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Networks versus Symbol Systems: 
Two Approaches to Modeling 

Cognition 

A Revolution in the Making? 

The  rise of cognitivism in psychology, which, by the 1970s, had suc- 
cessfully established itself as a successor to behaviorism, has been 
characterized as a Kuhnian revolution (Baars, 1986). Using Kuhn's 
(1962/1970) term, the emerging cognitivism offered its own paradigm, 
that is, its way of construing psychological phenomena and its research 
strategies, both of which clearly distinguished it from behaviorism (for 
overviews, see Neisser, 1967; Lindsay and Norman, 1972). This change 
was part of a broader cognitive revolution that not only transformed 
a number of disciplines such as cognitive and developmental psycho- 
logy, artificial intelligence, linguistics, and parts of anthropology, philo- 
sophy, and neuroscience; it also led to an active cross-disciplinary 
research cluster known as cognitive science. As the cognitive paradigm 
developed, the idea that cognition involved the manipulation of 
symbols became increasingly central. These symbols could refer to ex- 
ternal phenomena and so have a semantics. They were enduring entities 
which could be stored in and retrieved from memory and transformed 
according to rules. The  rules that specified how symbols could be 
composed (syntax) and how they could be transformed were taken to 
govern cognitive performance. Given the centrality of symbols in this 
approach, we shall refer to it as the symbolic paradigm. 

In the 1980s, however, an alternative framework for understanding 
cognition has emerged in cognitive science, and a case can be made that 
it is a new Kuhnian (Schneider, 1987). (We shall be using the term cog- 
nition very broadly to cover a range of mental processing, including not 
just activities involving reasoning and memory, but also language, per- 
ception, and motor control.) This new class of models are variously 
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known as connectionist, parallel distributed processing (PDP), or neural 
network models. The  "bible" of the connectionist enterprise, Rumel- 
hart and McClelland's two volumes entitled Parallel Distributed Pro- 
cessing (1986). sold out its first printing prior to publication and sold 
30,000 copies in its first year. Clearly connectionism has become the 
focus of a great deal of attention. 

Connectionism can be distinguished from the traditional symbolic 
paradigm by the fact that it does not construe cognition as involving 
symbol manipulation. It offers a radically different conception of the 
basic processing system of the mind-brain. This conception is in- 
spired by our knowledge of the nervous system. T h e  basic idea is that 
there is a network of elementary units or nodes, each of which has some 
degree of activation. These units are connected to each other so that act- 
ive units excite or inhibit other units. The  network is a dynamical sys- 
tem which, once supplied with initial input, spreads excitations and 
inhibitions among its units. In some types of network, this process does 
not stop until a stable state is achieved. T o  understand a connectionist 
system as performing a cognitive task, it is necessary to supply an 
interpretation. This is typically done by viewing the initial activations 
supplied to the system as specifying a problem, and the stable config- 
uration produced at the end of processing as the system's solution 
to the problem. 

Both connectionist and symbolic systems can be viewed as computa- 
tional systems. But they advance quite different conceptions of what 
computation involves. In the symbolic approach, computation involves 
the transformation of symbols according to rules. This is the way we 
teach computation in arithmetic: we teach rules for performing 
operations specified by particular symbols (e.g., + + ) on other sym- 
bols which refer to numbers. When we treat a traditional computer as a 
symbolic device, we view it as performing symbolic manipulations 
specified by rules which typically are written in a special data-structure 
called the program. The connectionist view of computation is quite dif- 
ferent. It focuses on causal processes by which units excite and inhibit 
each other and does not provide either for stored symbols or rules that 
govern their manipulations. 

While connectionism has achieved widespread attention only in the 
1980s, it is not a newcomer. Network models, which were predecessors 
of contemporary connectionist models, were developed and widely dis- 
cussed during the early years of the cognitive revolution in the 1960s. 
The  establishment of the symbolic paradigm as virtually synonymous 
with cognitive science only occurred at the end of the 1960s, when the 
symbolic approach promised great success in accounting for cognition 

and the predecessors of connectionism seemed inadequate to the task. A 
brief recounting of this early history of network models will provide an 
introduction to the connectionist approach and to the difficulties which 
it is thought to encounter. The  issues that figured in this early contro- 
versy still loom large in contemporary discussions of connectionism and 
will be discussed extensively in subsequent chapters. (For additional 
detail see Cowan and Sharp (1988) from which we have largely drawn 
our historical account, and Anderson and Rosenfeld (1988) which 
gathers together many of the seminal papers and offers illuminating 
commentary.) 

Forerunners of Connectionism: Pandemonium and Perceptrons 

The initial impetus for developing network models of cognitive per- 
formance was the recognition that the brain is a network. Obviously, 
given the complexity of the brain and the limited knowledge available 
then or now of actual brain functioning, the goal was not to model brain 
activity in complete detail. Rather, the goal was to model cognitive 
phenomena in systems that exhibited some of the same basic properties 
as the network of neurons in the brain. The  foundation was laid by 
Warren McCulloch and Walter Pitts in a paper published in 1943. 
They proposed a simple model of neuron-like computational units and 
then demonstrated how these units could perform logical compu- 
tations. Their "formal neurons" were binary units (i.e., they could 
either be on or off ). Each unit would receive excitatory and inhibitory 
inputs from certain other units. If a unit received just one inhibitory 
input, it was forced into the off position. If there were no inhibitory 
inputs, the unit would turn on if the sum of the excitatory inputs 
exceeded its threshold. McCulloch and Pitts showed how configu- 
rations of these units could perform the logical operations of AND, 
OR, and NOT. McCulloch and Pitts further demonstrated that any 
process that could be performed with a finite number of these logical 
operations could be performed by a network of such units, and that, if 
provided with indefinitely large memory capacity, such networks would 
have the same power as a Universal Turing machine. 

