

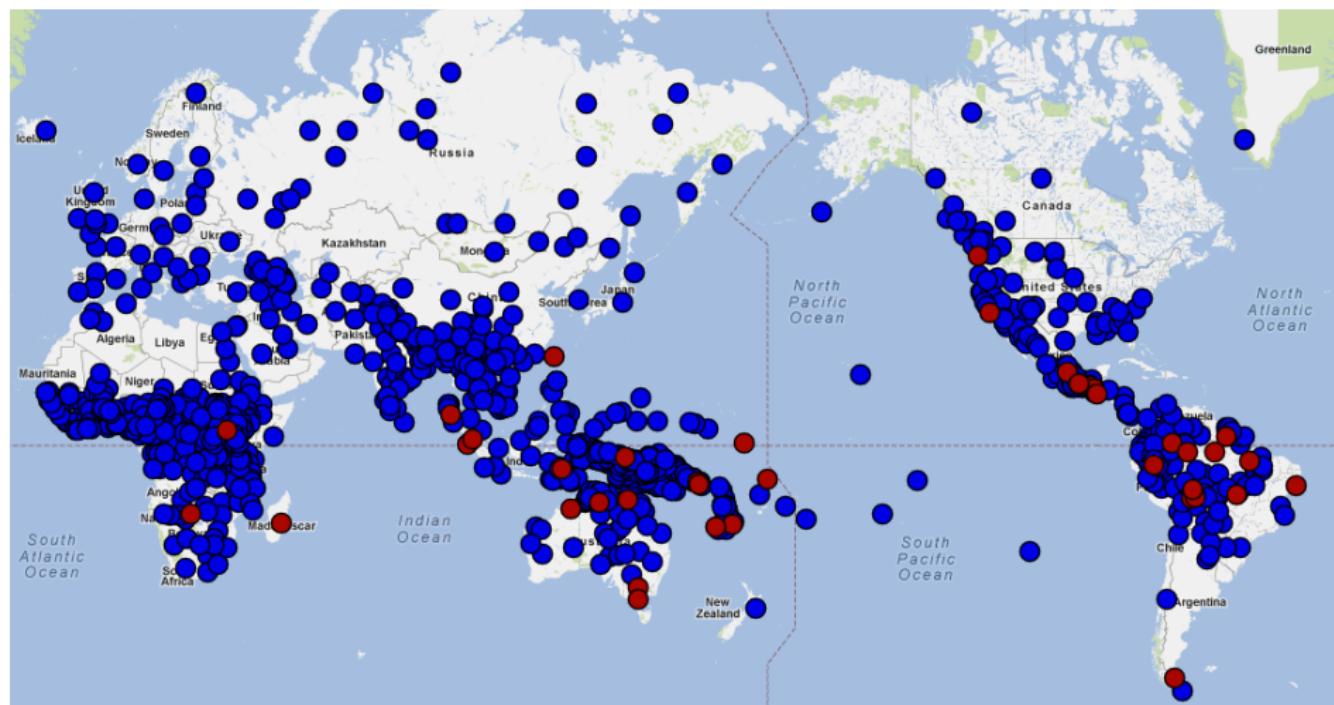
Greenbergian Universals and Bayesian inference

Jenny Culbertson

Simulating Language, 11 March, 2015

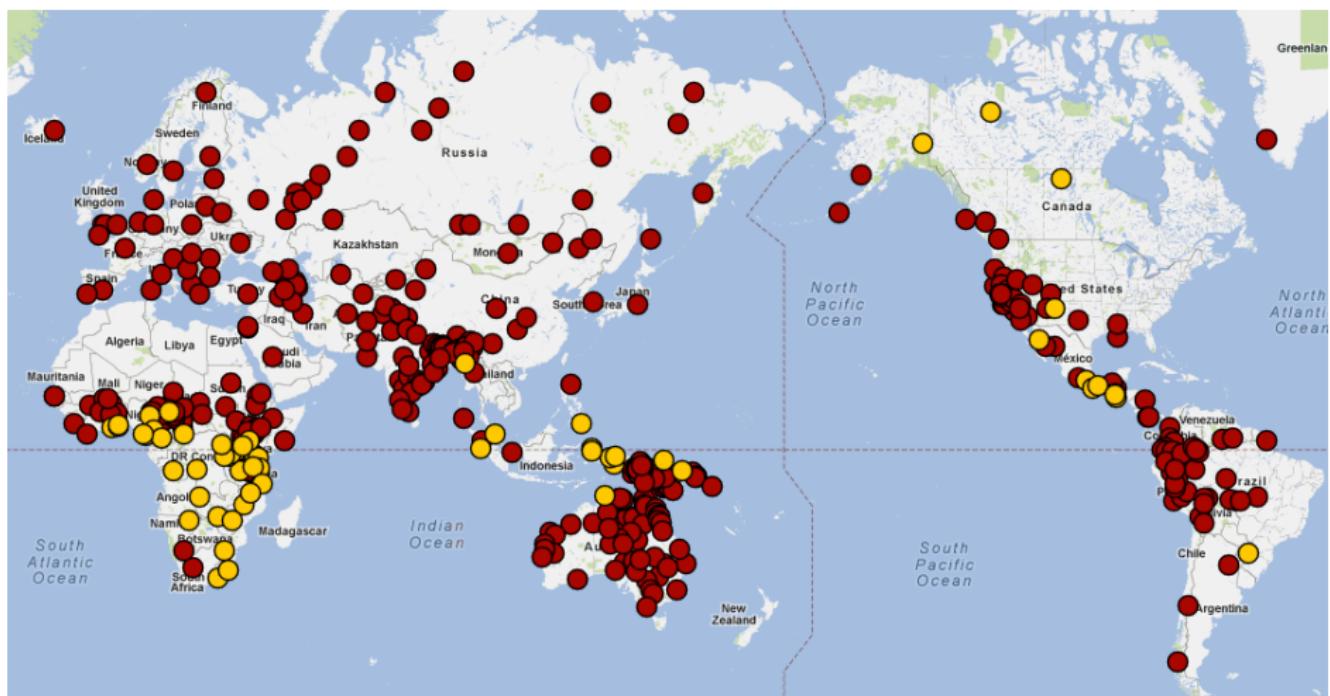
Greenberg's Universal 1

1. SOV, SVO, VSO (not VOS, OSV, OVS)



Greenberg's Universal 26

26. Suffixes (not prefixes)



Greenberg's Universal 18

18. If Adjective-Noun → Numeral-Noun

Diversity constrained by cognitive biases?

