Simulating Language
Feedlback on assignment 1

Kenny Smith

kenny.smith@ed.ac.uk

mailto:kenny.smith@ed.ac.uk
mailto:kenny.smith@ed.ac.uk

Do we need another catch-up lab”

- We can do one of the following three options

- Two more lectures (on new stuff)

- Two more lectures, and a catch-up lab 3-5 on Thursday for those that need it
- A full 2-5pm catch-up lab Thursday, a final lecture Friday

 What will the final lecture be about?

Quick point on Assignment 2

* “Do we need to provide our code”?
- If you are using code | provided, just give the filename.
* If you are doing substantial coding, | would like to see it.

- Ideally: put it online somewhere reasonably private (e.g. dropbox), include
a URL in your report so | can download it if | want to.

* It must be anonymous - e.g. don’t put it at www.yourname.com

- Otherwise: paste it in to the end of your report as an appendix, doesn’t
count towards the word limit

Feedlback on Assignment 1: general points

- Look at the written feedback!

* | was pleasantly surprised by the quality on technical questions
* Less so on the longer written answers

« Top UG mark: 82

« Top PG mark: 84

- PGs: typically better on coding questions

- UGs: noticeably better on Q8

Feedlback on Assignment 1: general points

- My two main tips for Assignment 2
* Don’t waffle

* Include graphs

Q1

1. The following python code is meant to remove all the zeros from a list and work out the

average of the remaining numbers. It has a lot of bugs in it! Fix as many bugs as you
can. Try to do it with the smallest number of edits possible!

def average_non_zero(input list)

non_zero=1nput_l1ist

total=0

for 1 in len(input_list):
total==total+1i
if 1=0:
non_zero.remove(1i)

print "The original list was:" input_list

print 'The non-zero numbers in the list are:", non_zero
print 'The average is:', total/len(input_list)

1 Question 1

The code was modified to the following version:

from copy import deepcopy

def average_.non.zero(input_list):

non.zero=deepcopy(input_list)
total=0
for i in input_list:

total=total+i

if i==0:

non._zero.remove (i)

print "The original list was:”, input_list

print "The non—zero numbers in the list are:”, non.zero
) . list
print 'The average is:’ total/len(non-zero)

b

The following changes were made for the function to accomplish the described task:

1. included import command for deepcopy, as this is needed to use two different lists

2. added missing underscore in parameter input_list to function, as otherwise variable will

not be defined when used

3. added colon after function declaration, as otherwise invalid syntax

Note: this code does not work (gives an error message) if the input_list is all zeros. To fix that,
instead of the last line being:
print 'The average is:', total/len(non_zero)
you should have:
if len(non_zero)==0:
print “There is no average non-zero number”
else:
print 'The average is:', total/len(non_zero)

Q2

2. Briefly state how the number of iterations of a monte carlo calculation of communicative
accuracy relates to the result of that calculation. lllustrate your answer with one or more
graphs of simulation results. [word limit: 100]

2 Question 2 (95 words)

With an increasing number of iterations of a monte carlo simulation the calculation of com-
municative accuracy is more reliable. This is because communicative accuracy represents the
probability of success in a (random) communicative event between members of a population.
This probability can be measured via relative frequency and as the number of iterations ap-u
proaches infinity, the relative frequency approaches the true probability. (Koehn, 2010) Such a
convergence (from around 200 iterations onwards) is illustrated in Figure 1 for the communica-

tive accuracy in Question 3.

