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Which reading are you doing / planning to do?

A.  Stone, chapter 1 only


B.  Stone, chapters 1-4


C.  Kruschke, chapters 


D.  Some other really great introduction to Bayes


E.  None of the above 

Stone Kruschke



The story so far, and what comes next

• Signalling systems (and languages) can evolve as a result of their 
transmission


• We can model this


• The biases of learners shapes what evolves


• This potentially allows us to link findings about biases in learning at the 
individual level to predictions / observations about language at the 
population level


• But caution (or better, a model) is required - the acquisition test here 
was misleading


• Next up: a class of models that allow us to be very clear and very precise 
about bias



We need a more general model

• Ideally, we’d like to be able to mix up a bunch of simple ingredients and 
work out what language should look like after cultural evolution has run for 
some time:


• BIAS (i.e. what agents are born with)


• LANGUAGE MODEL (i.e. set of possible languages, set of possible 
data)


• POPULATION MODEL (e.g. diffusion chain, closed group etc.)


• OTHER FEATURES OF CULTURAL TRANSMISSION (e.g. how much 
data a learner sees, the type of errors that occur, ...)



Towards a more general model of learning bias: a 
medical quiz

• Your friend coughs.  Is this cough caused by:


A.  Lung cancer


B.  A cold


C.  Athlete’s foot


• Resolving this question requires you to draw on two probabilities: 


• How likely is it that someone with the illness in question would exhibit that 
symptom?


• How common is each illness?



Likelihood of symptoms given illnesses

Lung cancer: coughing is very likely, if you have lung cancer


A cold: coughing is very likely, if you have a cold


Athlete’s foot: coughing is very very unlikely to be caused by athlete’s foot


• If all we care about are the likelihood of the symptoms given each illness, we 
would conclude that your friend either has lung cancer or a cold 



Probability of illnesses

Lung cancer: is fairly rare


A cold: the common cold is very common


Athlete’s foot: is very common (let’s say)


• If all we care about are the prevalence of each illness, we would conclude that 
your friend either has a cold or athlete’s foot


• But you didn’t conclude this: you brought these two quantities together in a 
smart way.  How did you do it?



The Bayesian approach

• What you’re trying to figure out is the probability that your friend has a 
particular illness, given the symptoms they are exhibiting.  We call this 
quantity:


• We are trying to work this out based on two quantities which we know 
(roughly):


• The likelihood of exhibiting a particular symptom given that you have a 
certain illness


• The prior probability of each illness 
 
 
 

P (illness|symptoms)

P (symptoms|illness)

P (illness)



Bayes’ rule

• Bayes’ rule provides a convenient way of expressing the quantity we want to 
know in terms of the quantities we already know:


• Or, in full:

P (illness|symptoms) � P (symptoms|illness)P (illness)

P (illness|symptoms) = P (symptoms|illness)P (illness)
P (symptoms)



• The thing we want to know is called the posterior  

• The probability of a particular set of symptoms given 
that you have a specific illness is called the 
likelihood  

• The probability that you have a particular illness, 
before I have any evidence from your symptoms, is 
called the prior 

• The term on the bottom (the probability of the 
symptoms independent of illness) is actually not very 
interesting to us, since it is the same for all illnesses.

Breaking it down P (illness|symptoms) = P (symptoms|illness)P (illness)
P (symptoms)

P (illness|symptoms)

P (symptoms|illness)

P (illness)

P (symptoms)



It makes intuitive sense...

• If the likelihood of symptoms given a certain illness is high, this will 
increase the posterior probability of that illness


• If the prior probability of a certain illness is high, this will increase the 
posterior probability of that illness


• If a particular illness has low prior probability, we need some really 
convincing evidence to make us believe it to be true


• imagine if your friend was coughing blood and having seizures

P (illness|symptoms) � P (symptoms|illness)P (illness)



Errr... hello... isn’t this a course about language?