- ▶ Lots of variation across languages
- ▶ Lots of confounding factors (e.g.,....?)

Diversity constrained by cognitive biases?

- ▶ Lots of variation across languages
- ▶ Lots of confounding factors (e.g.,...?)
- ▶ But could indicate cognitive biases

Diversity constrained by cognitive biases?

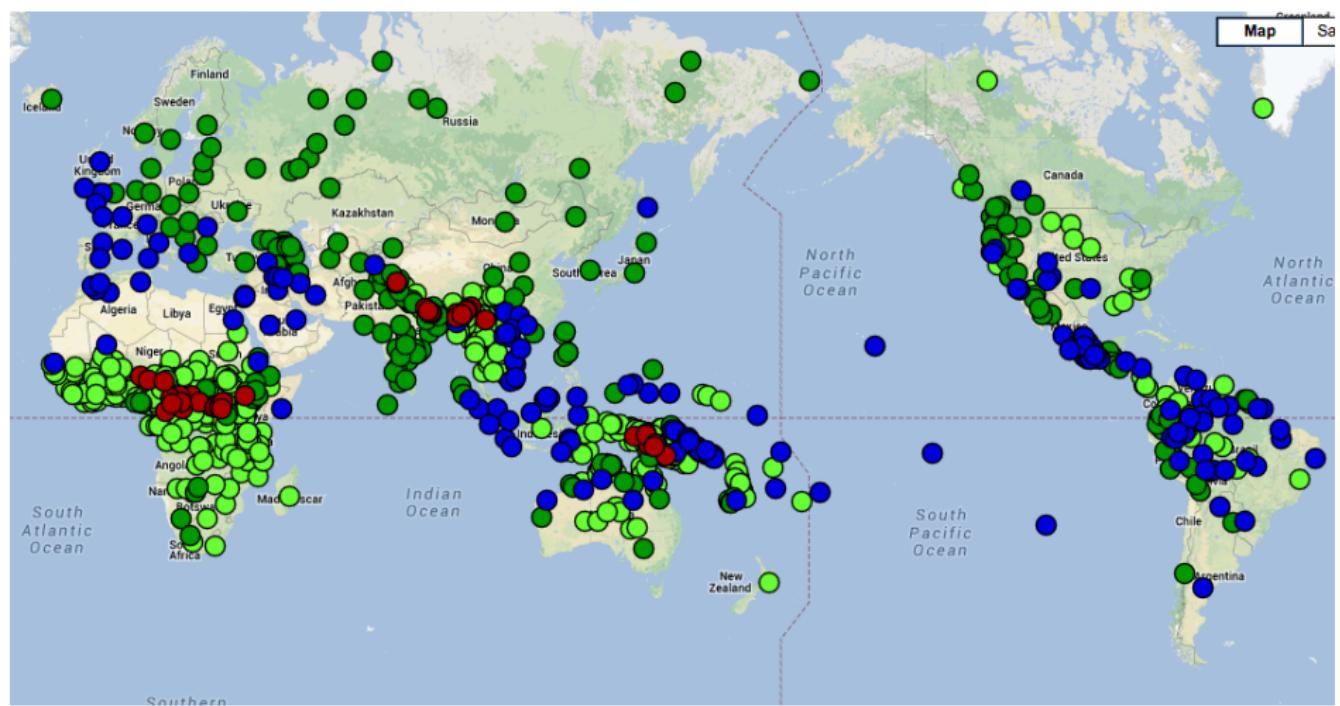
- ▶ Lots of variation across languages
- ▶ Lots of confounding factors (e.g.,...?)
- ▶ But could indicate cognitive biases
 - ▶ Cognitive bias = prior bias
 - ▶ Non-uniform preference among patterns
 - ▶ (Could be innate or learned)
 - ▶ (Could be general or specialized for language)

Diversity constrained by cognitive biases?

- ▶ Lots of variation across languages
- ▶ Lots of confounding factors (e.g.,....?)
- ▶ But could indicate cognitive biases
 - ▶ Cognitive bias = prior bias
 - ▶ Non-uniform preference among patterns
 - ▶ (Could be innate or learned)
 - ▶ (Could be general or specialized for language)
- ▶ How to investigate? Preferences in a single generation??

Universal 18

18. If Adjective-Noun → Numeral-Noun



Universal 18

- ▶ Actually, there is more than one asymmetry here...

	N-Adj	Adj-N
Num-N	17%	27%
N-Num	52%	4%

Universal 18

- ▶ Actually, there is more than one asymmetry here...

	N-Adj	Adj-N
Num-N	17%	27%
N-Num	52%	4%

- ▶ Related to another bias you've read about??

Setting up the experiment

- ▶ The conditions

	N-Adj	Adj-N
Num-N	3	1
N-Num	2	4

- ▶ Easy or hard to learn...?

Setting up the experiment

- ▶ The conditions

	N-Adj	Adj-N
Num-N	3	1
N-Num	2	4

- ▶ Easy or hard to learn...?
- ▶ Adding in regularization...

Setting up the experiment

- ▶ The conditions

	N-Adj	Adj-N
Num-N	3	1
N-Num	2	4

- ▶ Easy or hard to learn...?
- ▶ Adding in regularization...
 - ▶ 70% dominant pattern, 30% minority pattern
 - ▶ What would regularization look like in this case?

Formulating hypotheses

- ▶ Training = listing to Adj-N, N-Adj, Num-N, N-Num phrases
- ▶ Testing = producing phrases

Formulating hypotheses

- ▶ Training = listing to Adj-N, N-Adj, Num-N, N-Num phrases
- ▶ Testing = producing phrases
- ▶ Three reasonable hypotheses...