1.0

e
@

o

e
o

e
&

Communicative accuracy

—-
~

0.0

Number of iterations

Figure 1: Dependency of communicative accuracy calculation on number of iterations

Communicative Accuracy

1.0

o
o

o
o

o
S

o
N

0.0

V

/

1 4 L

2 1

\! WA
\ BVRE A -
\\‘\\ ‘\‘ LN - LSN -
\\\\\&\\\‘&\\\‘&8\\‘t:t&~t‘:22==:::t AT e
\ \\ \\\\ \\\\\ \\‘\‘:\\“‘:\\“~::\“::::‘:::::‘::::::'.:::;'- ::::E:
\ “\ \\\ \\\ \\\ ‘\\\ \\\\ ‘\\\\“\\\ \\\\\.‘\ss“..: ::: ::: .:;:,\::::.
B A T e e e T i
\ \ ‘\ \ \\\ AR AR R W s AN A s NN T A e Nt i
\\‘:\\\:‘\\:\\::\\:::\:::\:::\:::5:::E:::ES::EE::EE::E 2:552:: AdaNiasaasaaisiaas
‘ R o e N S e S b bt
VKX R S o et
I P O S S T e e S e
\‘\‘:\‘:\‘:“:“:“:‘3 R S e e
“ O T O O g e
“0‘ s s e e
" ’Q’ o v:,v}:.(.g AL
$ 3 SN S ’
’ A AAN Q'V, .
‘ ’ "..'.—

20

40 60
Number of trials

100

Communicative accuracy

=13. 1: Expenmental ang predicted accuracy over number of derations (for 10 runs each of £ differont ogent cors)

: 10 runs with predicted 11.11% occuracy 10 runs with predicted S0% accurgcy Predicted accuracy
{ 10 runs with predicted 33.33% accuracy 10 runs with predicted 75% accuracy
i
[3
e e T
—— — - oo S

Number of irerations

10000

20
15
1.0
0.5

10 iterations

0.
%.2 0.3 04 05 06 07 08 09 10

350
300
250
200
150

100}

50

2500
2000
1500

1000
500

S00 iterations

3703 048 05 06 07 08 09 10

5000 iterations

&00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

P 100 iterations

40
35
30
25

. 4

S

10+

-

F__ ————

%0 01 02 03 04 05 06 0.7

500 1000 iterations

400
300
200
100

3703 04 05 06 07 08 09 1.0

5000 10000 iterations

4000
3000

2000
1000

0 A "
0.000.050.100.150.200.25 0.30 0.350.40

Fieure 1: The results of several Monte Carlo simulations
o

Q3

3. Two agents with innate signalling systems are illustrated below. Assuming they use
winner take all production and reception, what would be the expected communicative
accuracy of a population of agents made up of 10% of type A, and 90% of type B? (i.e.
what's the chance that any random communicative episode between two members of
such a population will be successful?)

s1 | s2 | s3 mi1 | m2 | m3
A " e 7 | 1 | 1 s1 | 2 | 2 | 1
. m2 | 2 7 g s2 | O 1 0
m3 | 1 0 " s3 | 1 0 3

s1 | s2 | s3 ml1 | m2 | m3
B . m| 7|10 s1 | 2 | 2| 1
- m2 | 2 7 6 s2 | O 1 0
m3 | 1 0 7| 83 | -2 1 3

Q4

4. Why does spatial organisation lead to communication in Oliphant’'s (1996) simulations?
[word limit: 300]

Some of you got confused about issues of reciprocity, trust

Some of you spent too long talking about his other simulations

Some answers were quite waffly: if you only have 300 words, every sentence
needs to do a job.

Some answers were rather vague: it’'s OK to use technical terms!

4.

As demonstrated in simulation 2, when there is no direct benefit or pressure to
be a good communicator, the population does not converge on an optimal
signaling system. Correspondingly, spatial organization leads to optimal
communication because it creates pressure to have a good production system.
With spatial organization, agents are more likely to communicate with agents
who are nearby, and nearby agents are likely to be closely related because
offspring are placed in the same area as the parent. As a result, by being a good

Exam number: B065799

producer and signaling in a way that others will understand, an agent will
experience a direct benefit by increasing the fitness of its own genes.

In addition, spatial organization supports a structure where communication

systems will exist in groups since offspring stay within close proximity of their
parents. That is, agents with good communication systems will be close together

and propagate the survival of the group, whereas agents with poor o
communication will also be close together, and eradicate one another. As a

result, good communication systems flourish, bad communication systems die

out, and the population as a whole converges to a Saussurean system.