The  idea captured by Pitts-McCulloch "neurons" was elaborated in 
a variety of research endeavors in succeeding decades. John von Neu- 
mann (1956) showed how such networks could be made more reliable 
by significantly increasing the number of inputs to each particular unit 
and determining each unit's activation from the statistical pattern of 
activations over its input units (e.g., by having a unit turn on if more 
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than half of its inputs were active). In von Neumann's networks each 
individual unit could be unreliable without sacrificing the reliability of 
the overall system. Building such redundancy into a network seems to 
require vastly increasing the number or units, but Winograd and 
Cowan (1963) developed a procedure whereby a given unit would con- 
tribute to the activation decision of several units as well as being 
affected by several units. This constitutes an early version of what is 
now referred to as "distributed representation" (see chaper 2). 

In addition to formal characterizations of the behavior of these 
networks, research was also directed to the potential applications of 
these networks for performing cognitive functions. McCulloch and 
Pitts' first paper was devoted to determining the logical power of net- 
works, but a subsequent paper (Pitts and McCulloch, 1947) explored 
how a network could perform pattern-recognition tasks. They were in- 
trigued by the ability of animals and humans to recognize different 
versions of the same entity even though they might appear quite diff- 
erent. They construed this task as requiring multiple transformations 
of the input image until a canonical representation was produced, and 
they proposed two networks that could perform some of the required 
transformations. Each network received as input a pattern of activation 
on some of its units. The  first network was designed to identify in- 
variant properties of a pattern (properties possessed by a pattern no 
matter how it was presented), while the second transformed a variant 
into a standard representation. Because their inspiration came from 
knowledge of the brain, they presented evidence that the first type of 
network captured properties of the auditory and visual cortex, while the 
second captured properties of the superior colliculus in controlling eye 
movements. 

Frank Rosenblatt was one of the major researchers to pursue the 
problem of pattern recognition in networks. Like Pitts and McCulloch, 
he worked principally with binary units in layered networks, that is, 
networks in which one set of units receives inputs from outside and 
sends excitations and inhibitions to another set of units, which may 
then send inputs to yet a third group. He also explored networks in 
which later layers of units might send excitations or inhibitions back 
to earlier layers. Rosenblatt referred to such systems as perceptrons 
(see figure 1.1). He supplemented McCulloch and Pitts' networks by 
making the strengths (commonly referred to as the weights) of the 
connections between units continuous rather than binary, and by 
introducing procedures for changing these weights, enabling the net- 
works to be trained to change their responses. For networks with two 
layers and connections running only from units in the first layer to 
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Figure 1.1 An elementary perceptron, as investigated by Rosenblatt (1958). Inputs 
are supplied on the four sensory units on the left and outputs are produced on the two 
motor units at the bottom. The horizontal and vertical lines represent connections; the 
diamonds at their intersections represent synapses whose weights can be modified if 
incorrect outputs are generated. From J. D. Cowan and D. H. Sharp (1988) Neural nets 
and artificial intelligence, Daedalus, 117, p. 90, Reprinted with permission. 

those in the second, Rosenblatt's procedure was to have the network 
generate, using existing weights, an output for a given input pattern. 
The  weights on connections feeding into any unit that gave what was 
judged to be an incorrect response were changed (those feeding into 
units giving the correct response were left unaltered). If the unit was off 
when it should have been on, an increase was made to all weights on 
connections that had carried any activation to it (i.e., came from units 
that had been active). Conversely, if the unit was on when it should 
have been off, these weights were reduced. Rosenblatt demonstrated 
the important Perceptron Convergence Theorem with respect to this 
training procedure. The  theorem holds that if a set of weights existed 
that would produce the correct responses to a set of patterns, then 
through a finite number of repetitions of this training procedure the 
network would in fact learn to respond correctly (Rosenblatt, 1961; see 
also Block, 1962). 
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Rosenblatt emphasized how the perceptron differed from a symbolic 
processing system. Like von Neumann, he focused on statistical pat- 
terns over multiple units (e.g., the proportion of units activated by an 
input), and viewed noise and variation as essential. He contended that 
by building a system on statistical rather than logical (Boolean) prin- 
ciples, he had achieved a new type of information processing system: 

It seems clear that the class C'perceptron introduces a new kind of information 
processing automaton: For the first time, we have a machine which is capable of 
having original ideas. As an analogue of the biological brain, the perceptron, 
more precisely, the theory of statistical separability, seems to come closer to 
meeting the requirements of a functional explanation of the nervous system 
than any system previously proposed. . . . As a concept, it would seem that the 
perceptron has established, beyond doubt, the feasibility and principle of non- 
human systems which may embody human cognitive functions at a level far be- 
yond that which can be achieved through present day automatons. T h e  future 
of information processing devices which operate on statistical, rather than logi- 
cal principles seems to be clearly indicated. (Rosenblatt, 1958, p. 449, quoted in 
Rumelhart and Zipser, 1986, in P D E 5 ,  pp. 56-7) 

