Greenbergian Universals and Bayesian inference
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Greenberg's Universal 1

1. SOV, SVO, VSO (not VOS, OSV, OVS)




Greenberg's Universal 26

26. Suffixes (not prefixes)




Greenberg's Universal 18

18. If Adjective-Noun — Numeral-Noun




Diversity constrained by cognitive biases?

» Lots of variation across languages

» Lots of confounding factors (e.g.,...7)
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Diversity constrained by cognitive biases?

v

Lots of variation across languages

v

Lots of confounding factors (e.g.,...7)

v

But could indicate cognitive biases
» Cognitive bias = prior bias
» Non-uniform preference among patterns
» (Could be innate or learned)

» (Could be general or specialized for language)

v

How to investigate? Preferences in a single generation??
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Universal 18

18. If Adjective-Noun — Numeral-Noun

Finland

B e 00 o ; 4
ussia -~

a $Cunsdu

u..,.. @
W @ @
;
i [¢]

£ Kazekhstan
IQ 0
. [ ] | Afg

o®

North
Atlantic
Ocean

A1



Universal 18

» Actually, there is more than one asymmetry here...

N-Adj Adj-N
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Universal 18

» Actually, there is more than one asymmetry here...

N-Adj Adj-N

» Related to another bias you've read about??
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Setting up the experiment

» The conditions

N-Adj Adj-N

» Easy or hard to learn...?
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Setting up the experiment

» The conditions

N-Adj Adj-N

» Easy or hard to learn...?

» Adding in regularization...

» 70% dominant pattern, 30% minority pattern
» What would regularization look like in this case?
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Formulating hypotheses

» Training = listing to Adj-N, N-Adj, Num-N, N-Num phrases
» Testing = producing phrases
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Formulating hypotheses

» Training = listing to Adj-N, N-Adj, Num-N, N-Num phrases
» Testing = producing phrases
» Three reasonable hypotheses...

H1. Learning involves tracking input statistics

H2. Learners regularization variation

H3. Learners regularize but only orders that are easy to learn



Formulating hypotheses

» In terms of Bayesian inference...
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Formulating hypotheses

» In terms of Bayesian inference...

H1. Input likelihood x flat/uninformative prior
H2. Input likelihood x regularization prior

H3. Input likelihood x regularization prior xorder prior
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Making predictions

» Three predicted outcomes...
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» Three predicted outcomes...

1. Probability matching

Use of Majority Order
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Making predictions

» Three reasonable outcomes...

1. Probability matching

0.9

2. Across the board
regularization

3. Regularization
modulated by order

Use of Majority Order
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Results

» Participants: 65 native-English-speaking undergrads
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Results

» Participants: 65 native-English-speaking undergrads
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Results

» Participants: 65 native-English-speaking undergrads
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Results

» Participants: 65 native-English-speaking undergrads
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Results

» Participants: 65 native-English-speaking undergrads
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Individual learner outcomes

p(Num-N)
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Formulating hypotheses

» In terms of Bayesian inference...

H1. Input likelihood x flat/uninformative prior
H2. Input likelihood x regularization prior

H3. Input likelihood x regularization prior x order prior
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Formulating hypotheses

» In terms of Bayesian inference...

H1. Input likelihood x flat/uninformative prior

H2. Input likelihood x regularization prior

H3. Input likelihood x regularization prior x order prior
» Likelihood

» Regularization prior

» Ordering prior
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Likelihood

» Coin toss example

» How many heads out of total tosses?
» Fair coin?

» Biased coin?
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Likelihood

» Coin toss example

» How many heads out of total tosses?
» Fair coin?

» Biased coin?

» Likelihood
binomial(5 heads |p =0.5, 10 tosses) = 0.2

binomial(5 heads |p =0.9, 10 tosses) = 0.001
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Likelihood

» Adj, N ordering
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» Adj, N ordering

» How many Adj-N out of total Adj utterances?

» Does the grammar tend to use Adj-N7?

» Likelihood

binomial(28 Adj-N |p =0.5, 40 Adj) = 0.005

22 /37



Likelihood

» Adj, N ordering

» How many Adj-N out of total Adj utterances?

» Does the grammar tend to use Adj-N7?

» Likelihood
binomial(28 Adj-N |p =0.5, 40 Adj) = 0.005

binomial(28 Adj-N |p =0.7, 40 Adj) = 0.14



Likelihood

» Adj, N ordering
» How many Adj-N out of total Adj utterances?

» Does the grammar tend to use Adj-N7?

