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Which reading are you doing / planning to do?

. Stone, chapter 1 only
. Stone, chapters 1-4

. Kruschke, chapters

E. None of the above

Some other really great introduction to Bayes

1.1. Example 1: Poxy Diseases
The Patient’s Perspective

Suppose that you wake up one day with spots all over your face, as in
Figure 1.2. The doctor tells you that 90% of people who have smallpox
have the same symptoms as you have. In other words, the probability
of having these symptoms given that you have smallpox is 0.9 (ie 90%).
As smallpox is often fatal, you are naturally terrified,

However, after a few moments of contemplation, you decide that you
do not want to know the probability that vou have these symptoms
(after all, you already know you have them). Instead, what you really
want to know is the probability that you have smallpox.

So you say to vour doctor, “Yes, but what is the probability that I

have smallpox given that I have these symptom:s “Ah”, says your
doctor, “a very good question.” After scribbling some equations, vour
doctor looks up. “The probability that you have smallpox given that

you have these symptoms is 1.1%, or equivalently, 0.011." Of course,

Figure 1.2.: Thomas Bayes diagnosing « patient
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1just want someone who I can believe in,
Someone at home who will not leave me grievin'
Show me a sign that you'll always be true,

and I'll be your model of faith and virtue.

Inferential statistical methods help us decide what to believe in. With inferen-
tial statistics, we don't just introspect to find the truth. Instead, we rely on data
from observations. Based on the data, what should we believe in? Should we
believe that the tossed coin is fair if it comes up heads in 7 of 10 flips? Should
we believe that we have cancer when the test comes back positive? Should we
believe that she loves me when the daisy has 17 petals? Our beliefs can be

Kruschke



The story so far, and what comes next

 Signalling systems (and languages) can evolve as a result of their
transmission

* We can model this
* The biases of learners shapes what evolves

 This potentially allows us to link findings about biases in learning at the
individual level to predictions / observations about language at the
population level

- But caution (or better, a model) is required - the acquisition test here
was misleading

* Next up: a class of models that allow us to be very clear and very precise
about bias



We need a more general model

* Ideally, we’d like to be able to mix up a bunch of simple ingredients and
work out what language should look like after cultural evolution has run for

some time:
* BIAS (i.e. what agents are born with)

- LANGUAGE MODEL (i.e. set of possible languages, set of possible
data)

- POPULATION MODEL (e.g. diffusion chain, closed group etc.)

* OTHER FEATURES OF CULTURAL TRANSMISSION (e.g. how much
data a learner sees, the type of errors that occur, ...)



Towards a more general model of learning bias: a
medical quiz

* Your friend coughs. Is this cough caused by:
A. Lung cancer
B. A cold
C. Athlete’s foot
* Resolving this question requires you to draw on two probabillities:

* How likely is it that someone with the iliness in question would exhibit that
symptom?

* How common is each illness?



Likelihood of symptoms given illnesses

Lung cancer: coughing is very likely, if you have lung cancer
A cold: coughing is very likely, if you have a cold
Athlete’s foot: coughing is very very unlikely to be caused by athlete’s foot

- If all we care about are the likelihood of the symptoms given each iliness, we
would conclude that your friend either has lung cancer or a cold



Probabllity of illnesses

Lung cancer: is fairly rare
A cold: the common cold is very common
Athlete’s foot: is very common (let’s say)

- If all we care about are the prevalence of each illness, we would conclude that
your friend either has a cold or athlete’s foot

- But you didn’t conclude this: you brought these two quantities together in a
smart way. How did you do it?



The Bayesian approach

- What you’re trying to figure out is the probability that your friend has a

particular illness, given the symptoms they are exhibiting. We call this
quantity:

P(illness|symptoms)

- We are trying to work this out based on two quantities which we know
(roughly):

* The likelihood of exhibiting a particular symptom given that you have a
certain illness

P(symptomslillness)

* The prior probability of each illness

P(illness)



Sayes’ rule

- Bayes’ rule provides a convenient way of expressing the quantity we want to
know Iin terms of the quantities we already know:

P(illness|symptoms) o< P(symptomslillness)P(illness)

* Or, in full:

P(symptoms|illness) P(illness)
P(symptoms)

P(illness|symptoms) =



P(symptoms|illness)P(illness)

Breaklng I-t dOWﬂ P(illness|symptoms) = Blsympionts)

P(illness|symptoms) The thing we want to know is called the posterior

» The probability of a particular set of symptoms given

P t 11
(symptomsliliness) that you have a specific iliness is called the

likelihood
P(illness) - The probability that you have a particular illness,
before | have any evidence from your symptoms, is
called the prior
P(symptoms) - The term on the bottom (the probability of the

symptoms independent of illness) is actually not very
interesting to us, since it is the same for all ilinesses.



