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Networks versus Symbol Systems:
Two Approaches to Modeling
Cognition

A Revolution in the Making?

The rise of cognitivism in psychology, which, by the 1970s, had suc-
cessfully established itself as a successor to behaviorism, has been
characterized as a Kuhnian revolution (Baars, 1986). Using Kuhn’s
(1962/1970) term, the emerging cognitivism offered its own paradigm,
that is, its way of construing psychological phenomena and its research
strategies, both of which clearly distinguished it from behaviorism (for
overviews, see Neisser, 1967; Lindsay and Norman, 1972). This change
was part of a broader cognitive revolution that not only transformed
a number of disciplines such as cognitive and developmental psycho-
logy, artificial intelligence, linguistics, and parts of anthropology, philo-
sophy, and neuroscience; it also led to an active cross-disciplinary
research cluster known as cognitive science. As the cognitive paradigm
developed, the idea that cognition involved the manipulation of
symbols became increasingly central. These symbols could refer to ex-
ternal phenomena and so have a semantics. They were enduring entities
which could be stored in and retrieved from memory and transformed
according to rules. The rtules that specified how symbols could be
composed (syntax) and how they could be transformed were taken to
govern cognitive performance. Given the centrality of symbols in this
approach, we shall refer to it as the symbolic paradigm.

In the 1980s, however, an alternative framework for understanding
cognition has emerged in cognitive science, and a case can be made that
it is a new Kuhnian (Schneider, 1987). (We shall be using the term cog-
nition very broadly to cover a range of mental processing, including not
just activities involving reasoning and memory, but also language, per-
ception, and motor control.) This new class of models are variously
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2 Networks versus Symbol Systems

known as connectionist, parallel distributed processing (PDP), or neural
network models. The “bible” of the connectionist enterprise, Rumel-
hart and McClelland’s two volumes entitled Parallel Distributed Pro-
cessing (1986), sold out its first printing prior to publication and sold
30,000 copies in its first year. Clearly connectionism has become the
focus of a great deal of attention.

Connectionism can be distinguished from the traditional symbolic
paradigm by the fact that it does not construe cognition as involving
symbol manipulation. It offers a radically different conception of the
basic processing system of the mind-brain. This conception is in-
spired by our knowledge of the nervous system. The basic idea is that
there is a network of elementary units or nodes, each of which has some
degree of activation. These units are connected to each other so that act-
ive units excite or inhibit other units. The network is a dynamical sys-
tem which, once supplied with initial input, spreads excitations and
inhibitions among its units. In some types of network, this process does
not stop until a stable state is achieved. To understand a connectionist
system as performing a cognitive task, it is necessary to supply an
interpretation. This is typically done by viewing the initial activations
supplied to the system as specifying a problem, and the stable config-
uration produced at the end of processing as the system’s solution
to the problem.

Both connectionist and symbolic systems can be viewed as computa-
tional systems. But they advance quite different conceptions of what
computation involves. In the symbolic approach, computation involves
the transformation of symbols according to rules. This is the way we
teach computation in arithmetic: we teach rules for performing
operations specified by particular symbols (e.g., +, ) on other sym-
bols which refer to numbers. When we treat a traditional computer as a
symbolic device, we view it as performing symbolic manipulations
specified by rules which typically are written in a special data-structure
called the program. The connectionist view of computation is quite dif-
ferent. It focuses on causal processes by which units excite and inhibit
each other and does not provide either for stored symbols or rules that
govern their manipulations.

While connectionism has achieved widespread attention only in the
1980s, it is not a newcomer. Network models, which were predecessors
of contemporary connectionist models, were developed and widely dis-
cussed during the early years of the cognitive revolution in the 1960s.
The establishment of the symbolic paradigm as virtually synonymous
with cognitive science only occurred at the end of the 1960s, when the
symbolic approach promised great success in accounting for cognition
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and the predecessors of connectionism seemed inadequate to the task. A
brief recounting of this early history of network models will provide an
introduction to the connectionist approach and to the difficulties which
it is thought to encounter. The issues that figured in this early contro-
versy still loom large in contemporary discussions of connectionism and
will be discussed extensively in subseguent chapters. (For additional
detail see Cowan and Sharp (1988) from which we have largely drawn
our historical account, and Anderson and Rosenfeld (1988) which
gathers together many of the seminal papers and offers illuminating
commentary.)

Forerunners of Connectionism: Pandemonium and Perceptrons

The initial impetus for developing network models of cognitive per-
formance was the recognition that the brain is a network. Obviously,
given the complexity of the brain and the limited knowledge available
then or now of actual brain functioning, the goal was not to model brain
activity in complete detail. Rather, the goal was to model cognitive
phenomena in systems that exhibited some of the same basic properties
as the network of neurons in the brain. The foundation was laid by
Warren McCulloch and Walter Pitts in a paper published in 1943.
They proposed a simple model of neuron-like computational units and
then demonstrated how these units could perform logical compu-
tations. Their “formal neurons’ were binary units (i.e., they could
either be on or off ). Each unit would receive excitatory and inhibitory
inputs from certain other units. If a unit received just one inhibitory
input, it was forced into the off position. If there were no inhibitory
inputs, the unit would turn on if the sum of the excitatory inputs
exceeded its threshold. McCulloch and Pitts showed how configu-
rations of these units could perform the logical operations of AND,
OR, and NOT. McCulloch and Pitts further demonstrated that any
process that could be performed with a finite number of these logical
operations could be performed by a network of such units, and that, if
provided with indefinitely large memory capacity, such networks would
have the same power as a Universal Turing machine.

