
Simulating Language: Lab 1 Worksheet

1. Python and IDLE

During this course we will be using a simplified subset of the programming language Python to
build and run the simulations. We’re using Python because its code is concise and clear, and the
meaning of the code is transparent. It’s a simplified subset, because we want to avoid using Python-
specific features as much as possible, so that you could (if you wanted) take our code and translate
it into another programming language without difficulty.

Python is available on the computers in the lab, and is freely available for you to download and
install on your own computers as well. If you have a Mac running the latest OS, then you already
have everything you need for this course. Otherwise you can download the Enthought distribution
or something similar. The easiest way to run Python is through a development environment like
IDLE. You can start IDLE on the Macs in the lab by typing “idle” into a Terminal window. (Start
terminal by searching for “terminal” in spotlight.) First time you use IDLE, you might want to
change its default font in Preferences to be a little bigger and less ugly!

This document provides a brief summary of the basic features of Python which we will need to start
this course. These will be supplemented with other notes as we need them to run the simulations.

It’s important to become comfortable with using Python as quickly as you can, so make sure that
you understand everything in this document.

2. Evaluation

Python is an interactive language. The prompt (>>>)
indicates that Python is waiting for some input from the
user. You can use Python just like a calculator, using the
familiar mathematical operators (+ - * /) to build an
expression. When you press ENTER, Python evaluates the
expression you entered, and prints the result.

Within IDLE, you can use CTRL-P (hold down the ‘ctrl’
key, press ‘p’) to access previous commands you have
typed. You can change this and other keys in IDLE’s preferences.

Enter a few expressions at the prompt like those above, and check that
the results are what you expect. Make sure you understand how
bracketing expressions affects their evaluation.

The numbers we’ve used so far are all integers, which means that
apparently strange things can happen with division: if the first integer is
not exactly divisible by the second integer, then the result is truncated.

>>> 1 + 3
4
>>> 7 - 5
2
>>> 2 * 3 - 5
1
>>> 2 * (3 - 5)
-4

>>> 7 / 3
2
>>> 9 / 2
4

To avoid this, we can use floating-point numbers, which are
represented in standard decimal or scientific notation. It isn’t
necessary to include a zero after the decimal point. Inevitably,
floating-point numbers can only be stored to a certain level of
precision (depending on your computer), so you will occasionally
encounter rounding errors like the one in the example.

It’s important to be aware of the difference between integers and
floating-point numbers in your simulations!

3. Variables

We use variables to store and manipulate data. Variable names begin with an alphabetic character,
with subsequent characters being letters, numbers, or the underscore (_). Python is case-sensitive,
so candidates and Candidates are the names of different variables (to avoid confusion, it’s
a good idea to use a standard style for variable names in your programs).

To assign a value to a variable, use the equals sign = followed by
the value. The same value can be assigned to multiple variables
by separating them each with the equals sign. (Note: unlike in
some other programming languages, variables are automatically
declared when first assigned a value, so there is no need for

separate variable declaration.)

On the left, we see two ways to
change the value of a variable
based on its existing value: the
statement x = x + 1 adds one to the original value of x, and stores
the result in x, overwriting the original value. The compound
operator += is a useful shorthand for this behaviour, and has exactly
the same effect.

Python does not give any response to a variable assignment, because
nothing is evaluated. To check the value of a variable, type its name
at the prompt, and Python evaluates it as an expression.

4. Lists

Often, we want to store multiple related values in a single
data structure, and lists are the most basic way to
accomplish this. A list is enclosed in square brackets [],
with commas separating the individual elements of the list.

These individual elements can be accessed and assigned
new values by using the index operator [n], where [n]

>>> mylist = [1, 2, 3, 4]
>>> mylist
[1, 2, 3, 4]
>>> mylist[0]
1
>>> mylist[1] = 5
>>> mylist
[1, 5, 3, 4]
>>> mylist[3]
4

>>> x = x + 1
>>> x
3
>>> x += 3
>>> x
6
>>> x / 2
3
>>> x
6

>>> x = 2
>>> y = 1
>>> a = b = 0
>>> x
2
>>> z = y + x
>>> z
3

>>> 9.0 / 2.0
4.5
>>> 9. / 2.
4.5
>>> 7.0 / 3.0
2.3333333333333335

refers to the nth element in the list. Note that in Python, indexes start from zero, not one (i.e. the
‘first’ element in a list has index 0).

A sequential subset of the list can be obtained by using the slicing
operator [m:n], which returns all items starting from the mth element,
and up to (but not including) the nth element. Either m or n can be
omitted, in which case the beginning (or end, respectively) of the list
is assumed in place of the missing value.