It makes Iintultive sense...

P(illness|sgmptoms) < P(sym liness) P )

- If the likelihood of symptoms given a certain iliness is high, this will
Increase the posterior probability of that illness

* If the prior probability of a certain iliness is high, this will increase the
posterior probability of that illness

* If a particular iliness has low prior probability, we need some really
convincing evidence to make us believe it to be true

* imagine if your friend was coughing blood and having seizures



—rrr... hello... isn’t this a course about language”

* In the medical example, we were trying to use evidence provided by
symptoms to infer what underlying iliness your friend had

- What if you aren’t a medic, but a child hearing utterances from a parent and
learning a language? You are trying to use evidence provided by utterances to
infer what grammar your parent has in their head

liInesses = languages
symptoms = utterances
prior for each illness = bias in favour of particular languages

* An ideal language learner will estimate the posterior probability of each
possible language given the utterances heard

» Children probably don’t calculate sums in their head while learning, but if their
learning process is sensible, we can characterise it this way



Bayesian language learning

 Evaluate hypotheses about language given some prior bias (perhaps
provided by your biology?) and the data that you’ve heard

* You want to know the posterior but all you have direct access to is the
prior and the likelihood (assuming you know how sentences are
produced from a given model of language)

- Bayes’ rule provides the solution:

P(d|h)P(h)
P(d)

P(h|d) =



Bayesian language learning

 Evaluate hypotheses about language given some prior bias (perhaps
provided by your biology?) and the data that you’ve heard

* You want to know the posterior but all you have direct access to is the
prior and the likelihood (assuming you know how sentences are
produced from a given model of language)

- Bayes’ rule provides the solution:

P(h|d)  P(d|h)P(h)



Bayesian language learning

P(h|d) x P(d|h)P(h)

a

&P(dh
.




How to put numbers on uncertainty: probability
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Chance of rain

Rain No rain

* It will definitely either rain or not rain (“precipitate or not precipitate” -
whatever) tomorrow: 100% chance of one of those two outcomes



Chance of rain

Rain No rain

- It will definitely either rain or not rain (“precipitate or not precipitate” -
whatever) tomorrow: 100% chance of one of those two outcomes

- The met office reckons it’s slightly more likely to rain than not: estimate a
60% chance of rain



Chance of rain

Rain No rain

If there’s a 60% chance it will rain, what chance do the Met Office assign to it
not raining?

A. 0% chance of no rain
B. 40% chance of no rain
C. 60% chance of no rain

D. 100% chance of no rain



From chance to probability

Rain No rain

* The Met Office are in fact stating their estimate of the probability of it
raining tomorrow.

* They express is as a %

 But probabilities are conventionally expressed as a proportion of possible
events

* I.e. they lie between 0 and 1

+ “60% chance” corresponds to probability of 60/100 or 6/10 or 0.6



Assigning probabillities

Consider this scenario Roughly what probability does the heroic forecaster
assign to it raining heavily?

A. probability of heavy rain = 0
B. probability of heavy rain = 0.5
C. probability of heavy rain = 1
D. probability of heavy rain = 1

E. probability of heavy rain = 2


https://www.youtube.com/watch?v=rNdrgjjsHsM

Assigning probabillities

Consider this scenario What probability does the meteorological board assign
to it raining heavily?

A. substantially lower probability
B. about the same probability

C. substantially higher probability


https://www.youtube.com/watch?v=rNdrgjjsHsM

Discrete probability distributions

o(NO-rain)=

p(rain)=0.6 0.4

A limited set of known possible scenarios
« Rain, no rain
- We can assign a probabillity to each event

* Since the events are mutually exclusive, the probabilities sum to 1



Continuous probabillity distributions
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Summary and next up P(hld) o< P(d|h)P(h)

- Bayesian learning: a nice simple way to model learning
- Make the bias of learners beautifully explicit
* Involves probabilities:

* For each possible hypothesis, what is its prior probability? What is the
likelihood of the data under that hypothesis?

* For each possible language, what is its prior probability? What is the
likelihood of the linguistic data if people are using that language?

- Monday'’s lecture: a linguistic case study, and iterated Bayesian learning
- Thursday: lab on iterated Bayesian learning

* Friday: Jennifer Culbertson