The idea captured by Pitts—McCulloch “‘neurons’” was elaborated in
a variety of research endeavors in succeeding decades. John von Neu-
mann (1956) showed how such networks could be made more reliable
by significantly increasing the number of inputs to each particular unit
and determining each unit’s activation from the statistical pattern of
activations over its input units (e.g., by having a unit turn on if more
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than half of its inputs were active). In von Neumann’s networks each
individual unit could be unreliable without sacrificing the reliability of
the overall system. Building such redundancy into a network seems to
require vastly increasing the number or units, but Winograd and
Cowan (1963) developed a procedure whereby a given unit would con-
tribute to the activation decision of several units as well as being
affected by several units. This constitutes an early version of what is
now referred to as “‘distributed representation’ (see chaper 2).

In addition to formal characterizations of the behavior of these
networks, research was also directed to the potential applications of
these networks for performing cognitive functions. McCulloch and
Pitts’ first paper was devoted to determining the logical power of net-
works, but a subsequent paper (Pitts and McCulloch, 1947) explored
how a network could perform pattern-recognition tasks. They were in-
trigued by the ability of animals and humans to recognize different
versions of the same entity even though they might appear quite diff-
erent. They construed this task as requiring multiple transformations
of the input image until a canonical representation was produced, and
they proposed two networks that could perform some of the required
transformations. Each network received as input a pattern of activation
on some of its units, The first network was designed to identify in-
variant properties of a pattern (properties possessed by a pattern no
matter how it was presented), while the second transformed a variant
into a standard representation. Because their inspiration came from
knowledge of the brain, they presented evidence that the first type of
network captured properties of the auditory and visual cortex, while the
second captured properties of the superior colliculus in controlling eye
movements.

Frank Rosenblatt was one of the major researchers to pursue the
problem of pattern recognition in networks. Like Pitts and McCulloch,
he worked principally with binary units in layered networks, that is,
networks in which one set of units receives inputs from outside and
sends excitations and inhibitions to another set of units, which may
then send inputs to vet a third group. He also explored networks in
which later layers of units might send excitations or inhibitions back
to earlier layers. Rosenblatt referred to such systems as perceptrons
(see figure 1.1). He supplemented McCulloch and Pitts’ networks by
making the strengths (commonly referred to as the weights) of the
connections between units continuous rather than binary, and by
introducing procedures for changing these weights, enabling the net-
works to be trained to change their responses. For networks with two
layers and connections running only from units in the first layer to
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Figure 1.1 An elementary perceptron, as investigated by Rosenblatt (1958). Inputs

are supplied on the four sensory units on the left and outputs are produced on the two
motor units at the bottom. The horizontal and vertical lines represent connections; the
diamonds at their intersections represent synapses whose weights can be modified if
incorrect outputs are generated. From J. D. Cowan and D. H. Sharp (1988) Neural nets
and artificial intelligence, Daedalus, 117, p. 90, Reprinted with permission.

those in the second, Rosenblatt’s procedure was to have the network
generate, using existing weights, an output for a given input pattern.
The weights on connections feeding into any unit that gave what was
judged to be an incorrect response were changed (those feeding into
units giving the correct response were left unaltered). If the unit was oft
when it should have been on, an increase was made to all weights on
connections that had carried any activation to it (i.e., came from units
that had been active). Conversely, if the unit was on when it should
have been off, these weights were reduced. Rosenblatt demonstrated
the important Perceptron Convergence Theorem with respect to this
training procedure. The theorem holds that if a set of weights existed
that would produce the correct responses to a set of patterns, then
through a finite number of repetitions of this training procedure the
network would in fact learn to respond correctly (Rosenblatt, 1961; see

also Block, 1962).
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Rosenblatt emphasized how the perceptron differed from a symbolic
processing system. Like von Neumann, he focused on statistical pat-
terns over multiple units (e.g., the proportion of units activated by an
input), and viewed noise and variation as essential. He contended that
by building a system on statistical rather than logical (Boolean) prin-
ciples, he had achieved a new type of information processing system:

It seemns clear that the class C’ perceptron introduces a new kind of information
processing automaton: For the first time, we have a machine which is capable of
having original ideas. As an analogue of the biological brain, the perceptron,
more precisely, the theory of statistical separability, seems to come closer to
meeting the requirements of a functional explanation of the nervous system
than any system previously proposed. ... As a concept, it would seem that the
perceptron has established, beyond doubt, the feasibility and principle of non-
human systems which may embody human cognitive functions at a level far be-
yond that which can be achieved through present day automatons. The future
of information processing devices which operate on statistical, rather than logi-
cal principles seems to be clearly indicated. (Rosenblatt, 1958, p. 449, quoted in
Rumelhart and Zipser, 1986, in PDP:5, pp. 56-7)