Formulating hypotheses

- ▶ Training = listing to Adj-N, N-Adj, Num-N, N-Num phrases
 - ▶ Testing = producing phrases
 - ▶ Three reasonable hypotheses...
- H1.** Learning involves tracking input statistics

Formulating hypotheses

- ▶ Training = listing to Adj-N, N-Adj, Num-N, N-Num phrases
 - ▶ Testing = producing phrases
 - ▶ Three reasonable hypotheses...
- H1.** Learning involves tracking input statistics
- H2.** Learners regularization variation

Formulating hypotheses

- ▶ Training = listing to Adj-N, N-Adj, Num-N, N-Num phrases
- ▶ Testing = producing phrases
- ▶ Three reasonable hypotheses...

H1. Learning involves tracking input statistics

H2. Learners regularization variation

H3. Learners regularize but only orders that are easy to learn

Formulating hypotheses

- ▶ In terms of Bayesian inference...

Formulating hypotheses

- ▶ In terms of Bayesian inference...
- H1.** Input likelihood \times flat/uninformative prior

Formulating hypotheses

- ▶ In terms of Bayesian inference...
 - H1. Input likelihood \times flat/uninformative prior
 - H2. Input likelihood \times regularization prior

Formulating hypotheses

- ▶ In terms of Bayesian inference...
 - H1.** Input likelihood \times flat/uninformative prior
 - H2.** Input likelihood \times regularization prior
 - H3.** Input likelihood \times regularization prior \times order prior

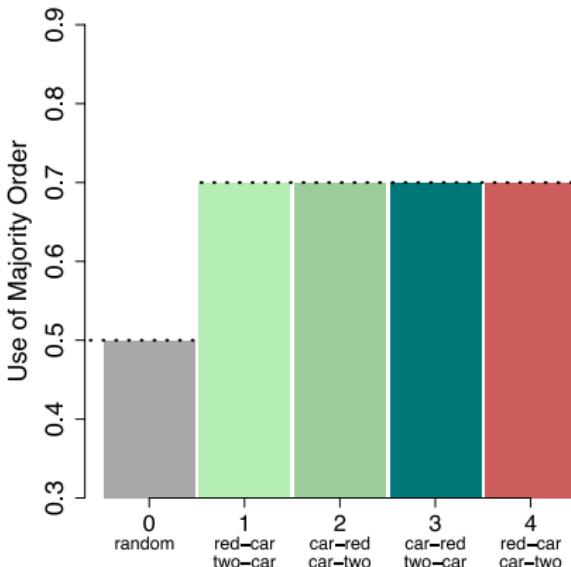
Making predictions

- ▶ Three predicted outcomes...

Making predictions

- ▶ Three predicted outcomes...

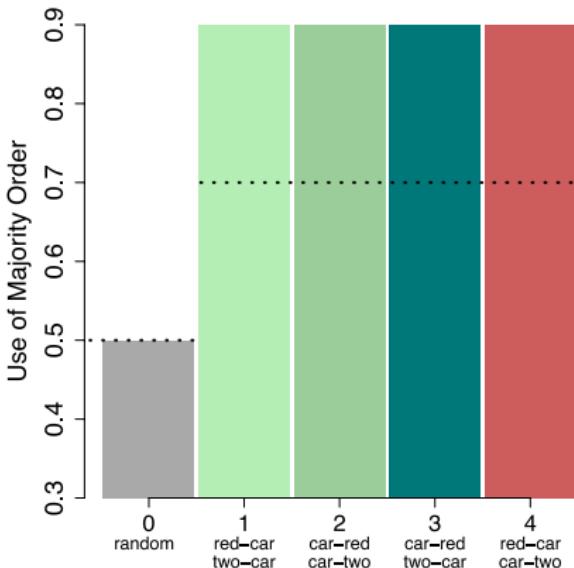
1. Probability matching



Making predictions

- ▶ Three reasonable outcomes...

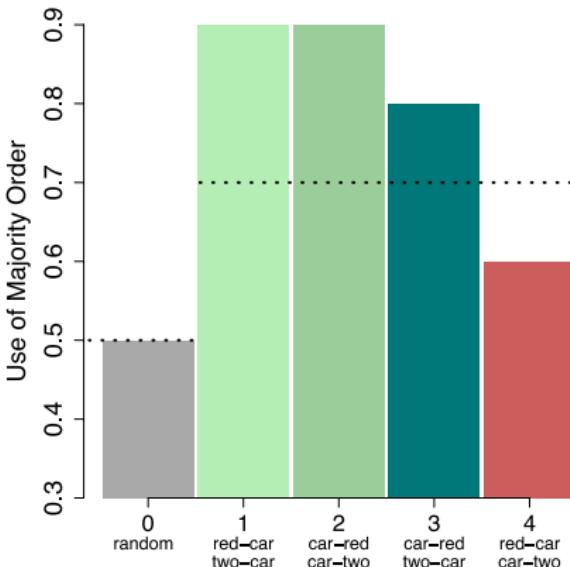
1. Probability matching
2. Across the board regularization