Oliver Selfridge (1959) was another of the early investigators of the 
pattern recognition capabilities of network models. Unlike Rosenblatt, 
he assigned a particular interpretation to each of the units in his net- 
work. One of the pattern-recognition tasks he explored was recognition 
of letters, a task that is made difficult by the fact that different people 
write their letters differently. He called his model pandemonium, captur- 
ing the fact that his model was composed of cognitive demons that per- 
formed computations in parallel without attention to one another, and 
each "shouted out" its judgement of what letter had been presented 
(see figure 1.2). These cognitive demons each specialized in gathering 
evidence for one particular letter; the greater the evidence the louder 
they shouted. The  decision demon then made the identification of the 
letter on the basis of which unit shouted the loudest. The evidence 
gathered by each cognitive demon was supplied by a lower layer of fea- 
ture demons. Each feature demon responded if its feature (e.g., a hori- 
zontal bar) was present in the image. The  feature demon was connected 
to just those cognitive demons whose letters contained its feature. 
Thus, a cognitive demon would respond most loudly if all of its 
features were present in the image, and less loudly if some but not all of 
its features were present. One of the virtues of this type of network is 
that it would still make a correct or plausible judgement about a letter 
even if some of its features were missing or atypical (see Selfridge, 
1959; Selfridge and Neisser, 1960). 

Networks versus Symbol Systems 

Cognitive demons 

Figure 1.2 Selfridge's pandemonium model. The demons at each level beyond the image 
demon (which merely records the incoming image) extract information from the demons 
at the preceding level. Thus, a given feature demon responds positively when it detects 
evidence of its feature in the image, and a cognitive demon responds to the degree that 
the appropriate feature demons for its letter are active. Finally, the decision demon 
selects the letter whose cognitive demon is most active. From P. Lindsay and D. A. 
Norman (1972) Human Information Processing, San Francisco: Freeman, p. 116. 
Reprinted with permission. 

Early researchers recognized that, in addition to modeling pattern 
recognition, networks might be useful as models of how memories were 
established. In particular, researchers were attracted to the problem of 
how networks might store associations between different patterns. An 
extremely influential proposal was developed by Donald Hebb (1949), 
who suggested that when two neurons in the brain were jointly active, 
the strength of the connection might be increased. This idea was 
further developed by Wilfrid Taylor (1956), who explored networks 
of analog units that took activations within a continuous range (e.g., - 1 
to + 1). In the network he proposed, a single set of motor units was 
connected to two different sets of sensory units (which we shall call the 
base units and the learning units). The network was set up such that 
each pattern on the base units was associated with a pattern on the 
motor units. A different set of patterns was defined for the learning 
units. No associations to the motor units were specified, but each learn- 
ing unit pattern was assigned an association with one base unit pattern. 
When the network was run, the associated sensory patterns were 
activated at the same time. The  eventual outcome was that the learning 
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units acquired the ability to generate the same motor patterns as the 
base units with which they were associated. 

Another researcher who pursued this type of associative memory net- 
work was David Marr (1969), who proposed that the cerebellum is such 
a network which can be trained by the cerebrum to control voluntary 
movements. The  cerebellum consists of five different kinds of cell or 
unit, with the modifiable connections lying between the granule cells 
and Purkinje cells. The  other cell types serve to set the firing thresholds 
on these two cell types. The  development of connections between the 
granule cells and Purkinje cells, he proposed, underlay the learning of 
sequences of voluntary movements in activities like playing the piano. 
Marr subsequently proposed similar models for the operation of the 
hippocampus (Marr, 1 971) and the neocortex (Marr, 1970). 

T h e  early history of network models we have summarized in this sec- 
tion indicates that there was an active research program devoted to ex- 
ploring the cognitive significance of such networks. It  is important to 
emphasize that while some of this research was explicitly directed at 
modeling the brain, for Rosenblatt and some other researchers the goal 
was to understand cognitive performance more generally. The  relative 
prominence of research devoted to network models diminished in the 
late 1960s and early 1970s, as the alternative approach of symbolic 
modeling became dominant. (Semantic networks, hybrid models that 
place symbols in network structures, also arose and thrived in the 
1970s; as discussed in chapter 4.) In the next two sections we shall 
examine what made the symbolic approach so attractive to cognitive 
researchers, and how network research (in the original tradition pion- 
eered by Rosenblatt) declined until rejuvenated in the 1980s. Finally, 
we shall sketch the relation between the network and symbolic models 
of the 1980s. 

The Allure of Symbol Manipulation 

The symbol manipulation view of cognition has several roots. One of 
these lies in philosophy, in the study of logic. A logical system consists 
of procedures for manipulating symbols. In  propositional logic the 
symbols are taken to represent propositions or sentences and con- 
nectives such as AND and OR. Generally, there is a clear goal in such 
manipulation. For example, in deductive logic we seek a set of rules that 
will enable us to generate only true propositions as long as we start with 
true propositions. A system of such rules is spoken of as truth pre- 
serving. The  simple inference rule modus ponens is an example of a 
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truth-preserving rule. From one proposition of the form "If p, then q" 
and another of the form 2," we can infer a proposition of the form "q*' 
(where p and q are placeholders for specific propositions). 