• In the medical example, we were trying to use evidence provided by 
symptoms to infer what underlying illness your friend had


• What if you aren’t a medic, but a child hearing utterances from a parent and 
learning a language? You are trying to use evidence provided by utterances to 
infer what grammar your parent has in their head


illnesses = languages 
symptoms = utterances 
prior for each illness = bias in favour of particular languages


• An ideal language learner will estimate the posterior probability of each 
possible language given the utterances heard


• Children probably don’t calculate sums in their head while learning, but if their 
learning process is sensible, we can characterise it this way



Bayesian language learning

• Evaluate hypotheses about language given some prior bias (perhaps 
provided by your biology?) and the data that you’ve heard


• You want to know the posterior but all you have direct access to is the 
prior and the likelihood (assuming you know how sentences are 
produced from a given model of language)


• Bayes’ rule provides the solution:

P (h|d) =
P (d|h)P (h)

P (d)



Bayesian language learning

• Evaluate hypotheses about language given some prior bias (perhaps 
provided by your biology?) and the data that you’ve heard


• You want to know the posterior but all you have direct access to is the 
prior and the likelihood (assuming you know how sentences are 
produced from a given model of language)


• Bayes’ rule provides the solution:

P (h|d) / P (d|h)P (h)



Bayesian language learning

d

d
P (d|h)h

P (h|d) / P (d|h)P (h)



How to put numbers on uncertainty: probability

• Bayes Rule is about a relationship 
between probabilities. What are 
probabilities?


• How likely is it to rain tomorrow?

P (h|d) / P (d|h)P (h)



Chance of rain

• It will definitely either rain or not rain (“precipitate or not precipitate” - 
whatever) tomorrow: 100% chance of one of those two outcomes

Rain No rain



Chance of rain

• It will definitely either rain or not rain (“precipitate or not precipitate” - 
whatever) tomorrow: 100% chance of one of those two outcomes


• The met office reckons it’s slightly more likely to rain than not: estimate a 
60% chance of rain

Rain No rain



Chance of rain

If there’s a 60% chance it will rain, what chance do the Met Office assign to it 
not raining?


A. 0% chance of no rain


B. 40% chance of no rain


C. 60% chance of no rain


D. 100% chance of no rain

Rain No rain



From chance to probability

• The Met Office are in fact stating their estimate of the probability of it 
raining tomorrow.


• They express is as a %


• But probabilities are conventionally expressed as a proportion of possible 
events


• i.e. they lie between 0 and 1 


• “60% chance” corresponds to probability of 60/100 or 6/10 or 0.6

Rain No rain



Assigning probabilities

Consider this scenario Roughly what probability does the heroic forecaster 
assign to it raining heavily?


A. probability of heavy rain ≈ 0 


B. probability of heavy rain ≈ 0.5


C. probability of heavy rain ≈ 1


D. probability of heavy rain = 1


E. probability of heavy rain ≈ 2

https://www.youtube.com/watch?v=rNdrgjjsHsM


Assigning probabilities

Consider this scenario What probability does the meteorological board assign 
to it raining heavily?


A. substantially lower probability 


B. about the same probability


C. substantially higher probability

https://www.youtube.com/watch?v=rNdrgjjsHsM


Discrete probability distributions

• A limited set of known possible scenarios


• Rain, no rain


• We can assign a probability to each event


• Since the events are mutually exclusive, the probabilities sum to 1

p(rain)=0.6 p(no-rain)= 
0.4



Continuous probability distributions



Summary and next up

• Bayesian learning: a nice simple way to model learning


• Make the bias of learners beautifully explicit


• Involves probabilities:


• For each possible hypothesis, what is its prior probability? What is the 
likelihood of the data under that hypothesis?


• For each possible language, what is its prior probability? What is the 
likelihood of the linguistic data if people are using that language?


• Monday’s lecture: a linguistic case study, and iterated Bayesian learning


• Thursday: lab on iterated Bayesian learning


• Friday: Jennifer Culbertson

P (h|d) / P (d|h)P (h)