Making predictions

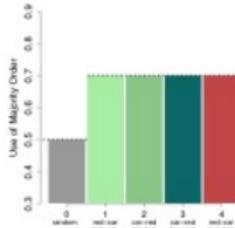
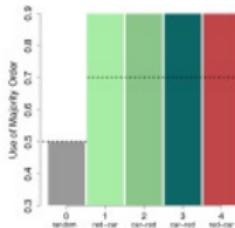
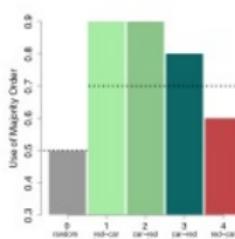
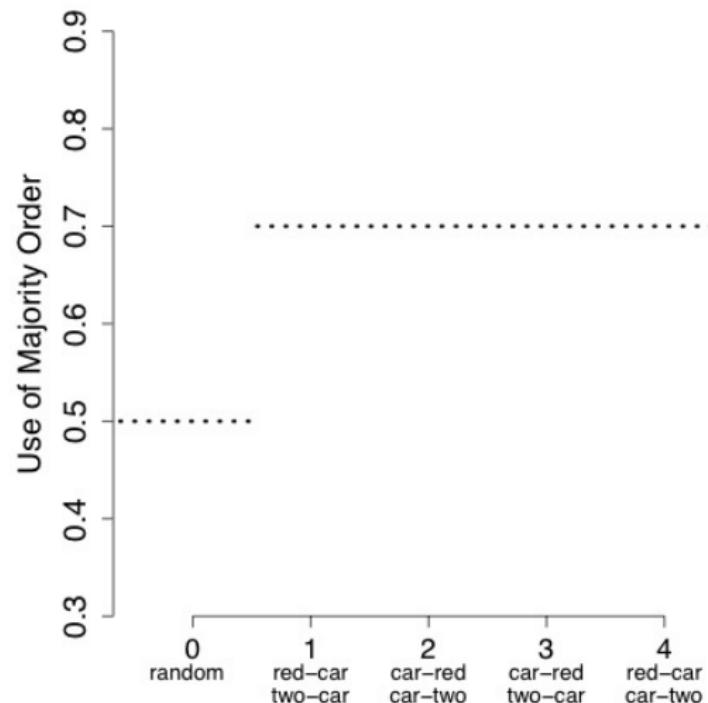
- ▶ Three reasonable outcomes...

1. Probability matching
2. Across the board regularization
3. Regularization modulated by order



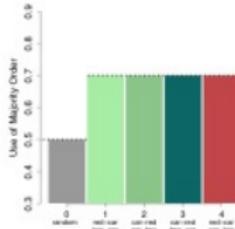
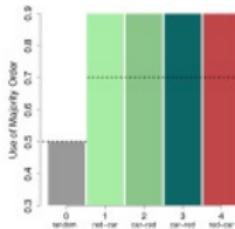
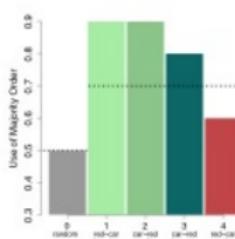
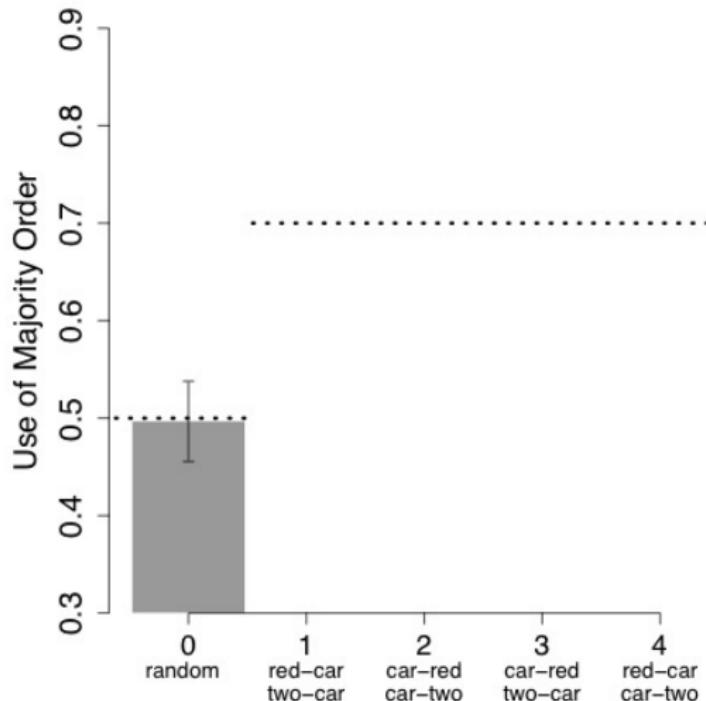
Results

- ▶ Participants: 65 native-English-speaking undergrads



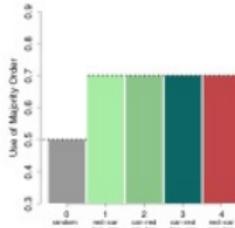
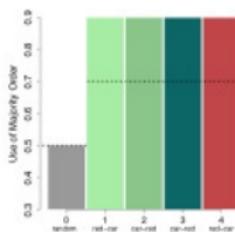
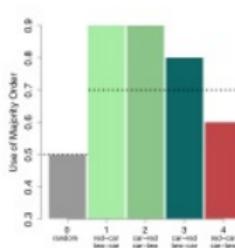
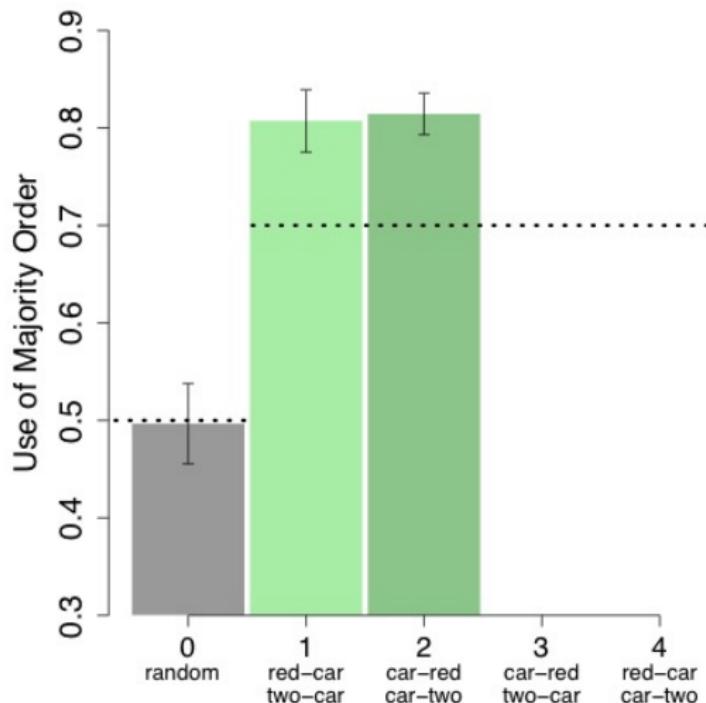
Results

