read off the prior biases of learners from the ty-

pological distributions of languages in the world. The results
presented here show that this modelling result is dependent
on learners learning from a single model. When this idealisa-
tion is relaxed, the straightforward mapping from prior bias
to typology breaks down.
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