Simulating Language
Lecture 14: lterated Bayesian Learning in
populations

Simon Kirby

simon@ling.ed.ac.uk



mailto:simon@ling.ed.ac.uk
mailto:simon@ling.ed.ac.uk

A reminder of the Griffiths & Kalish result

e Given enough time, the end result of cultural evolution always reflects the
prior bias and nothing else

Bottleneck does nothing
Noise does nothing
Details of language model do nothing

e |f prior bias is innate, then this means that the universal properties of
language are just a straightforward reflection of innateness

e Contra all that stuff about culture doing interesting things



An important detail: hypothesis selection

e How do you decide, given the posterior probabilities of various languages,
which to select?

e Sampling: given a particular distribution of probabilities, pick your
hypothesis from the distribution proportionately.

e MAP: given a particular distribution of probabillities, pick the best.

e Griffiths & Kalish’s result as stated is for samplers.



—riday’s lab: replicating the Griffiths & Kalish result
for samplers
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—riday’s lab: replicating the Griffiths & Kalish result
for samplers
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Friday’s lab: replicating the Griffiths & Kalish result
for samplers
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Friday’s lalb: MAP learning
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Friday’s lalb: MAP learning
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Friday’s lalb: MAP learning
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A slightly weird feature of the two grammar model
+ MAP learning

¢ In general, for MAP learners the strength of their bias isn’t important
e Although the difference between 0.499999, 0.5 and 0.500001 does

e But in the two grammar model, bias can sometimes be entirely irrelevant

0,0 learn O 0, 0, O] earn O
0, 1] prior chooses 0,0, 1 earn O
[1,1] learn 1 0,1, 1] earn 1

11, 1, 1] learn 1

e This is a bit untidy, but solely a (slightly odd) feature of this language model



Sampling vs MAP: summary so far

e |[terated Bayesian Learning allows us to more precisely understand the
relationship between learning bias and eventual language structure

e |f you assume social learning is about maximising the chance of converging
on what other people are doing (i.e. selecting the MAP hypothesis), then
cultural evolution does a lot of work for you

® \/ery weak innate biases are all that’s needed to explain strong linguistic
universals

e |f people are MAP learners

e |f we see universals in language, then we should not assume that these are
hard-coded as strong constraints in the genes

¢ |f people are MAP learners



t’s really important we get this right!

e |f language learning is like sampling, language universals probably closely
reflect learner biases. If it’s like MAP, they don'’t.

e How can we tell which is right?

e Run experiments on real people to see if they behave like they are
sampling or selecting the MAP language

e Maybe evolution will favour one alternative over the other?
e See final lecture
e Maybe one of these results is an unrepresentative special case

* For instance: what happens if we go beyond long skinny diffusion
chains and look at transmission in populations?

e Smith (2009), Burkett & Griffiths (2010)






Samplers, everyone learns from one teacher (bias
for LO = 0.0)
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Samplers, everyone learns from multiple teachers
(bias = 0.0)
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Samplers, everyone learns from multiple teachers
(bias = 0.0)
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Sampler populations look like MAP populations!

* |In populations, when samplers learn from multiple teachers:
No convergence to the prior
Amplification of weak biases

Bottleneck effects

* |In this context, Bayesian learning is conformist
e Disproportionately likely to learn the more common language

e Known result of conformist learning: convergence on single language



_earning one language versus learning multiple
anguages”?

e That’s based on the assumption that learners try to find a single grammar to
account for their data

e Even if it was generated by multiple people

e Burkett & Griffiths (2010): we can just add this as a parameter of the model

e | ow a: learners tend to learn a single language

e High a: learners learn multiple languages



Burkett & Griffiths’ result
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Summary

e An active area of ongoing research

e My hunch is that the Griffiths & Kalish sampling result will turn out to be a
special case

¢ \We should not expect to see a straightforward relationship between
language universals and learner bias

e But in either case, lterated Bayesian Learning has been key to clarifying our
understanding of what cultural evolution might be like



Up next

e Monday: last lab
e More Bayesian stuff
e Thursday: putting it all together
e | earning, culture, biological evolution

e Evolution of the language faculty?