- ▶ Participants: 65 native-English-speaking undergrads



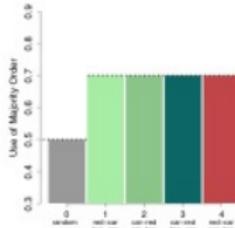
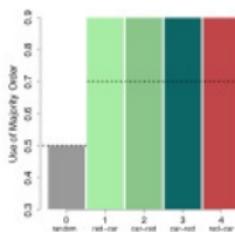
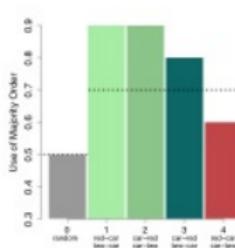
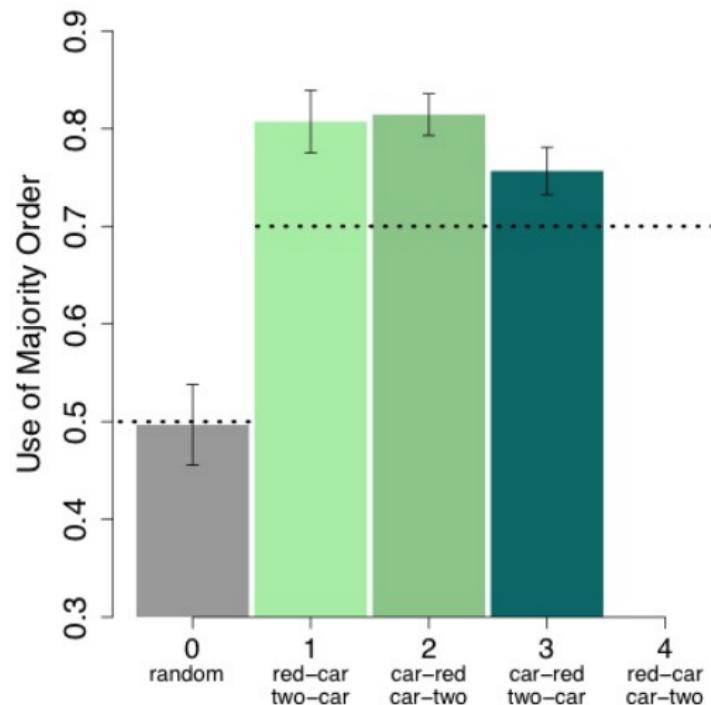
Results

- ▶ Participants: 65 native-English-speaking undergrads



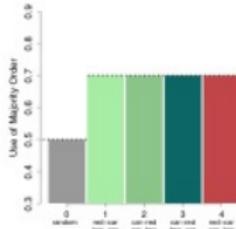
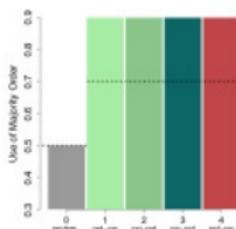
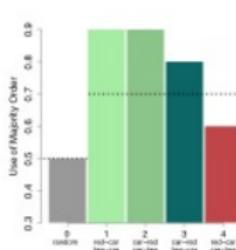
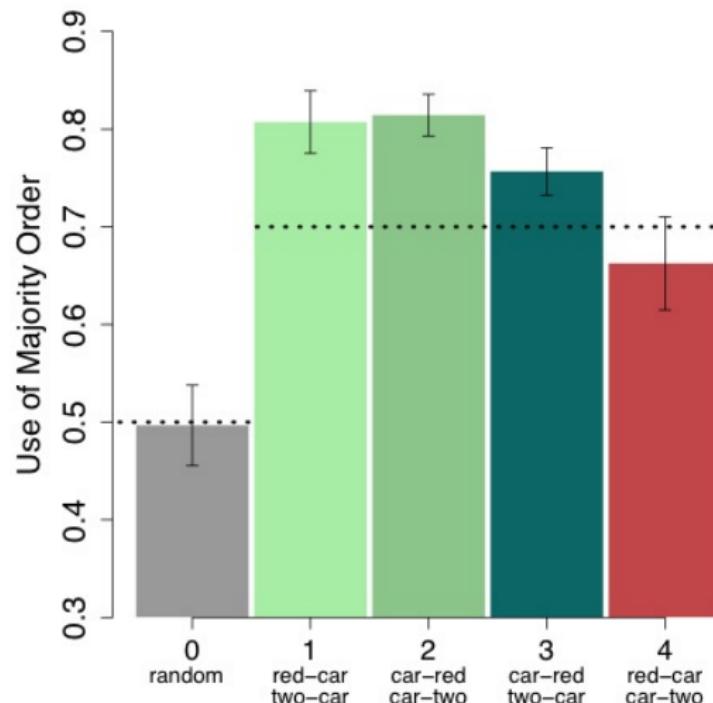
Results