We have actually adopted two perspectives in the previous para- 
graph, and it is the relation between them that makes logic, and systems 
designed to implement logic, so powerful. From one perspective, we 
treat the symbols for propositions as representational devices. For 
example, we conceive of a proposition as depicting a state of affairs that 
might or might not hold in the world. From this perspective, we speak 
of a proposition as either true (if the proposition corresponds to the way 
the world is) or false (if it does not correspond). This perspective is gen- 
erally known in logic as a model theoretic perspective. We think of a 
model as a set of entities and identify those propositions as true whose 
ascriptions correspond to the properties that the entities in the model 
actually possess. Within this framework we can evaluate whether a pat- 
tern of inference is such that for any model in which the premises are 
true, the conclusion will also be true. The  second perspective, known as 
the proof theoretic perspective, focuses not on the relations between the 
propositions and the objects they represent, but simply on the relations 
among the propositions themselves, construed as formal entities. When 
we specify inference rules in a logical system, we focus only on the syn- 
tax of the symbols and disregard what they refer to. What gives logic its 
power is, in part, the possibility of integrating these two perspectives, 
of designing proof procedures that are complete, that is, that will enable 
us to derive any proposition that will be true in all models in which the 
premises are true. 

The  relation between proof theory and model theory gives rise to a 
very powerful idea. If intelligence depended only upon logical reason- 
ing, for which the goal was truth preservation, then it would be possible 
to set up formal proof procedures, which will achieve intelligent per- 
formance. However, intelligence does not depend solely on being able 
to make truth-preserving inferences. Sometimes we need to make 
judgements as to what is likely to be true. This is the domain of induc- 
tive logic. The  goal of inductive logic is to establish formal rules, anal- 
ogous to the proof theoretic procedures of deductive logic, that lead 
from propositions that are true to those that are likely to be true. If 
such rules can be identified, then we may still be able to set up formal 
inference procedures that produce intelligent performance. 

The  crucial assumption in both deductive and inductive logic is that 
in order to process a symbol, we only need to consider its formal prop- 
erties. We can disregard its representational function, that is, whether it 
is true or not, and if true, what state of affairs it describes. Thus, with a 
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formal system, it is often possible to reinterpret the symbols that are 
used (i.e., assign them a new representational role) without affecting 
how the symbol processing system itself operates. 

The  idea that intelligent cognitive processes are essentially processes 
of logical reasoning has a long history, captured in the long-held view 
that the rules of logic constitute rules of thought. It  is found in authors 
such as Hobbes, who treated reasoning as itself comparable to math- 
ematical computation and suggested that thinking was simply a process 
of formal computation: 

When a man reasoneth, he does nothing else but conceive a sum total, from ad- 
dition of parcels; or conceive a remainder, from subtraction of one sum from 
another; which, if it be done by words, is conceiving of the consequence of the 
names of all the parts, to the name of the whole; or from the names of the whole 
and one part, to the name of the other part. . . . These operations are not inci- 
dent to numbers only, but to all manner of things that can be added together, 
and taken from one out of another. For as arithmeticians teach to add and sub- 
tract in numbers; so the geometricians teach the same in lines, figures, solid and 
superficial, angles, proportions, times, degrees of swiftness, force, power, and the 
like; the logicians teach the same in consequences of words; adding together two 
names to make an affirmation, and two affirmations to make a syllogism; and 
many syllogisms to make a demonstration; and from the sum or conclusion of a syl- 
logism, they subtract one proposition to find the other. (Hobbes [1651], 1962, 
P. 41) 

The idea of thinking as logical manipulation of symbols was further de- 
veloped in the works of rationalists such as Descartes and Leibniz 
and empiricists such Locke and Hume, all of whom conceived of the 
symbols as ideas, and formulated rules for properly putting together or 
taking apart ideas. 

With the development of automata theory and physical computers in 
the mid-twentieth century, there was a burgeoning of more subtle and 
varied views of symbols and symbol manipulation. From one perspec- 
tive (well characterized in Haugeland, 1981), the digital computer is 
simply a device for implementing formal logical systems. Symbols are 
stored in memory registers (these symbols may simply be sequences of 
1's and O's, implemented by on and off settings of switches). The basic 
operations of the computer allow recalling the symbols from memory 
and executing changes in the symbols according to rules. In the earliest 
computers, the rules for transforming symbols had to be specially wired 
into the machine, but one of the major breakthroughs in early computer 
science was the development of the stored program. The stored pro- 
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gram is simply a sequence of symbols that directly determines what 
operations the computer will perform on other symbols. The relation 
between the stored program and those other symbols is much like the 
relation between the formally written rule modus ponens and the symbol 
strings to which it can be applied. Like the formal rules of logic, the 
rules in the computer program do not consider the semantics of the 
symbols being manipulated, but only their form. This perspective has 
been given a variety of renderings by such symbolic theorists as 
Dennett (19781, Fodor (1980), and Pylyshyn (1984). 

An alternative way to construe the semantics of computational 
systems was offered by Newell and Simon (1981). For them, a corn- 
puter is a physical symbol system consisting of symbols (physical 
patterns), expressions (symbol structures obtained by placing symbol 
tokens in a physical relation such as adjacency), and processes that 
operate on expressions. They point out that there is a semantics 
(designation and interpretation) within the system itself; specifically, 
expressions in stored list-processing programs designate locations in 
computer memory, and these expressions can be interpreted by access- 
ing those locations. They regard this internal semantics as a major ad- 
vance over formal symbol systems such as those of logic, and argue that 
intelligence cannot be attained without it: 

The Physical Symbol System Hypothesis. A physical symbol system has the 
necessary and sufficient means for general intelligent action. 