Oliver Selfridge (1959) was another of the early investigators of the
pattern recognition capabilities of network models. Unlike Rosenblatt,
he assigned a particular interpretation to each of the units in his net-
work. One of the pattern-recognition tasks he explored was recognition
of letters, a task that is made difficult by the fact that different people
write their letters differently. He called his model pandemonium, captur-
ing the fact that his model was composed of cognitive demons that per-
formed computations in parallel without attention to one another, and
each ‘“‘shouted out” its judgement of what letter had been presented
(see figure 1.2). These cognitive demons each specialized in gathering
evidence for one particular letter; the greater the evidence the louder
they shouted. The decision demon then made the identification of the
letter on the basis of which unit shouted the loudest. The evidence
gathered by each cognitive demon was supplied by a lower layer of fea-
ture demons. Each feature demon responded if its feature (e.g., a hori-
zontal bar) was present in the image. The feature demon was connected
to just those cognitive demons whose letters contained its feature.
Thus, a cognitive demon would respond most loudly if all of its
features were present in the image, and less loudly if some but not all of
its features were present. One of the virtues of this type of network is
that it would still make a correct or plausible judgement about a letter
even if some of its features were missing or atypical (see Selfridge,
1959; Selfridge and Neisser, 1960).
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Cognitive demons
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Figure 1.2 Selfridge’s pandemonium model. The demons at each level beyond the image
demon (which merely records the incoming image) extract information from the demons
at the preceding level. Thus, a given feature demon responds positively when it detects
evidence of its feature in the image, and a cognitive demon responds to the degree that
the appropriate feature demons for its letter are active. Finally, the decision demon
selects the letter whose cognitive demon is most active. From P. Lindsay and D. A.
Norman (1972) Human Information Processing, San Francisco: Freeman, p. 116.
Reprinted with permission.

Early researchers recognized that, in addition to modeling pattern
recognition, networks might be useful as models of how memories were
established. In particular, researchers were attracted to the problem of
how networks might store associations between different patterns. An
extremely influential proposal was developed by Donald Hebb (1949),
who suggested that when two neurons in the brain were jointly active,
the strength of the connection might be increased. This idea was
further developed by Wilfrid Taylor (1956), who explored networks
of analog units that took activations within a continuous range (e.g., —1
to +1). In the network he proposed, a single set of motor units was
connected to two different sets of sensory units (which we shall call the
base units and the learning units). The network was set up such that
each pattern on the base units was associated with a pattern on the
motor units. A different set of patterns was defined for the learning
units. No associations to the motor units were specified, but each learn-
ing unit pattern was assigned an association with one base unit pattern.
When the network was run, the associated sensory patterns were
activated at the same time. The eventual outcome was that the learning
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8 Networks versus Symbol Systems

units acquired the ability to generate the same motor patterns as the
base units with which they were associated.

Another researcher who pursued this type of associative memory net-
work was David Marr (1969), who proposed that the cerebellum is such
a network which can be trained by the cerebrum to control voluntary
movements. The cerebellum consists of five different kinds of cell or
unit, with the modihable connections lying between the granule cells
and Purkinje cells. The other cell types serve to set the firing thresholds
on these two cell types. The development of connections between the
granule cells and Purkinje cells, he proposed, underlay the learning of
sequences of voluntary movements in activities like playing the piano.
Marr subsequently proposed similar models for the operation of the
hippocampus (Marr, 1971) and the neocortex (Marr, 1970).

The early history of network models we have summarized in this sec-
tion indicates that there was an active research program devoted to ex-
ploring the cognitive significance of such networks. It is important to
emphasize that while some of this research was explicitly directed at
modeling the brain, for Rosenblatt and some other researchers the goal
was to understand cognitive performance more generally. The relative
prominence of research devoted to network models diminished in the
late 1960s and early 1970s, as the alternative approach of symbolic
modeling became dominant. (Semantic networks, hybrid models that
place symbols in network structures, also arose and thrived in the
1970s; as discussed in chapter 4.) In the next two sections we shall
examine what made the symbolic approach so attractive to cognitive
researchers, and how network research (in the original tradition pion-
eered by Rosenblatt) declined until rejuvenated in the 1980s. Finally,
we shall sketch the relation between the network and symbolic models

of the 1980s.

The Allure of Symbol Manipulation

The symbol manipulation view of cognition has several roots. One of
these lies in philosophy, in the study of logic. A logical system consists
of procedures for manipulating symbols. In propositional logic the
symbols are taken to represent propositions or sentences and con-
nectives such as AND and OR. Generally, there is a clear goal in such
manipulation. For example, in deductive logic we seek a set of rules that
will enable us to generate only true propositions as long as we start with
true propositions. A system of such rules is spoken of as truth pre-
serving. The simple inference rule modus ponens is an example of a
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truth-preserving rule. From one proposition of the form “If p, then ¢”’
and another of the form “p,” we can infer a proposition of the form “¢”
(where p and g are placeholders for specific propositions).