- ▶ Participants: 65 native-English-speaking undergrads

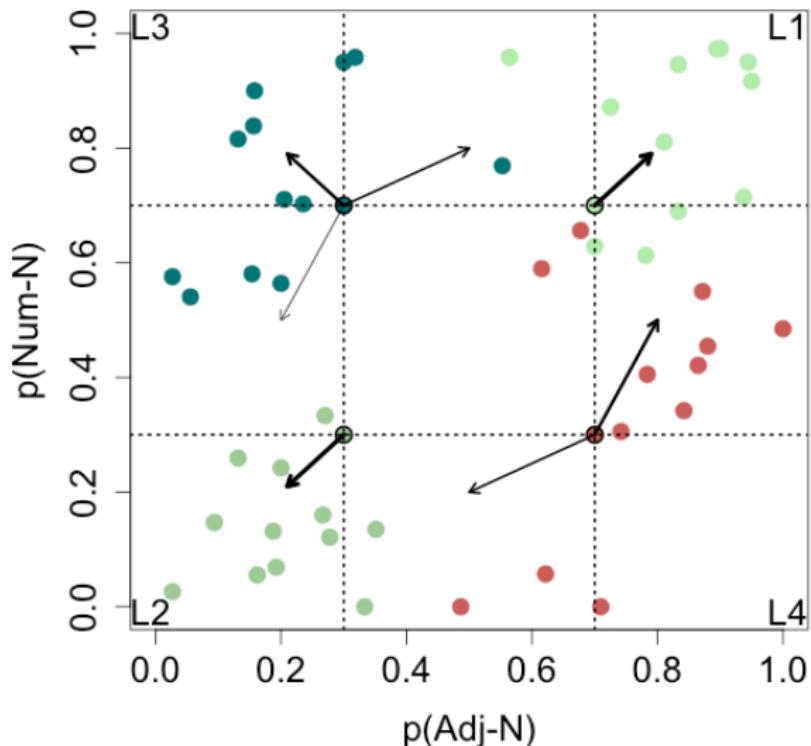


Results

- ▶ Participants: 65 native-English-speaking undergrads



Individual learner outcomes



Formulating hypotheses

- ▶ In terms of Bayesian inference...
 - H1.** Input likelihood \times flat/uninformative prior
 - H2.** Input likelihood \times regularization prior
 - H3.** Input likelihood \times regularization prior \times order prior

Formulating hypotheses

- ▶ In terms of Bayesian inference...
 - H1. Input likelihood \times flat/uninformative prior
 - H2. Input likelihood \times regularization prior
 - H3. Input likelihood \times regularization prior \times order prior
- ▶ Likelihood
- ▶ Regularization prior
- ▶ Ordering prior

Likelihood

- ▶ Coin toss example
 - ▶ How many heads out of total tosses?
 - ▶ Fair coin?
 - ▶ Biased coin?

Likelihood

- ▶ Coin toss example
 - ▶ How many heads out of total tosses?
 - ▶ Fair coin?
 - ▶ Biased coin?
- ▶ Likelihood

$$\text{binomial}(5 \text{ heads} \mid p = 0.5, 10 \text{ tosses}) = 0.2$$

$$\text{binomial}(5 \text{ heads} \mid p = 0.9, 10 \text{ tosses}) = 0.001$$

Likelihood

- ▶ Adj, N ordering
 - ▶ How many Adj-N out of total Adj utterances?
 - ▶ Does the grammar tend to use Adj-N?

Likelihood

- ▶ Adj, N ordering
 - ▶ How many Adj-N out of total Adj utterances?
 - ▶ Does the grammar tend to use Adj-N?
- ▶ Likelihood

$$\text{binomial}(28 \text{ Adj-N} \mid p = 0.5, 40 \text{ Adj}) = 0.005$$

Likelihood

- ▶ Adj, N ordering
 - ▶ How many Adj-N out of total Adj utterances?
 - ▶ Does the grammar tend to use Adj-N?
- ▶ Likelihood

$$\text{binomial}(28 \text{ Adj-N} \mid p = 0.5, 40 \text{ Adj}) = 0.005$$

$$\text{binomial}(28 \text{ Adj-N} \mid p = 0.7, 40 \text{ Adj}) = 0.14$$

Likelihood

- ▶ Adj, N ordering
 - ▶ How many Adj-N out of total Adj utterances?
 - ▶ Does the grammar tend to use Adj-N?
- ▶ Likelihood

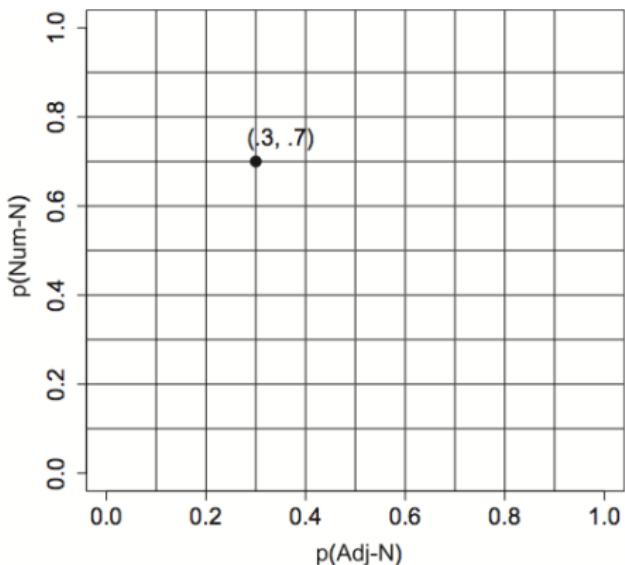
$$\text{binomial}(28 \text{ Adj-N} | p = 0.5, 40 \text{ Adj}) = 0.005$$

$$\text{binomial}(28 \text{ Adj-N} | p = 0.7, 40 \text{ Adj}) = 0.14$$

$$\text{binomial}(28 \text{ Adj-N} | p = 0.3, 40 \text{ Adj}) = 0.0000018$$

Likelihood

- ▶ Adj and Num ordering
 - ▶ Grid of possible probability combos
 - ▶ Each assigns likelihood to a set of counts
 - ▶ (Total likelihood just multiplies Adj and Num likelihoods)