By "necessary" we mean that any system that exhibits general intelligence 
will prove upon analysis to be a physical symbol system. By "sufficient" we 
mean that any physical symbol system of sufficient size can be organized 
further to exhibit general intelligence. (Newell and Simon, 1981, p. 41) 

Hence, with respect to the question of the autonomy of syntax from 
semantics, some cognitive scientists have emphasized the continuity 
between computers and formal logical systems, whereas others (such 
as Newell and Simon) have viewed computers as enabling advances 
beyond formal systems. A similar difference in perspective arises 
with respect to what work the computer is regarded as carrying out. 
From a continuity perspective, computers are powerful devices for 
implementing logical operations; one can write programs that will serve 
the same function as inference rules in a logical system. From an 
alternative perspective (Simon, 19671, it took work in artificial intel- 
ligence to show us that heuristics (procedures that might obtain the 
desired result, often by means of an intelligent shortcut such as pruning 
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unpromising search paths) are often more useful than algorithms 
('rocedures that are guaranteed to succeed in a finite number of steps 
but may be inefficient in a large system). 

Hence, work in artificial intelligence is rooted in formal logic, but has 
achieved distinctive perspectives by pursuing the idea that computers 
are devices for symbol manipulation more generally. A1 programs have 
replaced formal logic as the closest external approximation to human 
cognition; programs exist, for example, not only for proving logical 
theorems or performing logical inference, but also for playing chess at a 
master's level and diagnosing diseases. The (partial) success of these 
programs has suggested to many researchers that human cognitive 
performance also consists in symbol manipulation; indeed, this analogy 
provided, until recently, a locus of unity among cognitive scientists. 

Yet another root of the symbolic approach is found in Noam 
Chomsky's program in linguistics. In his review of B. F. Skinner's Ver- 
bal Behavior, Chomsky (1959) argued that a behavioristic account was 
inadequate to account for the ability of humans to learn and use 
languages. Part of his argument focused on the "creativity" of lan- 
guage; Chomsky contended that any natural language has an infinite 
number of syntactically well-formed sentences, and that its speakers 
can understand and produce sentences that they had not previously 
encountered (Chomsky, 1957, 1968). This ability did not seem explic- 
able in terms of learned associations between environmental stimuli 
and linguistic responses, even if these were augmented by such pro- 
cesses as generalization and analogy. In Chomsky's view, Skinner had 
not succeeded in adapting the constructs of behaviorism to the precise 
requirements of a linguistic account, and a quite different approach was 
needed. 

In particular, Chomsky developed the notion of generative grammar 
as an approach to linguistic theory: to write a grammar was to specify 
an automaton that could generate infinite sets of sentences (this was 
easily assured by including at least one recursive rule). T o  evaluate 
such a grammar, the linguist must determine whether it generates all 
of the well-formed sentences of the target language, and only those 
sentences. Chomsky described and evaluated several different classes of 
generative grammars with respect to natural languages. Of particular 
importance, he argued that finite state grammars (those most consistent 
with a behaviorist account), were too weak even when they included 
recursive rules. They could generate an infinite set of sentences, but not 
the correct set. Specifically, they were unable to handle dependencies 
across indefinitely long strings (e.g., the dependency between if and then 
in sentences of the form "if A ,  then B" where A is indefinitely long). 

T o  handle such dependencies, at least a phrase structure grammar (and 
preferably a transformational grammar) was required. These grammars 
produce constituent structures by applying a succession of rewrite rules 
(rules which expand one symbol into a string of subordinate symbols); 
indefinitely long constituents can be embedded within a phrase struc- 
ture tree without affecting the surrounding dependencies. Transfor- 
mational rules (rules that modify one phrase structure tree to obtain a 
related, or transformed, tree) provide additional power, but the most 
important and enduring part of Chomsky's argument is the rejection of 
finite state grammars. 

Chomsky viewed generative grammar as a model of linguistic com- 
petencc, that is, a model of the knowledge of their language that 
speakers actually possess in their minds. Although he pioneered the use 
of (abstract) automata for specifying grammars, he did not intend to 
model linguistic performance (the expression of competence in specific, 
real-time acts such as the production and comprehension of utter- 
ances), nor did he implement his grammars on physical computers. 
Hence, his version of cognitivism is somewhat more abstract than that 
of information-processing psychology. Nevertheless, many psycho- 
logists were influenced by Chomsky as they moved from behaviorism to 
information processing, because his grammars suggested ways to model 
human knowledge using linguistic-style rules (that is, formally speci- 
fied operations on strings of symbols). 

Although Chomsky focused on linguistic competence, he did make 
some general, controversial claims about linguistic performance. One of 
these claims, that a process of hypothesis testing is involved in language 
acquisition, bore implications that were fruitfully developed by Jerry 
Fodor (1975). Before we can test a hypothesis, such as that the word 
dog refers to dogs, we must be able to state it. Fodor reasoned that this 
requires a language-like medium, which he called the language of 
thought. Further, since there is no way for a child to learn this language, 
it must be innate. Thus, Fodor contended that procedures for formal 
symbol manipulation must be part of our native cognitive apparatus. 
Fodor's argument represents a minority position within psychology, 
but virtually all researchers in the majority tradition of information 
processing assume some weaker version of a symbolic approach to 
cogniton. 

