
Simulating Language: Lab 4 Worksheet
This simulation implements the evolution of an innate signalling system, using the same basic
signalling system code from last time. Make sure that you are familiar with the way in which agents
and signalling systems were encoded; the same data structures are used here. On this worksheet, the
program is relatively long, so only the new code is reproduced. The file evolution1.py
nevertheless contains all the code we have already seen in signalling2.py. Copy
evolution1.py from the website, and save it to your own file space as before.

Copying Lists

The first part of the new code imports the deepcopy function; this is needed because of the way in
which Python treats copies of lists. Have a look at the code in the example below, and see if you can
understand what is happening.

First, list a is created, then is ‘copied’ to b, then one of
the values in a is changed. But note that the value in b is
also changed!

When copying compound objects (i.e. lists), by default
Python fills the new list (here: b)with references to
elements in the old list (a); this means that the contents
of b is actually the same as that of a, even if we change
a after we ‘copied’ it.

If, instead, we want to ensure that the copied list
contains new and different items, then we need to
make a deep copy, using the deepcopy function
from the copy module rather than simple
assignment. Look at the next example to see how
this works.

Make sure that you understand the difference,
given a list x, between the statements y = x and
y = deepcopy(x).

Simulation Parameters

The next section defines a number of variables which are used as parameters in the simulation, with
comments explaining what they are used for (remember that anything after the hash sign (#) is a
comment, and thus ignored by the Python interpreter). We define the variables individually, and
then refer to them by name in the following functions, so that when we want to run the simulation

from copy import deepcopy

>>> a = [1, 2, 3]
>>> b = a
>>> b
[1, 2, 3]
>>> a[1] = 5
>>> b
[1, 5, 3]

>>> from copy import deepcopy
>>> x = [1, 2, 3]
>>> y = deepcopy(x)
>>> y
[1, 2, 3]
>>> x[1] = 5
>>> y
[1, 2, 3]
>>> x
[1, 5, 3]

with different parameters, all we need do is either change the values here and re-run the module, or
enter new values at the prompt in IDLE and run a new simulation.

 How would you change the number of agents in the population?

Fitness Functions

Evolutionary algorithms require a function which measures fitness and helps determine which
agents will reproduce into the next generation. The following functions define fitness for an
individual agent (fitness) and for the whole population (sum_fitness); study them and make
sure you understand how they work.

 Why are the variables send_n and receive_n set to 1 in the fitness function?

 What do the send_weighting and receive_weighting variables do?

 What variables does the fitness function depend on? Why is there a “+1” here?

Mutation

This function mutates the signalling system by going through each cell in the matrix, deciding
whether a mutation should take place, and, if so, assigning a new value to the cell. Note that this
function contains a new random function random.randint(x, y); this returns a random integer

mutation_rate = 0.01 # probability of mutation per weight
mutation_max = 1 # maximum value of a random weight
send_weighting = 10 # weighting factor for send score
receive_weighting = 10 # weighting factor for receive score
meanings = 3 # number of meanings
signals = 3 # number of signals
interactions = 1000 # number of interactions per generation
size = 100 # size of population

def fitness(agent):
 send_success = agent[2][0]
 send_n = agent[2][1]
 receive_success = agent[2][2]
 receive_n = agent[2][3]
 if send_n == 0:
 send_n = 1
 if receive_n == 0:
 receive_n = 1
 return ((send_success/send_n) * send_weighting +
 (receive_success/receive_n) * receive_weighting) + 1

def sum_fitness(population):
 total = 0
 for agent in population:
 total += fitness(agent)
 return total

between x and y, including both x and y; random.randint(x, y) is therefore equivalent to
random.randrange(x, y + 1)

How does the program make sure that it goes through each cell in the matrix?

How frequently does mutation happen?

Breeding the next generation of agents

The following functions create a new population of agents based on the fitness of the existing
agents. The probability of being picked as a parent agent is proportional to the agent’s fitness.
There is another new random function random.uniform(x, y), which returns a random floating-
point number between x and y; random.uniform(0,1) is equivalent to random.random().
Make sure you understand how the pick_parent function works.

How does the program ensure that the probability of being picked as a parent is proportional
to fitness?

Why is deepcopy used in new_population?

def mutate(system):
 for row_i in range(len(system)):
 for column_i in range(len(system[0])):
 if random.random() < mutation_rate:
 system[row_i][column_i] = random.randint(0, mutation_max)

def pick_parent(population,sum_f):
 accumulator = 0
 r = random.uniform(0, sum_f)
 for agent in population:
 accumulator += fitness(agent)
 if r < accumulator:
 return agent

def new_population(population):
 new_p = []
 sum_f = sum_fitness(population)
 #print(sum_f) #uncomment this line if you would like updates during runs
 for i in range(len(population)):
 parent=pick_parent(population, sum_f)
 child_production_system = deepcopy(parent[0])
 child_reception_system = deepcopy(parent[1])
 mutate(child_production_system)
 mutate(child_reception_system)
 child=[child_production_system,
 child_reception_system,
 [0., 0., 0., 0.]]
 new_p.append(child)
 return new_p

Establishing a random population of agents

The function random_system generates a random signalling system, and this is used to generate
a random population of agents (random_population).

Running the simulation

This function runs the main simulation. Make sure that you understand how it works, by studying
the above functions again if necessary. After having run this module (remember that you choose
Run-Run Module in the editor to load the program into Python), run the simulation by simply
typing simulation(n) at the prompt, where n specifies the number of generations you want to
simulate.

How often does the population communicate in each generation?

At what point are agents assessed for fitness?

Run the simulation for a few generations: what do values returned by simulation signify?

Run it again, with different numbers of generations: how long does it take for a stable,
successful communication system to emerge? (Note: 1000 generations takes about 40 seconds
on my laptop, so be wary of starting very very long runs)

def random_system(rows,columns):
 system = []
 for i in range(rows):
 row = []
 for j in range(columns):
 row.append(random.randint(0, mutation_max))
 system.append(row)
 return system

def random_population(size):
 population = []
 for i in range(size):
 population.append([random_system(meanings,signals),
 random_system(signals,meanings),
 [0., 0., 0., 0.]])
 return population

def simulation(generations):
 accumulator=[]
 population = random_population(size)
 for i in range(generations):
 for j in range(interactions):
 pop_update(population)
 average_fitness=(sum_fitness(population)/size)
 accumulator.append(average_fitness)
 population = new_population(population)
 return [population,accumulator]

Questions

1. Under what conditions does stable, successful communication evolve? (Note that it is a very
good idea to run the simulation a few times, and plot the results).

2. Can you speed up evolution (or slow it down)? How? Is there a limit to how fast evolution can
happen in the model?

3. In earlier worksheets we gave you the option of modelling production and reception using a
single matrix of weights, or of modelling populations in a more structured way (e.g. where each
individual communicated with their neighbours). What difference do you think these factors will
make to the evolution of communication? Make the necessary adjustments to the code and find
out.

4. In this model a parent’s signalling system is transmitted directly to their offspring - this is our
model of the genetic transmission of an innate signalling system. How else might a signalling
system be transmitted from parent to offspring, and how might you model that process?