The function len(list) returns
the number of items in the list, or its length. For more
details about how functions are used, see section 8 below.

Single items can be added to the end of an existing
list using the list function list.append(item). The
list function list.remove(item) removes the first
occurrence of item from list.

Lists are very important structures in Python, and it is worth spending some time to make sure you
understand how they work and are comfortable with them.

1. Make a list of the first four even numbers (2,4,6,8) called evens and check that it is stored
correctly.
2. Check the length of evens using the len function.
3. What happens when you evaluate evens[4]? Why?
4. Extract the middle two numbers from evens.
5. Append the number 10 to the end of evens, and check that it is stored correctly.
6. Create a new list of integers and use it to verify that the remove function does indeed
remove the first occurrence of an item from a list.

Lists can themselves also contain other lists,
which provides an easy way to create
complex and flexible data structures. In the
e x a m p l e , t h e s e c o n d e l e m e n t o f
complex_list is itself a list. To access the
individual items of this sub-list, just use the
index operator again, as shown. In principle,
there is no limit to the nesting of lists.

How long is the list listc (left)? Make sure you
understand why.

>>> lista = [1, 2, 3, 4]
>>> listb = [5, 6, 7]
>>> listc = [lista,listb]

>>> mylist
[1, 5, 3, 4]
>>> mylist.append(6)
>>> mylist
[1, 5, 3, 4, 6]
>>> mylist.remove(3)
>>> mylist
[1, 5, 4, 6]

>>> complex_list = [1, [2, 3], 4]
>>> complex_list[0]
1
>>> complex_list[1]
[2, 3]
>>> complex_list[1][1]
3

>>> mylist
[1, 5, 3, 4]
>>> len(mylist)
4

>>> mylist[0:2]
[1, 5]
>>> mylist [:2]
[1, 5]
>>> mylist[1:]
[5, 3, 4]

5. Code Blocks and Conditionals

Blocks of code in Python are identified by indentation, not by curly brackets or begin/end markers
as in other languages. The beginning of a block is marked by an increase in indentation, and the end
is marked by a return to the previous level of indentation; all the lines of code in the same block
must therefore be indented at the same level. This makes Python code easy to read, but can be
tricky to get used to at first. Within IDLE, some aspects of indentation are handled automatically,
but when it comes to writing more complex programs you’ll have to do indentation manually, using
either tabs or multiple spaces. Never mix tabs and spaces in indentation - use either one or the
other!

A conditional statement is used to execute a block of code only in certain circumstances (when the
conditional expression is true); it is introduced by the word if, followed by the conditional
expression, and a colon (:) to introduce the conditional code block. If the conditional expression is
true, then the code block is executed.

Conditional expressions in Python use the comparison operators == (equal to), < (less than), <=
(less than or equal to), > (greater than), >= (greater than or equal to), != (not equal to), and they
can be joined together into complex expression using and, or and not. Note particularly the
operator equal to (==), which uses two equals signs; one equals sign assigns a value to a variable!

In this example, the conditional expression is x == 0. If
this statement is true, then the indented code block below is
executed. When typing this example, note that IDLE will
helpfully indent the next line after the conditional expression
automatically, as it knows that another indented code block
must follow. Also note that you will need to press ENTER
twice in order to get back to the prompt after typing the final
line of code, because of the indentation; after the first
ENTER, IDLE assumes that you might want to add some more code to the conditional code block.

You can also use an else: statement, followed by another code
block which is executed when the conditional expression is
false, as shown on the left. After pressing ENTER after z = 1,
IDLE again assumes that you might want to add some more
code, so you will need to press DELETE in order to put the else:
statement on the following line at the right indentation. Again,
IDLE will helpfully indent the next line after the else: statement
automatically, as it knows that another indented code block must
follow.

>>> x = 4
>>> y = 3
>>> if x <= y:

z = 1
else:

z = 2

>>> z
2

>>> x = 0
>>> if x == 0:

y = 1

>>> y
1

6. For-Loops

The for loop can be used to run one code block
repeatedly for a set of elements. In the example, each of
the elements in the list [1,3,5] is taken in turn, its
value is assigned to the variable n, and then the following
code block is executed with this value of n (in this case,
print each value multiplied by 2).

The print statement is used to print data to the screen;
the statement is followed by details of the variables you want to be printed.

Because the for loop uses a list of elements to iterate
over, it does not act exactly like a traditional counting
loop would. In order to simulate a counting loop, we
need to generate an appropriate list of numbers. The
range(x,y) function is useful for this; it creates a list
of numbers from x up to (but not including) y. If x is
omitted then a start value of zero is helpfully
assumed. A list generated by range can be used
directly in a for loop, as in the example.