We have briefly reviewed two strands of the symbolic approach: a 
strand leading from formal logic to artificial intelligence, in which 
computers came to be viewed as symbol manipulation devices, and a 
strand leading from linguistics to psychology, in which human cog- 
nition came to be viewed likewise as consisting in symbol manipulation. 
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In cognitive science, these two strands are often brought together in a 
cooperative enterprise: the design of computer programs to serve as 
models or simulations of human cognition. This raises a number of 
interesting issues that we can only briefly mention here (a number of 
penetrating discussions are available, e.g., Haugeland, 1985). Does a 
successful computer simulation closely approximate mental symbol 
processing at some appropriate level of abstraction, so that both the 
human and the computer are properly construed as symbol processors? 
Or should true symbol manipulation be attributed to only one of the 
two types of system; and if so, to the human or the computer? On one 
view, the human is the true symbol manipulator (because, for example, 
the human's symbols have causal relations to external referents), and 
the computer is merely a large calculator or scratchpad that can facili- 
tate the process of deriving predictions from models of human perform- 
ance (similar to the meteorologist's use of computers to calculate 
equations that describe the fluid dynamics of the atmosphere, for 
example). A contrasting view holds that the computer is the true sym- 
bol manipulator, and that human cognition is carried out quite 
differently (in less brittle fashion, as might be modeled in a network, for 
example). These issues, which have been troublesome for some time, 
have gained increased salience with the re-emergence of network 
models in the 1980s. We turn now to a brief history of networks as an 
alternative to the symbolic tradition. 

The Disappearance and Re-emergence of Network Models 

By the 1960s substantial progress had been made with both network 
and symbolic approaches to machine intelligence. But this parity was 
soon lost. Seymour Papert has provided a whimsical account: 

Once upon a time two daughter sciences were born to the new science of cyber- 
netics. One sister was natural, with features inherited from the study of the 
brain, from the way nature does things. The other was artificial, related from 
the beginning to the use of computers. Each of the sister sciences tried to build 
models of intelligence, but from very different materials. The natural sister 
built models (called neural networks) out of mathematically purified neurones. 
The artificial sister built her models out of computer programs. 

In their first bloom of youth the two were equally successful and equally pur- 
sued by suitors from other fields of knowledge. They got on very well together. 
Their relationship changed in the early sixties when a new monarch appeared, 
one with the largest coffers ever seen in the kingdom of the sciences: Lord 
DARPA, the Defense Department's Advanced Research Projects Agency. The 
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artificial sister grew jealous and was determined to keep for herself the access to 
Lord DARPA's research funds. The natural sister would have to be slain. 

The bloody work was attempted by two staunch followers of the artificial sis- 
ter, Marvin Minsky and Seymour Papert, cast in the role of the huntsman sent 
to slay Snow White and bring back her heart as proof of the deed. Their 
weapon was not the dagger but the mightier pen, from which came a book - 
Perceptrons . . . (1988, p. 3) 

Clearly the publication of Perceptrons in 1969 represented a watershed. 
Research on network models, such as perceptrons and pandemonium, 
no longer progressed apace with work on symbolic models. Some 
researchers did continue to pursue and develop network models and in 
fact established some important principles governing network systems 
(see J.  A. Anderson, 1972; Kohonen, 1972; Grossberg, 1976). Their 
work, however, attracted only limited attention and funding. What is 
less clear is whether Minsky and Papert's book precipitated the demise, 
or whether it was only a symptom. 

Minsky and Papert's objective in Perceptrons was to study both the 
potential and limitations of network models. They used the tool of 
mathematics to analyze what kinds of computation could or could not 
be performed with a two-layer perceptron. The  centerpiece of their 
criticism was their demonstration that there are functions, such as 
determining whether a figure is connected or whether the number of ac- 
tive units is odd or even, which cannot be evaluated by such a network. 
An example is the logical operation of exclusive or (XOR). The  state- 
ment A XOR B is defined as true if A is true and B is not, or B is true 
and A is not. In order for a network to compute XOR, it is necessary to 
include an additional layer of units (now referred to as hidden units) be- 
tween the input units and output units (see chapter 3) .  While Minsky 
and Papert recognized that XOR could be computed by such a multi- 
layered network, they raised an additional problem: there were no 
training procedures for multi-layered networks that could be shown to 
converge on a solution. As we shall discuss in chapter 3 ,  an adaption of 
Rosenblatt's training procedure for two-layer networks has now been 
developed for multi-layered networks. But Minsky and Papert raised 
further doubts about the usefulness of network models. Even if the 
problem were overcome, would it be possible to increase the size of 
networks to handle larger problems? In more technical terms, this is a 
question as to whether networks will scale well. Minsky and Papert 
offered the intuitive judgement that research on multi-layered networks 
would be "sterile." 

The inability of networks to solve particular problems was, for many 
investigators, only symptomatic of a more general problem. For them, 
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the fundamental problem was that the only kind of cognitive processes 
of which networks seemed capable were those involving associations. 
Within limits, a network could be trained to produce a desired output 
from a given input, but that merely meant that it had developed 
procedures for associating that input with the desired output. Associa- 
tionism was exactly what many of the founders of modem cognitivism 
were crusading against. Chomsky contended, for example, that finite 
automata or simple associationistic mechanisms were inadequate to 
generate all the well-formed sentences of the language. One needed a 
more powerful automaton capable of performing recursive operations. 
The  identification of network models with associationism thus under- 
cut their credibility and supported the pursuit of symbolic programs as 
the major research strategy in cognitive science. As we shall see in 
chapter 7, many advocates of the symbolic tradition continue to fault 
modern connectionism on precisely this ground. 