[word count: 189

Q5

5. Change the pop_update function in signallingZ.py so that it simulates a situation
in which different meanings crop up in the environment with different frequencies. Show
your new pop_update function here.

- Lots of answers: work with exactly 2 meanings, exactly 3 meanings, etc

» Best answers: work with any number of meanings

Question 5

The following code is an adaption of the pop_update function in signalling2.py that
simulates selection of meanings weighted by frequency, where meaningl_freq and

meaning?2_freq can be set to any integer values (edits in red):

def pop_update(population, meaningl freq, meaning2 freq):
speaker_index = rnd.randrange(len(population))
hearer_index = rnd.randrange(len(population) - 1)
if hearer_index >= speaker_index: hearer_index += 1
speaker = population[speaker_index]
hearer = population[hearer_index]
meaning = rnd.choice([0]*meaningl freq + [1]*meam‘ng2_freq)D
success = communicate(speaker[0], hearer([1l], meaning)
speaker[2] [0] += success
speaker([2][1] += 1
hearer[2][2] += success

hearer[2][3] += 1

5. Changes bolded and explained in comments:
import random as rnd
def pop_update(population):
speaker_index = rnd.randrange(len(population))
hearer_index = rnd.randrange(len(population) - 1)
if hearer_index >= speaker_index: hearer_index +=1 # ensure speaker
#and hearer are different
speaker = population[speaker_index]
hearer = population[hearer_index]
from copy import deepcopy
selections=deepcopy(range(len(speaker[0])))
foriin range(len(speaker[0])):
for nin range(i):
selections.append(i)
meaning = rnd.choice(selections) #changes frequency choice such that later meanings are
#more and more likely to be chosen (highly skewed)
success = communicate(speaker[0], hearer[1], meaning)
speaker[2][0] += success
speaker[2][1] +=1
hearer[2][2] += success
hearer[2][3] +=1

5. The new pop_update function below takes random meaning from a subset of
the range of the meaning list. B

def new pop update(population):
speaker index = rmd randrange(len(population))
hearer index = rnd randrange(len(population) - 1)
if hearer index >= speaker index: hearer index += 1
speaker = population[speaker index|
hearer = population[hearer index]

pl = rnd randrange(len(speaker[0]))

p2 = rnd randrange(len(speaker[0]))

while pl == p2:
pl = rnd randrange(len(speaker|[0]))
p2 = rnd.randrange(len(speaker[0]))

if pl > p2:

start = p2

stop = pl n
else:

start = pl

stop = p2

meaning = rnd randrange(start, stop)

success = communicate(speaker|[0], hearer|[1], meaning)
speaker[2][0] += success

speaker(2][1] += 1

hearer[2][2] += success

hearer[2][3] += 1

Q6

6. The mutation function in evolutionl.py can completely change the value of a cell in
the matrix of an offspring. It might be more realistic for mutation to be gradual instead -

changing a cell only slightly. Modify the code so that this happens instead. Show your
new mutation function here.

* Frequently over-thought!

6. New code:
def mutate(system):
for row_iin range(len(system)):
for column_iin range(len(system|[0])):
if rnd.random() < mutation_rate:
system([row_i][column_i] = rnd.randint(system[row _i][column_i]-1, system[row_i][column_i]+1)
if system[row _i][column_i] > mutation_max:
system[row_i][column_i]=mutation_max
if system[row _i][column_i] < O:
system[row_i][column_i]=0

Q7

7. What corresponds to the concept of innateness in the evolutionl.py simulation?
What about in the Llearning2.py simulation? [word limit 200]

« Prone to waffle here - particularly the PG students!

Question 7, word count: 159

What characteristics in humans or animals might be innate is very debatable, due to
innateness being a slippery concept (see for example Griffiths (2002), What is
innateness?). For our purposes, | will define as innate that which is given before any
input (information) has an influence on the system.