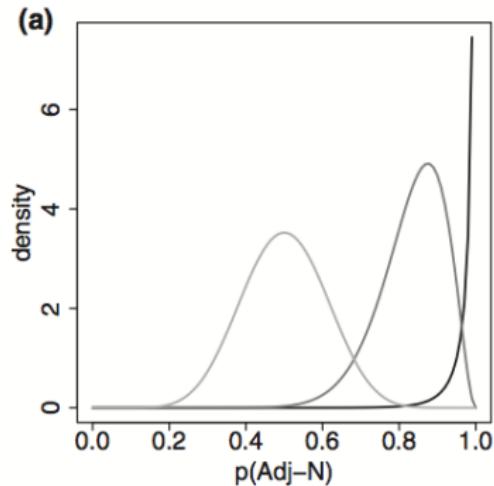
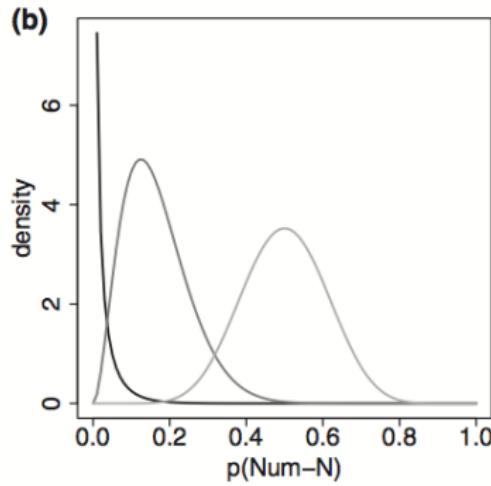


Formulating hypotheses

- ▶ In terms of Bayesian inference...
 - H1. Input likelihood \times flat/uninformative prior
 - H2. Input likelihood \times regularization prior \times flat order prior
 - H3. Input likelihood \times regularization prior \times biased order prior
- ▶ Likelihood
- ▶ Regularization prior
- ▶ Ordering prior

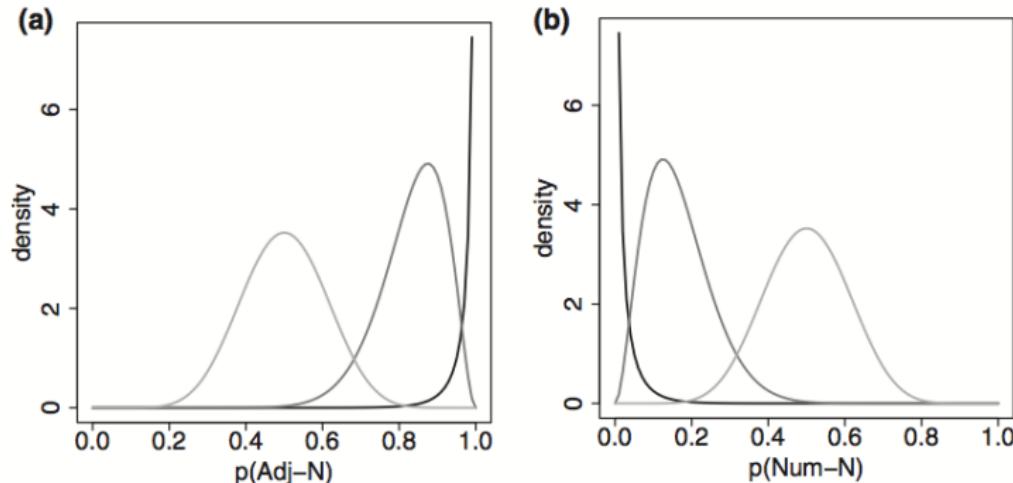
Regularization prior

- ▶ Which points in the grid are more likely a priori?



Regularization prior

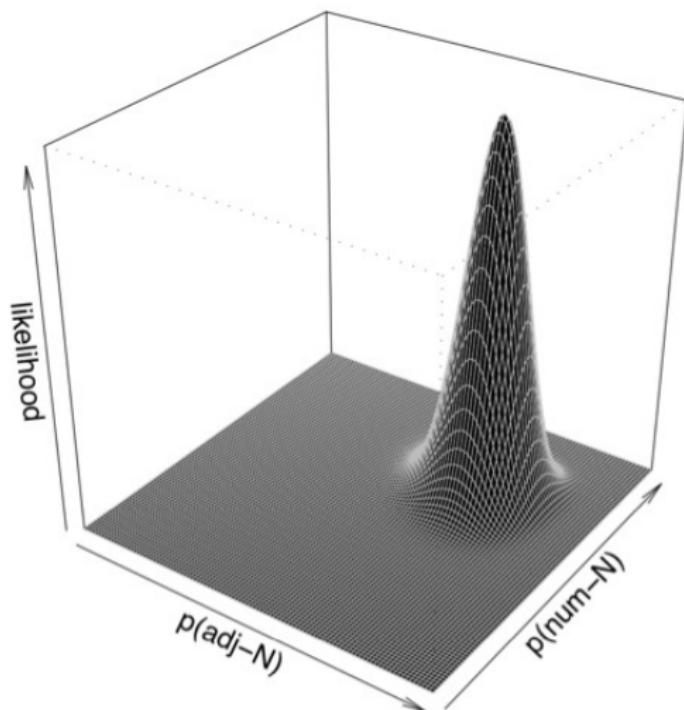
- ▶ Which points in the grid are more likely a priori?



- ▶ *Asymmetrical* beta distributions: skewed parameters \rightarrow one-way regularization

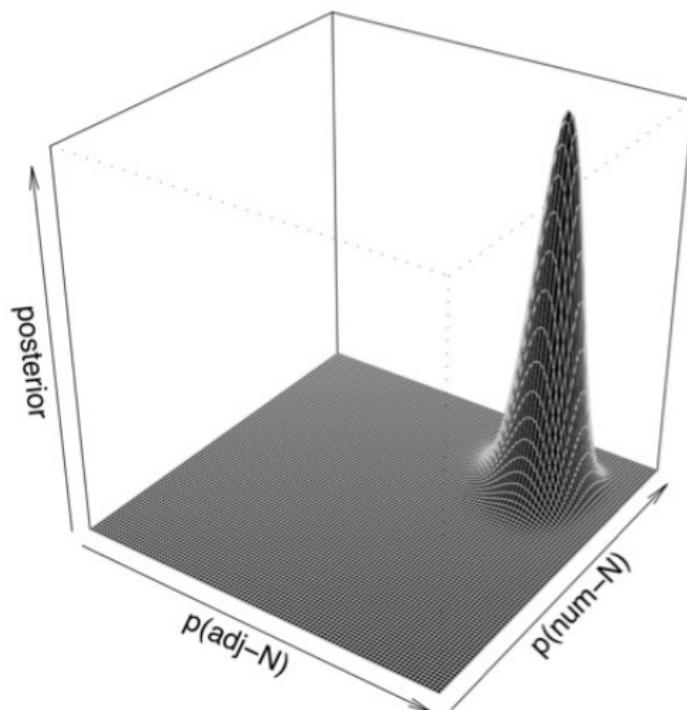
Effect of prior on posterior

- ▶ Likelihood alone vs. likelihood \times regularization prior



Effect of prior on posterior

- ▶ Likelihood alone vs. likelihood \times regularization prior



Regularization prior

- ▶ Which points in the grid are more likely a priori?
- ▶ Parameters of the beta: α, β
- ▶ Same as the regularization prior from Reali & Griffiths, but asymmetrical