In the early 1980s the type of network research pioneered by 
Rosenblatt began once again to attract attention. Papers that employed 
networks to model various cognitive performances began to appear in 
cognitive journals. Geoffrey Hinton and James A. Anderson's (1981) 
Parallel Models of Associative Memory offered an accessible presen- 
tation of the re-emerging network research. At the 1984 meeting of 
the Cognitive Science Society, two symposia presented the network 
approach and debated its role in cognitive science. One, entitled 
"Connectionism versus Rules: The  Nature of Theory on Cognitive Sci- 
ence," featured David Rumelhart and Geoffrey Hinton advocating 
network modeling (connectionism) and Zenon Pylyshyn and Kurt 
VanLehn arguing that networks were inadequate devices for achieving 
cognitive performance. Debate at that session and others during the 
conference occasionally became acrimonious as the connectionists be- 
gan to press their alternative and challenged the supremacy of the sym- 
bolic approach. 

Connectionist research has increased dramatically in the 1980s. 
While opposition continues, a growing number of cognitive scientists 
have either "converted" to connectionism or have added connectionist 
modeling techniques to their repertoire as tools they will employ for at 
least some purposes. An intriguing question is why connectionism 
should have re-emerged so strongly in the 1980s. While we do not offer 
a comprehensive answer to this question, there are a number of factors 
that seem relevant. 

First, powerful new approaches to network modeling were devel- 
oped, including new architectures, new techniques for training multi- 
layered networks, and advances in the mathematical description of the 

behavior of nonlinear systems. Many of these innovations can be di- 
rectly applied to the task of modeling cognitive processes. Second, the 
credibility of some of the researchers attracted to network research has 
played a role. For example, in chapters 2 and 3 we discuss an important 
mathematical insight into network behavior that was proposed by John 
Hopfield, a distinguished physicist. Anderson and Rosenfeld comment: 

John Hopfield is a distinguished physicist. When he talks, people listen. 
Theory in his hands becomes respectable. Neural networks became instantly 
legitimate, whereas before, most developments in networks had been in the 
province of somewhat suspect psychologists and neurobiologists, or by those 
removed from the hot centers of scientific activity. (1988, p. 457) 

Third, cognitive science had remained, either intentionally or unin- 
tentionally, rather isolated from neuroscience through the 1970s. In 
large part this was because there was no clear framework to suggest 
how work in the neurosciences might bear on cognitive models. But by 
the 1980s cognitive scientists' interest in the neurosciences had in- 
creased, and network models were attractive because they provided a 
neural-like architecture for cognitive modeling. Fourth, the interest in 
neuroscience was one reflection of a more general interest in finding a 
fundamental explanation for the character of cognition. Rule systems, as 
they became more adequate, also became more complex, diverse, and 
ad hoc. The  desire for parsimony, which earlier had characterized beha- 
viorism, re-emerged. Fifth, a number of investigators began to confront 
the limitations of symbolic models. While initially the task of writing 
rule systems capable of accounting for human behavior seemed trac- 
table, intense pursuit of the endeavor raised doubts. Rule systems were 
hampered by their "brittleness," inflexibility, difficulty, learning from 
experience, inadequate generalization, domain specificity, and ineffi- 
ciencies due to serial search through large systems. Human cognition, 
which the rule systems were supposed to be modeling, seemed to be 
relatively free of such limitations. 

These and other factors operated together to make networks models 
attractive to some cognitive scientists, beginning with a few pioneers in 
the early 1980s and reaching substantial proportions by the end of 
the decade. During the same period, however, other cognitive scient- 
ists were also concerned about the limitations of traditional symbolic 
models; no one who models performance wants a brittle system, for 
example. These investigators focused only on the fifth factor above, 
rather than all five factors, and adopted the conservative strategy of 
modifying the existing approach rather than initiating a new, relatively 
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untried approach. Hence, if the symbolic approach is a target of criti- 
cism on the part of network modelers, it is a moving target and there- 
fore harder to hit. 

Most of the modifications incorporated in the most recent symbolic 
models have narrowed the gap between symbolic and network models. 
(It could even be argued that the real revolution is the development of a 
variety of ways to overcome the limitations of earlier models, including 
but not limited to connectionist modeling.) First, a large number of 
rules at a fine grain of analysis (microrules) can capture more of the 
subtleties of behavior than a smaller number of rules at a larger grain of 
analysis. Second, rule selection, and perhaps rule application as well, 
can be made to operate in parallel. Third, the ability to satisfy soft 
constraints can be gained by adding a strength parameter to each rule 
and incorporating procedures that use those values in selecting rules. 
Fourth, resilience to damage can be gained by building redundancy 
into the rule system (e.g., making multiple copies of each rule). Fifth, 
increased attention can be given to learning algorithms (such as the 
genetic algorithm), knowlege compilation and "chunking" of rules into 
larger units, and ways of applying old knowledge to new problems 
(such as analogy). 