We have actually adopted two perspectives in the previous para-
graph, and it is the relation between them that makes logic, and systems
designed to implement logic, so powerful. From one perspective, we
treat the symbols for propositions as representational devices. For
example, we conceive of a proposition as depicting a state of affairs that
might or might not hold in the world. From this perspective, we speak
of a proposition as either true (if the proposition corresponds to the way
the world is) or false (if it does not correspond). This perspective is gen-
erally known in logic as a model theoretic perspective. We think of a
model as a set of entities and identify those propositions as true whose
ascriptions correspond to the properties that the entities in the model
actually possess. Within this framework we can evaluate whether a pat-
tern of inference is such that for any model in which the premises are
true, the conclusion will also be true. The second perspective, known as
the proof theoretic perspective, focuses not on the relations between the
propositions and the objects they represent, but simply on the relations
among the propositions themselves, construed as formal entities. When
we specify inference rules in a logical system, we focus only on the syn-
tax of the symbols and disregard what they refer to. What gives logic its
power is, in part, the possibility of integrating these two perspectives,
of designing proof procedures that are complete, that is, that will enable
us to derive any proposition that will be true in all models in which the
premises are true,

The relation between proof theory and model theory gives rise to a
very powerful idea. If intelligence depended only upon logical reason-
ing, for which the goal was truth preservation, then it would be possible
to set up formal proof procedures, which will achieve intelligent per-
formance. However, intelligence does not depend solely on being able
to make truth-preserving inferences. Sometimes we need to make
judgements as to what is likely to be true. This is the domain of induc-
tive logic. The goal of inductive logic is to establish formal rules, anal-
ogous to the proof theoretic procedures of deductive logic, that lead
from propositions that are true to those that are likely to be true. If
such rules can be identified, then we may still be able to set up formal
inference procedures that produce intelligent performance.

The crucial assumption in both deductive and inductive logic is that
in order to process a symbol, we only need to consider its formal prop-
erties, We can disregard its representational function, that is, whether it
is true or not, and if true, what state of affairs it describes. Thus, with a
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formal system, it is often possible to reinterpret the symbols that are
used (i.e., assign them a new representational role) without affecting
how the symbol processing system itself operates.

The idea that intelligent cognitive processes are essentially processes
of logical reasoning has a long history, captured in the long-held view
that the rules of logic constitute rules of thought. It is found in authors
such as Hobbes, who treated reasoning as itself comparable to math-
ematical computation and suggested that thinking was simply a process
of formal computation:

When a man reasoneth, he does nothing else but conceive a sum total, from ad-
dition of parcels; or conceive a remainder, from subtraction of one sum from
another; which, if it be done by words, is conceiving of the consequence of the
names of all the parts, to the name of the whole; or from the names of the whole
and one part, to the name of the other part. ... These operations are not inci-
dent to numbers only, but to all manner of things that can be added together,
and taken from one out of another. For as arithmeticians teach to add and sub-
tract in numbers; s0 the geometricians teach the same in lines, figures, solid and
superficial, angles, proportions, times, degrees of swiftness, force, power, and the
like; the logicians teach the same in consequences of words; adding together two
names to make an affirmation, and two affirmations to make a syllogism; and
many syllogisms to make a demonstration; and from the sum or conclusion of a syl
logism, they subtract one proposition to find the other. (Hobbes [1651], 1962,
p. 41)

The idea of thinking as logical manipulation of symbols was further de-
veloped in the works of rationalists such as Descartes and Leibniz
and empiricists such Locke and Hume, all of whom conceived of the
symbols as 1deas, and formulated rules for properly putting together or
taking apart ideas.

With the development of automata theory and physical computers in
the mid-twentieth century, there was a burgeoning of more subtle and
varied views of symbols and symbol manipulation. From one perspec-
tive (well characterized in Haugeland, 1981), the digital computer is
simply a device for implementing formal logical systems. Symbols are
stored in memory registers (these symbols may simply be sequences of
1’s and 0’s, implemented by on and off settings of switches). The basic
operations of the computer allow recalling the symbols from memory
and executing changes in the symbols according to rules. In the earliest
computers, the rules for transforming symbols had to be specially wired
into the machine, but one of the major breakthroughs in early computer
science was the development of the stored program. The stored pro-
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gram is simply a sequence of symbols that directly determines what
operations the computer will perform on other symbols. The relation
between the stored program and those other symbols is much like the
relation between the formally written rule modus ponens and the symbol
strings to which it can be applied. Like the formal rules of logic, the
rules in the computer program do not consider the semantics of the
symbols being manipulated, but only their form. This perspective has
been given a variety of renderings by such symbolic theorists as
Dennett (1978), Fodor (1980), and Pylyshyn (1984).

An alternative way to construe the semantics of computational
systems was offered by Newell and Simon (1981). For them, a com-
puter is a physical symbol system consisting of symbols (physical
patterns), expressions (symbol structures obtained by placing symbol
tokens in a physical relation such as adjacency), and processes that
operate on expressions. They point out that there is a semantics
(designation and interpretation) within the system itself; specifically,
expressions in stored list-processing programs designate locations in
computer memory, and these expressions can be interpreted by access-
ing those locations. They regard this internal semantics as a major ad-
vance over formal symbol systems such as those of logic, and argue that
intelligence cannot be attained without it:

The Physical Symbol System Hypothesis. A physical symbol system has the
necessary and sufficient means for general intelligent action.