7. Random Numbers

In simulations, we frequently need access to random
numbers; Python helpfully provides a built-in
random number generator for this purpose, in a
special module, or self-contained file. To load the
random module containing the generator, we
import it into Python. If you try to access the
random number generator before it is imported, an
error will result.

Once the random module is imported, there are a
number of different ways to access different kinds
of random numbers:

✤ random.choice(seq) returns a random element from a given sequence;
✤ random.randrange(n) generates a sequence of numbers, very like range(), and then returns

a random element from this generated sequence;
✤ random.random() produces a random floating-point number between 0 and 1 (including 0,

but not including 1).

>>> import random
>>> list = [1, 2, 3, 4]
>>> random.choice(list)
3
>>> random.choice(list)
1
>>> random.randrange(10)
7
>>> random.random()
0.78351913714757648

>>> for n in [1, 3, 5]:
print n * 2

2
6
10

>>> range(1,4)
[1, 2, 3]
>>> range(-1,2)
[-1, 0, 1]
>>> range(3)
[0, 1, 2]
>>> for n in range(3):

print n, n + 3
0 3
1 4
2 5

8. Functions

Functions are the building blocks of most programming languages, and we will use them
extensively in this course; their purpose is to execute a small portion of code with a well-defined,
specific function, before returning to the main program. It is a very good idea to use functions in
your programs, as they can help greatly in reducing duplication of code, allowing the
decomposition of a program into simpler steps, and hiding unnecessary detail from users.

To call a function, we simply type its name, together with the names of any arguments or
parameters between following brackets. We have seen a number of functions already, including:

(i) the len function, which took the name of a list as its argument, and returned the number of

items in that list;
(ii) the range function, which can take a single number as an argument, and return a list of

numbers from 0 up to but not including that number;
(iii) the functions in the random module which returned different kinds of random number.

In Python, functions are defined using the def keyword,
followed by the name of the function, the arguments it
takes in brackets, and a colon (:) to introduce the body of
the function in a code block, indented as before.

Functions usually return a value, specified by the return
statement followed by the expression which is evaluated
and returned. In the example, the square function is
defined with a single argument x, and it simply returns
the value of this argument multiplied by itself.

Define your own functions and test them to check that they return what you expect.

1. a function which calculates and returns the product of two numbers;
2. a function which returns the first item in a list;
3. a function which returns the last item in a list;
4. a function which takes a list and prints out the square of each value in the list in turn;
5. a function which returns the largest number in a list.

9. Plotting

We frequently want to plot the results of our simulations - to include figures in reports, but also
because visualisation is often the best way to understand what is happening in a simulation. The
Enthought Python Distribution comes with a library called matplotlib, which makes plotting various
kinds of graphs easy.

As with the random module, we have to import a module, which in this case is called
matplotlib.pyplot. Typing out this full module name every time we want to use a function from
the module would be cumbersome, so we will give it the shorthand name of plt when we import it,
by using import ... as.

>>> def square(x):
return x * x

>>> square(5)
25
>>> square(9)
81

There are three stages to producing a plot using this module:

1. Set up the plot, using
plt.plot(x_values_list, y_values_list).
2. Label the axes, using plt.xlabel(text)
and plt.ylabel(text).
3. Display the plot, using plt.show().

A couple of notes:

Some of these commands return a value before going back to the Python prompt, which I have
omitted from the example code above. Don’t worry about these.

Once you have displayed your plot, you have to close the plot window to get the Python prompt
back.

If you don’t provide x values to plt.plot (right), matplotlib
will generate them for you automatically: there will be as
many x values as y values, the first value being 0.

You can plot multiple lines on the same
graph by providing plt.plot with a series of
x and y values (see left).

Once the plot window is displayed you can do several useful things including panning around the
plot and zooming in (select the compass icon, left-click to pan, right-click to zoom) and saving the
plot.

Experiment with plotting, panning, zooming and saving plots as image files.

>>> import matplotlib.pyplot as plt
>>> x_vals = range(-1,3)
>>> y_vals = [1, 2, 3, 4]
>>> plt.plot(x_vals, y_vals)
>>> plt.xlabel(“the x axis label”)
>>> plt.ylabel(“the y axis label”)
>>> plt.show()

>>> plt.plot(y_vals)
>>> plt.show()

>>> neg_y_vals = [-1, -2, -3, -4]
>>> plt.plot(x_vals, y_vals,
 x_vals, neg_y_vals)
>>> plt.show()