In evolutionl.py we worked with innately coded genetic algorithms or
communication matrices determining communication behaviour. Even though they
were randomly generated and exposed to random mutation, their initial settings
were fixed independent of any information that the system was exposed to and thus
innate,

In learning2.py, on the other hand, communication weights were fixed according to
specific rules. Therefore, here, an individual’s learning rule is innate due to its
creation of a bias with which the incoming information is processed. Additionally |
would argue that the initial ‘format’ of the individual is innate, too. By this [mean
the format of the ‘to-be-weighted-matrix’, which determines which things can be
learned.

Q3

8. When Smith (2002) talks about "learners”, “maintainers” and "constructors", what does
he mean? [word limit 500]

IMPORTANT:

For every question | expect concise answers plus, where appropriate, the use of
simulation results to illustrate key points.

Credit will be given particularly for clarity, brevity and precision in writing plus
convincing use of simulations in support of your argument.

 Quite a lot of waffly answers
 Lack of precision in language used

- Lack of graphs

8. Smith defines “learners” as agents that have a weight update rule that allows them to
acquire an optimal communication system. This was proven if the agent, after being exposed to
each meaning-signal pair, always produced the correct signal when prompted by the meaning
(i.e. when given m;, the agent produces s;) and always interpreted the signal with the correct
meaning (i.e. interpreted s;as meaning m;). 31 of the possible 81 weight update rules allowed
agents to learn. These were, simply, those rules that made stronger connections between
paired meanings and signals than unpaired meanings and signals. That is, learners have update
rules of the form [a, B, v, 8], where a is the update rule for if both the meaning and the signal in
question are activated, B is the rule for if the meaning is activated but the signal is not, y is the
update rule for if the meaning is not activated but the signal is, and & is the rule for if they are
both inactive, suchthata + 6> +y.

“Maintainers” are agents that, in a population, can keep an optimal communication system
optimal even with a small degree of noise. This can be tested by providing the initial population
with a set of optimal meaning-signal pairs, and then running a number of trials in which a
random agent is removed from the system and replaced by a new agent that is trained on the
communication with a set of pairs generated from the other agents in the system. Smith found
that only learners can be maintainers, and only 18 of the 31 update rules that allowed learning
allowed maintenance. Those update rules that allowed maintenance were such that a > 3 and &
2y. These rules mean that after the agent is given a meaning-signal pair, it can correctly assign
the appropriate signal to that meaning, although it may not be able to generalize to ruling out
the use of that signal for other meanings. This is fine in the case of maintainers because the
agents are initially presented with an optimal, one-to-one communication system.
“Constructors” are agents who in a population can repeatedly create an optimal system from a
random one. Constructors have weight update rules such that a > 3 and & > y. Thus, they are
able to assign the appropriate signal to its meaning, but also to generalize and to rule out using
that signal for any other meaning. They are biased toward acquiring a one-to-one
communication system, even from imperfect or incomplete data, which is why they are able to

construct an optimal system from a random one. All constructors are also maintainers, but only
9 of the 18 maintainer rules are constructors. Below find examples of populations of learners
with rule [0,1,-1,1] (red), maintainers with rule [1,0,0,0] (blue), and constructors with rule
[1,0,0,1] (green) when presented with an optimal system (on the left) and a random system (on
the right). (Word count: 497)

0

10
0s
Qs
04

10

. . 0
& W™ N~ © n e ®m ~N -
<

<
- o o o o = o o =

Adeindoe aanedunwwo)

Generations

20

s 8 3 23

Adeindoe aAnesunwWwwo)

10

Generations

g

18

//// "

e

Ju
= ¢ @ 3 S ¢
a

s

2

&

=

= 8 § 3 3 3§

Adeindoe annenunwwo)

Generations

My advice for Assignment 2

- There is substantial room for improvement over what you produced for
Q8

 Be concise

- Re-read your answer multiple times, eliminate stuff that isn’t relevant or
necessary

- Be precise
 This is a technical course, | expect technical language in the write-up

* Include graphs

* Not just random graphs - can you find a way to plot results that really
captures the effect you are trying to show?

- Make the graphs pretty - informative colours, axes labels, legends etc