By “necessary” we mean that any system that exhibits general intelligence
will prove upon analysis to be a physical symbol system. By “sufhicient” we
mean that any physical symbol system of sufficient size can be organized
further to exhibit general intelligence. (Newell and Simon, 1981, p. 41)

Hence, with respect to the question of the autonomy of syntax from
semantics, some cognitive scientists have emphasized the continuity
between computers and formal logical systems, whereas others (such
as Newell and Simon) have viewed computers as enabling advances
beyond formal systems. A similar difference in perspective arises
with respect to what work the computer is regarded as carrying out,.
From a continuity perspective, computers are powerful devices for
implementing logical operations; one can write programs that will serve
the same function as inference rules in a logical system. From an
alternative perspective (Simon, 1967), it took work in artificial intel-
ligence to show us that heuristics (procedures that might obtain the
desired result, often by means of an intelligent shortcut such as pruning
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unpromising search paths) are often more useful than algorithms
(procedures that are guaranteed to succeed in a finite number of steps
but may be inefficient in a large system).

Hence, work in artificial intelligence is rooted in formal logic, but has
achieved distinctive perspectives by pursuing the idea that computers
are devices for symbol manipulation more generally. Al programs have
replaced formal logic as the closest external approximation to human
cognition; programs exist, for example, not only for proving logical
theorems or performing logical inference, but also for playing chess at a
master’s level and diagnosing diseases. The (partial) success of these
programs has suggested to many researchers that human cognitive
performance also consists in symbol manipulation; indeed, this analogy
provided, until recently, a locus of unity among cognitive scientists.

Yet another root of the symbolic approach is found in Noam
Chomsky’s program in linguistics. In his review of B. F. Skinner’s Ver-
bal Behavior, Chomsky (1959) argued that a behavioristic account was
inadequate to account for the ability of humans to learn and use
languages. Part of his argument focused on the “creativity’’ of lan-
guage; Chomsky contended that any natural language has an infinite
number of syntactically well-formed sentences, and that its speakers
can understand and produce sentences that they had not previously
encountered (Chomsky, 1957, 1968). This ability did not seem explic-
able in terms of learned associations between environmental stimuli
and linguistic responses, even if these were augmented by such pro-
cesses as generalization and analogy. In Chomsky’s view, Skinner had
not succeeded in adapting the constructs of behaviorism to the precise
requirements of a linguistic account, and a quite different approach was
needed.

In particular, Chomsky developed the notion of generative grammar
as an approach to linguistic theory: to write a grammar was to specify
an automaton that could generate infinite sets of sentences (this was
easily assured by including at least one recursive rule). To evaluate
such a grammar, the linguist must determine whether it generates all
of the well-formed sentences of the target language, and only those
sentences. Chomsky described and evaluated several different classes of
generative grammars with respect to natural languages. Of particular
importance, he argued that finite state grammars (those most consistent
with a behaviorist account), were too weak even when they included
recursive rules. They could generate an infinite set of sentences, but not
the correct set. Specifically, they were unable to handle dependencies
across indefinitely long strings (e.g., the dependency between if and then
in sentences of the form “if A, then B”” where A is indefinitely long).
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To handle such dependencies, at least a phrase structure grammar (and
preferably a transformational grammar) was required. These grammars
produce constituent structures by applying a succession of rewrite rules
(rules which expand one symbol into a string of subordinate symbols);
indefinitely long constituents can be embedded within a phrase struc-
ture tree without affecting the surrounding dependencies. Transfor-
mational rules (rules that modify one phrase structure tree to obtain a
related, or transformed, tree) provide additional power, but the most
important and enduring part of Chomsky’s argument is the rejection of
finite state grammars.

Chomsky viewed generative grammar as a model of linguistic com-
petence; that is, a model of the knowledge of their language that
speakers actually possess in their minds. Although he pioneered the use
of (abstract) automata for specifying grammars, he did not intend to
model linguistic performance {the expression of competence in specific,
real-time acts such as the production and comprehension of utter-
ances), nor did he implement his grammars on physical computers.
Hence, his version of cognitivism is somewhat more abstract than that
of information-processing psychology. Nevertheless, many psycho-
logists were influenced by Chomsky as they moved from behaviorism to
information processing, because his grammars suggested ways to model
human knowledge using linguistic-style rules (that is, formally speci-
fied operations on strings of symbols).

Although Chomsky focused on linguistic competence, he did make
some general, controversial claims about linguistic performance. One of
these claims, that a process of hypothesis testing is involved in language
acquisition, bore implications that were fruitfully developed by Jerry
Fodor {1975). Before we can test a hypothesis, such as that the word
dog refers to dogs, we must be able to state it. Fodor reasoned that this
requires a language-like medium, which he called the language of
thought. Further, since there is no way for a child to learn this language,
it must be innate. Thus, Fodor contended that procedures for formal
symbol manipulation must be part of our native cognitive apparatus.
Fodor’s argument represents a minority position within psychology,
but virtually all researchers in the majority tradition of information
processing assume some weaker version of a symbolic approach to
cogniton.