The most comprehensive and successful nontraditional rule systems, 
such as J .  R. Anderson's (1983) ACT* and Newell's (1988) SOAR, in- 
corporate some of these design features (and Anderson makes explicit 
use of networks in addition to rules). Some differences with networks 
remain, but their importance and consequences are not as obvious as 
those involving traditional symbolic models. One of the remaining 
differences is that nontraditional symbolic models retain the use of 
ordered symbol strings whereas connectionist networks have no intrin- 
sic ordering of their elements. In the most common architecture, the 
production system, these strings are rules of the form "If A, then B" 
where A is a Boolean combination of conditions, and B is a set of 
actions to be carried out when the conditions are met. Another 
difference is that sequenced operations and nonlocal control are in- 
herent capabilities of symbolic models but not of networks. There 
presently is no adequate research base for determining what differences 
in empirical adequacy might result from these differences, but the 
differences are likely to be small enough that empirical adequacy will 
not be the primary determinant of the fate of symbolic versus 
connectionist models. Within either tradition, if a particular inad- 
equacy is found, design innovations that find some way around the fail- 
ure are likely to be forthcoming. Personal taste, general assumptions 
about cognition, the sociology of science, and a variety of other factors 

can be expected to govern the individual choices that together will de- 
termine what approaches to cognitive modeling will gain dominance. 

Given this state of affairs, in this book we shall draw our primary 
contrasts between traditional symbolic models and connectionist mo- 
dels. In this way we can convey, to some extent, why connectionists de- 
cided to abandon the traditional symbolic approach as a medium for 
modeling. In chapter 8 we shall present an argument that there are im- 
portant tasks, other than modeling the cognitive mechanism, for which 
traditional symbolic theories are the theories of choice. In our view, 
connectionist and traditional symbolic inquiries should be carried out 
as distinctive enterprises, each of which can make contributions to the 
other; the availability of both approaches can strengthen cognitive sci- 
ence by providing multiple perspectives. The key to successful cooper- 
ation is that each approach be used for the tasks most suitable to it, 
rather than fighting for the same turf. For example, linguistic theories 
will always have a distinctive role to play, and presumably will remain 
symbolic. These theories efficiently describe the domain in which a 
connectionist (or other mechanistic model) must perform. 

Within this framework, nontraditional symbolic theories do not have 
the same role to play as traditional ones: they are indeed fighting for the 
same turf as connectionism (that is, fine-grained modeling of the 
workings of the cognitive mechanism). However, the degree of polari- 
zation is not as great as it may seem, and the future could bring 
a pluralistic approach to mechanistic modeling within which connec- 
tionist themes and techniques are more distributed than is currently the 
case. Recent history provides some support for this scenario. Connec- 
tionist networks, in their incarnation as cognitive models, have origins 
in the symbolic tradition of the 1970s as well as in the neural network 
tradition. Schema theory and story grammars (Rumelhart, 1975), 
probabilistic feature models (Smith and Medin, 1981), prototype the- 
ory (Rosch, 1975), and scripts (Schank and Abelson, 1977) all emerged 
from the symbolic tradition but do not fully reside in either the sym- 
bolic or connectionist camp. All can be given a connectionist im- 
plementation, and these arguably are superior implementations. For 
example, schemata should be flexible and easy to modify, but this is 
much harder to achieve in a symbolic than in a connectionist im- 
plementation (Rumelhart, Smolensky, McClelland, and Hinton, 1986, 
in PDP:14). Furthermore, semantic networks with spreading activation 
(J. R. Anderson, 1983) are hybrid models that place symbols in net- 
work structures that dynamically change their activations; they can be 
regarded as a predecessor of connectionist models of cognition. 

We shall point out where nontraditional and hybrid models are 
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relevant at various points in the discussion. There is such a variety 
of models, however, that we cannot provide a full treatment or make 
detailed comparisons within a book of this scope. Also, although we are 
favorably inclined to connectionist models, we decline to predict the 
outcome of the competition between connectionist and nontraditional 
symbolic models. The degree to which accommodation will be found, 
as in hybrid models or pluralism, simply is not known at this time. It is 
clear, however, that the cognitive science of the year 2000 will be a 
quite different cognitive science than would have emerged in the ab- 
sence of the new connectionism. 

Connectionist Architectures 

Connectionist networks are intricate systems of simple units which 
dynamically adapt to their environments. Some have thousands of 
units, but even those with only a few units can behave with surprising 
complexity and subtlety. This is because processing is occurring in par- 
allel and interactively, in marked contrast with the serial processing to 
which we are accustomed. To  appreciate the character of these net- 
works it is necessary to observe them in operation. Thus, in the first 
section of this chapter we shall describe a simple network that illu- 
strates several features of connectionist processing. In the second sec- 
tion we shall examine in some detail the various design principles that 
are employed in developing networks. In the final section we shall dis- 
cuss several appealing properties of networks that have rekindled 
interest in using them for cognitive modeling: their neural plaus- 
ibility, satisfaction of "soft constraints," graceful degradation, content- 
addressable memory, and capacity to learn from experience. Connec- 
tionists maintain that the investment in a new architecture is amply 
rewarded by these gains, 

The Flavor of Connectionist Processing: 
A Simulation of Memory Retrieval 

We shall begin by describing a connectionist model which was designed 
by McClelland (1981) in order to illustrate how a network can function 
as a content-addressable memory system. Its architecture is atypical in 
some respects, but it conveys the flavor of connectionist processing 
in an intuitive manner. The information to be encoded concerns the 
members of two hypothetical gangs, the Jets and the Sharks, and some 
of their demographic characteristics (figure 2.1). Figure 2.2 shows how 
this information is represented in a network, focusing on just five of the 