» Likelihood
binomial(28 Adj-N |p =0.5, 40 Adj) = 0.005
binomial(28 Adj-N |p =0.7, 40 Adj) = 0.14

binomial(28 Adj-N |p =0.3, 40 Adj) = 0.0000018



Likelihood

» Adj and Num ordering

» Grid of possible
probability combos

» Each assigns likelihood
to a set of counts

» (Total likelihood just
multiplies Adj and Num
likelihoods)

p(Num-N)
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Formulating hypotheses

» In terms of Bayesian inference...

H1. Input likelihood x flat/uninformative prior

H2. Input likelihood x regularization prior x flat order prior

H3. Input likelihood x regularization prior x biased order prior
» Likelihood

» Regularization prior

» Ordering prior
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Regularization prior

» Which points in the grid are more likely a priori?
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Regularization prior

» Which points in the grid are more likely a priori?

(a) (b)
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» Asymmetrical beta distributions: skewed parameters — one-way
regularization
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Effect of prior on posterior

» Likelihood alone vs. likelihood x regularization prior
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Effect of prior on posterior

» Likelihood alone vs. likelihood x regularization prior
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Regularization prior

» Which points in the grid are more likely a priori?
» Parameters of the beta: «,

» Same as the regularization prior from Reali & Griffiths, but
asymmetrical
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Regularization prior

v

Which points in the grid are more likely a priori?

v

Parameters of the beta: «,

v

Same as the regularization prior from Reali & Griffiths, but
asymmetrical

v

Conceptually: prior counts, e.g. of Adj-N utterances
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Formulating hypotheses

» In terms of Bayesian inference...

H1. Input likelihood x flat/uninformative prior

H2. Input likelihood x regularization prior x flat order prior

H3. Input likelihood x regularization prior x biased order prior
» Likelihood

» Regularization prior

» Ordering prior
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Ordering prior

» Which patterns are more likely a priori?
» Combination of two beta distributions gives pattern type
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Ordering prior

» Which patterns are more likely a priori?
» Combination of two beta distributions gives pattern type
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Ordering prior

» Which pattern is more likely a priori?
» Combination of two beta distributions gives pattern type
» Ordering prior is probability of each type, e.g.

[0.25, 0.25, 0.25, 0.25]

31/37



Ordering prior

» Which pattern is more likely a priori?
» Combination of two beta distributions gives pattern type
» Ordering prior is probability of each type, e.g.

[0.25, 0.25, 0.25, 0.25]

[what would a biased one look like??]
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Complete prior

» Complete prior probability of a grammar p(Adj-N), p(Num-N) is a

sum over four beta combinations of:
» prior probability of p(Adj-N) given regularization bias x
» prior probability of p(Num-N) given regularization bias x

» prior probability of particular combination of betas

» e.g., prior for p(Adj-N)=0.8, p(Num-N)=0.2

beta(0.8|a = 10, 5 = 2) x beta(0.2|aw = 10, 5 = 2) x 0.25+
beta(0.8|a = 2, 3 = 10) x beta(0.2|av = 2, 5 = 10) x 0.25+
beta(0.8|a = 2, 3 = 10) x beta(0.2|av = 10, 5 = 2) x 0.25+
beta(0.8]a = 10, 8 = 2) x beta(0.2)a = 2, B = 10) x 0.25+
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Looking for prior biases

» What parameters make the testing data most likely?
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Looking for prior biases

» What parameters make the testing data most likely?
» Regularization parameters («a, 3) very skewed (16.5, 0.001)
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Looking for prior biases

» What parameters make the testing data most likely?

» Regularization parameters («a, 3) very skewed (16.5, 0.001)
» Prior probability of pattern types:
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Posterior (finally!)

» What kinds of p(Adj-N), p(Num-N) pairs are learners likely to
acquire given set of prior parameters?
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Posterior (finally!)

» What kinds of p(Adj-N), p(Num-N) pairs are learners likely to
acquire given set of prior parameters?

Prior probability of p(Adj-N
Prior probability of p(Adj-N
Prior probability of p(Adj-

Prior probability of p(Adj-N

=high, p(Num-N)=high is high

=low, p(Num-N)=low is high

N)=low, p(Num-N)=high is pretty low
=high, p(Num-N)=low is zero!
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N-Adj Adj-N
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For the lab...

v

Calculate posterior distributions

v

Recreate model predictions

v

Investigate the effect of the prior parameters on predicted
grammars

Extra-credit: iterate it

v
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