We have briefly reviewed two strands of the symbolic approach: a
strand leading from formal logic to artificial intelligence, in which
computers came to be viewed as symbol manipulation devices, and a
strand leading from linguistics to psychology, in which human cog-
nition came to be viewed likewise as consisting in symbol manipulation.
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In cognitive science, these two strands are often brought together in a
cooperative enterprise: the design of computer programs to serve as
models or simulations of human cognition. This raises a number of
interesting issues that we can only briefly mention here (a number of
penetrating discussions are available, e.g., Haugeland, 1985), Does a
successful computer simulation closely approximate mental symbol
processing at some appropriate level of abstraction, so that both the
human and the computer are properly construed as symbol processors?
Or should true symbol manipulation be attributed to only one of the
two types of system; and if so, to the human or the computer? On one
view, the human is the true symbol manipulator (because, for example,
the human’s symbols have causal relations to external referents), and
the computer is merely a large calculator or scratchpad that can facili-
tate the process of deriving predictions from models of human perform-
ance (similar to the meteorologist’s use of computers to calculate
equations that describe the fluid dynamics of the atmosphere, for
example). A contrasting view holds that the computer is the true sym-
bol manipulator, and that human cognition is carried out quite
differently (in less brittle fashion, as might be modeled in a network, for
example). These issues, which have been troublesome for some time,
have gained increased salience with the re-emergence of network
models in the 1980s. We turn now to a brief history of networks as an
alternative to the symbolic tradition.

The Disappearance and Re-emergence of Network Models

By the 1960s substantial progress had been made with both network
and symbolic approaches to machine intelligence. But this parity was
soon lost. Seymour Papert has provided a whimsical account:

Once upon a time two daughter sciences were born to the new science of cyber-
netics, One sister was natural, with features inherited from the study of the
brain, from the way nature does things. The other was artificial, related from
the beginning to the use of computers. Each of the sister sciences tried to build
models of intelligence, but from very different materials. The natural sister
built models (called neural networks) out of mathematically purified neurones.
The artificial sister built her models out of computer programs.

In their first bloom of youth the two were equally successful and equally pur-
sued by suitors from other fields of knowledge. They got on very well together.
Their relationship changed in the early sixties when a new monarch appeared,
one with the largest coffers ever seen in the kingdom of the sciences: Lord
DARPA, the Defense Department’s Advanced Research Projects Agency. The
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artificial sister grew jealous and was determined to keep for herself the access to
Lord DARPA’s research funds. The natural sister would have to be slain.

The bloody work was attempted by two staunch followers of the artificial sis-
ter, Marvin Minsky and Seymour Papert, cast in the role of the huntsman sent
to slay Snow White and bring back her heart as proof of the deed. Their

weapon was not the dagger but the mightier pen, from which came a book -
Perceptrons ... (1988, p. 3)

Clearly the publication of Perceptrons in 1969 represented a watershed.
Research on network models, such as perceptrons and pandemonium,
no longer progressed apace with work on symbolic models. Some
researchers did continue to pursue and develop network models and in
fact established some important principles governing network systems
(see J. A. Anderson, 1972; Kohonen, 1972; Grossberg, 1976). Their
work, however, attracted only limited attention and funding. What i1s
less clear is whether Minsky and Papert’s book precipitated the demise,
or whether it was only a symptom.

Minsky and Papert’s objective in Perceptrons was to study both the
potential and limitations of network models. They used the tool of
mathematics to analyze what kinds of computation could or could not
be performed with a two-layer perceptron. The centerpiece of their
criticism was their demonstration that there are functions, such as
determining whether a figure is connected or whether the number of ac-
tive units is odd or even, which cannot be evaluated by such a network.
An example is the logical operation of exclusive or (XOR). The state-
ment A XOR B is defined as true if A is true and B is not, or B is true
and A is not. In order for a network to compute XOR, it is necessary to
include an additional layer of units (now referred to as hidden units) be-
tween the input units and output units (see chapter 3). While Minsky
and Papert recognized that XOR could be computed by such a multi-
layered network, they raised an additional problem: there were no
training procedures for multi-layered networks that could be shown to
converge on a solution. As we shall discuss in chapter 3, an adaption of
Rosenblatt’s training procedure for two-layer networks has now been
developed for multi-layered networks. But Minsky and Papert raised
further doubts about the usefulness of network models. Even if the
problem were overcome, would it be possible to increase the size of
networks to handle larger problems? In more technical terms, this is a
question as to whether networks will scale well. Minsky and Papert
offered the intuitive judgement that research on multi-layered networks
would be “‘sterile.”

The inability of networks to solve particular problems was, for many
investigators, only symptomatic of a more general problem. For them,
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the fundamental problem was that the only kind of cognitive processes
of which networks seemed capable were those involving associations.
Within limits, a network could be trained to produce a desired output
from a given input, but that merely meant that it had developed
procedures for associating that input with the desired output. Associa-
tionism was exactly what many of the founders of modern cognitivism
were crusading against. Chomsky contended, for example, that finite
automata or simple associationistic mechanisms were inadequate to
generate all the well-formed sentences of the language. One needed a
more powerful automaton capable of performing recursive operations.
The identification of network models with associationism thus under-
cut their credibility and supported the pursuit of symbolic programs as
the major research strategy in cognitive science. As we shall see in
chapter 7, many advocates of the symbolic tradition continue to fault
modern connectionism on precisely this ground.

