Simulating Language: Lab 2 Worksheet

If you haven’t already done so, create a directory in your home area (on the M: drive) for the
Simulating Language course. Download the file signallingl.py from the website and save it
to this directory.

To open this file in IDLE, choose File-Open from the menu, and find the file in the directory you
have just created.

1. Simple Innate Signalling

At the start of the file are some detailed comments explaining what the code is supposed to do.
Comments in programming are very useful, both to you and those who look at your code later; they
should be explanatory, clear, concise and accurate, but first and foremost they should be there.
Comments are enclosed with triple-quotes, normally set off on their own lines. Single-line
comments begin with a hash (#), and continue until the end of the line.

As you can see, the function ca_monte measures and returns the level of communicative accuracy
between a production system and a reception system. The comments give brief details about the
data structures, and examples of how the program should be used. In this case, we see that the
signalling systems are stored as lists of lists of association weights; this list of lists structure can be
thought of as a matrix with meanings on the rows and signals on the columns (for production
matrices) or signals on the rows and meanings on the columns (for reception matrices).

signalling1.py

Simple innate signalling simulation

ca_monte returns communicative accuracy between a speaker (or producer) system
and a hearer (or receiver) system using monte carlo simulation.

Systems are expressed as a list of lists of association weights. Matrix rows in the
speaker system are meanings, columns are signals. In the hearer system, matrix
rows are signals, columns are meanings.

Production and reception are winner-take-all.
Usage example (note: I have presented the speaker and hearer systems row-by-row

to make the matrix structure clearer: there is no need to do this when using
the code, unless you feel it helps.

a_speaker system = [[1, 0, O],
(o, 1, 01,
[0, 1, 1]]
a_hearer_ system = [[1l, 0, O],
(o, 1, 11,
[0, O, 1]]

ca_monte(a_speaker system, a_hearer system, 100)

Returns a list of expected communicative success values, in a trial-by-trial
list (so the first element in the list gives the proportion of successful
communications after 1 trial, the second gives the proportion of successful




events after two trials etc), based on 100 evaluations of communication between
the specified speaker and hearer systems. There are three meanings

and three signals, but the communication system as specified above contains
some homonymy (the second signal can be used for either the second or third
eaning) and synonymy (the third meaning can be expressed using either the
second or third signal).

import random
import matplotlib.pyplot as plt

|[def wta(items):
maxweight = max(items)

candidates = []
for i in range(len(items)):
if items[i] == maxweight:

candidates.append (i)
return random.choice(candidates)

|[def communicate(speaker system, hearer system, meaning):
speaker signal = wta(speaker system[meaning])
hearer meaning = wta(hearer system[speaker signal])
if meaning == hearer meaning:

return 1
else:

return 0

|[def ca monte(speaker system, hearer system, trials):

total = 0.

accumulator = []

for n in range(trials):
total += communicate(speaker system, hearer system,

random.randrange(len(speaker system)))

accumulator.append(total/(n+l))

return accumulator

The program proper begins with a rather lengthy comment explaining what it does and how to use
it, followed by two import commands which import the random and matplotlib libraries (so that we
can generate and use random numbers and produce plots of results), and then defines the individual
functions.

Make sure you understand what each function does. Look at the main function ca_monte first,
then the function it calls (communicate), and so on until you have inspected each function
separately. Can you see why the program has been divided into functions in the way it has? If you
cannot figure out what the code does by yourself (and with our help) then download
worksheet02 walkthrough from WebCT (you’ll find it in the Lab worksheets folder): this gives
detailed line-by-line comments, which might help.

To run the code, choose Run-Run Module from the menu. Create a production and reception
matrix as shown in the comments, and calculate its communicative accuracy. When you are
satisfied that you understand how the code works, answer the following questions. 1-3 should be
completed by everyone. Only attempt 4 and 5 if you are happy you have completed 1-3.



1. How many trials should there be in the Monte Carlo simulation to work out
communicative accuracy? Hint: answer this question empirically by plotting the results and
comparing to what the "real" answer should be for various numbers of trials. You will want
to use the plot function from matplotlib to do this - look back over the lab 1 worksheet for
details.

2. How do synonymy and homonymy affect communicative accuracy? Create production
and reception systems with different degrees of homonymy and synonymy to explore this.
Note: you don’t have to restrict yourself to systems with 3 meanings and 3 signals.

3. What alternatives to "winner-take-all" might there be in the model of production/
reception? What difference might this make? Would they be more or less realistic, or
powerful as a model? Hint: how might you interpret weights as probabilities?

[4 and 5 are optional: only attempt these if you are satisfied you thoroughly understand 1-3]
4. How could you model production and reception using a single underlying matrix, rather
than separate production and reception matrices? Is this kind of model better or worse than
a model where we use separate matrices?

5. How would you go about calculating communicative accuracy exactly, i.e. rather than via
Monte Carlo techniques?