In the early 1980s the type of network research pioneered by
Rosenblatt began once again to attract attention. Papers that employed
networks to model various cognitive performances began to appear in
cognitive journals. Geoffrey Hinton and James A. Anderson’s (1981)
Parallel Models of Associative Memory offered an accessible presen-
tation of the re-emerging network research. At the 1984 meeting of
the Cognitive Science Society, two symposia presented the network
approach and debated its role in cognitive science. One, entitled
“Connectionism versus Rules: The Nature of Theory on Cognitive Sci-
ence,”’ featured David Rumelhart and Geoffrey Hinton advocating
network modeling (connectionism) and Zenon Pylyshyn and Kurt
VanLehn arguing that networks were inadequate devices for achieving
cognitive performance. Debate at that session and others during the
conference occasionally became acrimonious as the connectionists be-
gan to press their alternative and challenged the supremacy of the sym-
bolic approach.

Connectionist research has increased dramatically in the 1980s.
While opposition continues, a growing number of cognitive scientists
have either “‘converted” to connectionism or have added connectionist
modeling techniques to their repertoire as tools they will employ for at
least some purposes. An intriguing question is why connectionism
should have re-emerged so strongly in the 1980s. While we do not offer
a comprehensive answer to this question, there are a number of factors
that seem relevant.

First, powerful new approaches to network modeling were devel-
oped, including new architectures, new techniques for training multi-
layered networks, and advances in the mathematical description of the
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behavior of nonlinear systems. Many of these innovations can be di-
rectly applied to the task of modeling cognitive processes. Second, the
credibility of some of the researchers attracted to network research has
played a role. For example, in chapters 2 and 3 we discuss an important
mathematical insight into network behavior that was proposed by John
Hopfield, a distinguished physicist. Anderson and Rosenfeld comment:

John Hophield is a distinguished physicist. When he talks, people listen.
Theory in his hands becomes respectable. Neural networks became instantly
legitimate, whereas before, most developments in networks had been in the
province of somewhat suspect psychologists and neurobiologists, or by those
removed from the hot centers of scientific activity. (1988, p. 457)

Third, cognitive science had remained, either intentionally or unin-
tentionally, rather isolated from neuroscience through the 1970s. In
large part this was because there was no clear framework to suggest
how work in the neurosciences might bear on cognitive models. But by
the 1980s cognitive scientists’ interest in the neurosciences had in-
creased, and network models were attractive because they provided a
neural-like architecture for cognitive modeling. Fourth, the interest in
neuroscience was one reflection of a more general interest in finding a
fundamental explanation for the character of cognition. Rule systems, as
they became more adequate, also became more complex, diverse, and
ad hoc. The desire for parsimony, which earlier had characterized beha-
viorism, re-emerged. Fifth, a number of investigators began to confront
the limitations of symbolic models. While initially the task of writing
rule systems capable of accounting for human behavior seemed trac-
table, intense pursuit of the endeavor raised doubts. Rule systems were
hampered by their “brittleness,” inflexibility, difficulty, learning from
experience, inadequate generalization, domain specificity, and ineffi-
ciencies due to serial search through large systems. Human cognition,
which the rule systems were supposed to be modeling, seemed to be
relatively free of such limitations,

These and other factors operated together to make networks models
attractive to some cognitive scientists, beginning with a few pioneers in
the early 1980s and reaching substantial proportions by the end of
the decade. During the same period, however, other cognitive scient-
ists were also concerned about the limitations of traditional symbolic
models; no one who models performance wants a brittle system, for
example. These investigators focused only on the fifth factor above,
rather than all five factors, and adopted the conservative strategy of
modifying the existing approach rather than initiating a new, relatively
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untried approach. Hence, if the symbolic approach is a target of criti-
cism on the part of network modelers, it is a moving target and there-
fore harder to hit.

Most of the modifications incorporated in the most recent symbolic
models have narrowed the gap between symbolic and network models.
(It could even be argued that the real revolution is the development of a
variety of ways to overcome the limitations of earlier models, including
but not limited to connectionist modeling.) First, a large number of
rules at a fine grain of analysis (microrules) can capture more of the
subtleties of behavior than a smaller number of rules at a larger grain of
analysis. Second, rule selection, and perhaps rule application as well,
can be made to operate in parallel. Third, the ability to satisfy soft
constraints can be gained by adding a strength parameter to each rule
and incorporating procedures that use those values in selecting rules.
Fourth, resilience to damage can be gained by building redundancy
into the rule system (e.g., making multiple copies of each rule). Fifth,
increased attention can be given to learning algorithms (such as the
genetic algorithm), knowlege compilation and ‘“‘chunking’’ of rules into
larger units, and ways of applying old knowledge to new problems
(such as analogy).

The most comprehensive and successful nontraditional rule systems,
such as J. R. Anderson’s (1983) ACT* and Newell's {1988) SOAR, in-
corporate some of these design features (and Anderson makes explicit
use of networks in addition to rules). Some differences with networks
remain, but their importance and consequences are not as obvious as
those involving traditional symbolic models. One of the remaining
differences is that nontraditional symbolic models retain the use of
ordered symbol strings whereas connectionist networks have no intrin-
sic ordering of their elements. In the most common architecture, the
production system, these strings are rules of the form “If A, then B”
where A is a Boolean combination of conditions, and B is a set of
actions to be carried out when the conditions are met. Another
difference is that sequenced operations and nonlocal control are in-
herent capabilities of symbolic models but not of networks. There
presently is no adequate research base for determining what diflerences
in empirical adequacy might result from these differences, but the
differences are likely to be small enough that empirical adequacy will
not be the primary determinant of the fate of symbolic versus
connectionist models. Within either tradition, if a particular inad-
equacy is found, design innovations that find some way around the fail-
ure are likely to be forthcoming. Personal taste, general assumptions
about cognition, the sociology of science, and a variety of other factors
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can be expected to govern the individual choices that together will de-
termine what approaches to cognitive modeling will gain dominance.

Given this state of affairs, in this book we shall draw our primary
contrasts between traditional symbolic models and connectionist mo-
dels. In this way we can convey, to some extent, why connectionists de-
cided to abandon the traditional symbolic approach as a medium for
modeling. In chapter 8 we shall present an argument that there are im-~
portant tasks, other than modeling the cognitive mechanism, for which
traditional symbolic theories are the theories of choice. In our view,
connectionist and traditional symbolic inquiries should be carried out
as distinctive enterprises, each of which can make contributions to the
other; the availability of both approaches can strengthen cognitive sci-
ence by providing multiple perspectives. The key to successful cooper-
ation is that each approach be used for the tasks most suitable to it,
rather than fighting for the same turf. For example, linguistic theories
will always have a distinctive role to play, and presumably will remain
symbolic. These theories efficiently describe the domain in which a
connectionist (or other mechanistic model) must perform.

Within this framework, nontraditional symbolic theories do not have
the same role to play as traditional ones: they are indeed fighting for the
same turf as connectionism (that is, fine-grained modeling of the
workings of the cognitive mechanism). However, the degree of polari-
zation is not as great as it may seem, and the future could bring
a pluralistic approach to mechanistic modeling within which connec-
tionist themes and techniques are more distributed than is currently the
case. Recent history provides some support for this scenario. Connec-
tionist networks, in their incarnation as cognitive models, have origins
in the symbolic tradition of the 1970s as well as in the neural network
tradition. Schema theory and story grammars (Rumelhart, 1975),
probabilistic feature models (Smith and Medin, 1981), prototype the-
ory (Rosch, 1975), and scripts {Schank and Abelson, 1977) all emerged
from the symbolic tradition but do not fully reside in either the sym-
bolic or connectionist camp. All can be given a connectionist im-
plementation, and these arguably are superior implementations. For
example, schemata should be flexible and easy to modify, but this is
much harder to achieve in a symbolic than in a connectionist im-
plementation (Rumelhart, Smolensky, McClelland, and Hinton, 1986,
in PDP:14). Furthermore, semantic networks with spreading activation
(J. R. Anderson, 1983) are hybrid models that place symbols in net-
work structures that dynamically change their activations; they can be
regarded as a predecessor of connectionist models of cognition,

We shall point out where nontraditional and hybrid models are
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relevant at various points in the discussion. There is such a variety
of models, however, that we cannot provide a full treatment or make
detailed comparisons within a book of this scope. Also, although we are
favorably inclined to connectionist models, we decline to predict the
outcome of the competition between connectionist and nontraditional
symbolic models. The degree to which accommodation will be found,
as in hybrid models or pluralism, simply is not known at this time, It is
clear, however, that the cognitive science of the year 2000 will be a
quite different cognitive science than would have emerged in the ab-
sence of the new connectionism.

2

Connectionist Architectures

Connectionist networks are intricate systems of simple units which
dynamically adapt to their environments. Some have thousands of
units, but even those with only a few units can behave with surprising
complexity and subtlety. This is because processing is occurring in par-
allel and interactively, in marked contrast with the serial processing to
which we are accustomed. To appreciate the character of these net-
works it is necessary to observe them in operation. Thus, in the first
section of this chapter we shall describe a simple network that illu-
strates several features of connectionist processing. In the second sec-
tion we shall examine in some detail the various design principles that
are employed in developing networks. In the final section we shall dis-
cuss several appealing properties of networks that have rekindled
interest in using them for cognitive modeling: their neural plaus-
ibility, satisfaction of “‘soft constraints,”’ graceful degradation, content-
addressable memory, and capacity to learn from experience. Connec-
tionists maintain that the investment in a new architecture is amply
rewarded by these gains.

The Flavor of Connectionist Processing:
A Simulation of Memory Retrieval

We shall begin by describing a connectionist model which was designed
by McClelland (1981) in order to illustrate how a network can function
as a content-addressable memory system. Its architecture is atypical in
some respects, but it conveys the flavor of connectionist processing
in an intuitive manner. The information to be encoded concerns the
members of two hypothetical gangs, the Jets and the Sharks, and some
of their demographic characteristics (figure 2.1). Figure 2.2 shows how
this information is represented in a network, focusing on just five of the