Regularization prior

- ▶ Which points in the grid are more likely a priori?
- ▶ Parameters of the beta: α, β
- ▶ Same as the regularization prior from Reali & Griffiths, but asymmetrical
- ▶ Conceptually: prior *counts*, e.g. of Adj-N utterances

Formulating hypotheses

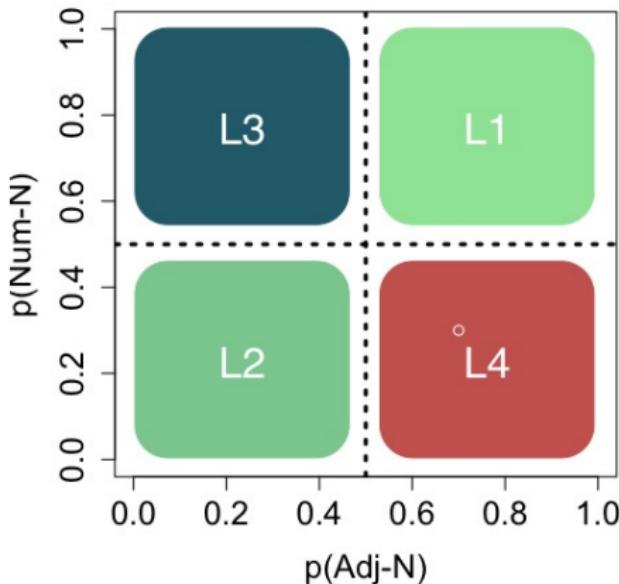
- ▶ In terms of Bayesian inference...
 - H1. Input likelihood \times flat/uninformative prior
 - H2. Input likelihood \times regularization prior \times flat order prior
 - H3. Input likelihood \times regularization prior \times biased order prior
- ▶ Likelihood
- ▶ Regularization prior
- ▶ Ordering prior

Ordering prior

- ▶ Which patterns are more likely a priori?
- ▶ Combination of two beta distributions gives *pattern type*

Ordering prior

- ▶ Which patterns are more likely a priori?
- ▶ Combination of two beta distributions gives *pattern type*



Ordering prior

- ▶ Which pattern is more likely a prior?
- ▶ Combination of two beta distributions gives *pattern type*
- ▶ Ordering prior is probability of each type, e.g.
[0.25, 0.25, 0.25, 0.25]

Ordering prior

- ▶ Which pattern is more likely a prior?
- ▶ Combination of two beta distributions gives *pattern type*
- ▶ Ordering prior is probability of each type, e.g.
[0.25, 0.25, 0.25, 0.25]
[what would a biased one look like??]

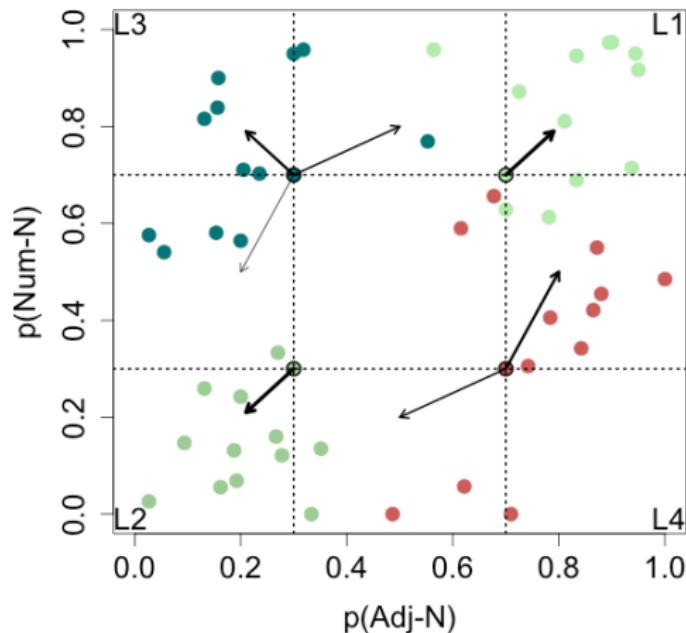
Complete prior

- ▶ Complete prior probability of a grammar $p(\text{Adj-N}), p(\text{Num-N})$ is a sum over four beta combinations of:
 - ▶ prior probability of $p(\text{Adj-N})$ given regularization bias \times
 - ▶ prior probability of $p(\text{Num-N})$ given regularization bias \times
 - ▶ prior probability of particular combination of betas
- ▶ e.g., prior for $p(\text{Adj-N})=0.8, p(\text{Num-N})=0.2$

$\text{beta}(0.8|\alpha = 10, \beta = 2) \times \text{beta}(0.2|\alpha = 10, \beta = 2) \times 0.25 +$
 $\text{beta}(0.8|\alpha = 2, \beta = 10) \times \text{beta}(0.2|\alpha = 2, \beta = 10) \times 0.25 +$
 $\text{beta}(0.8|\alpha = 2, \beta = 10) \times \text{beta}(0.2|\alpha = 10, \beta = 2) \times 0.25 +$
 $\text{beta}(0.8|\alpha = 10, \beta = 2) \times \text{beta}(0.2|\alpha = 2, \beta = 10) \times 0.25 +$

Looking for prior biases

- ▶ What parameters make the testing data most likely?

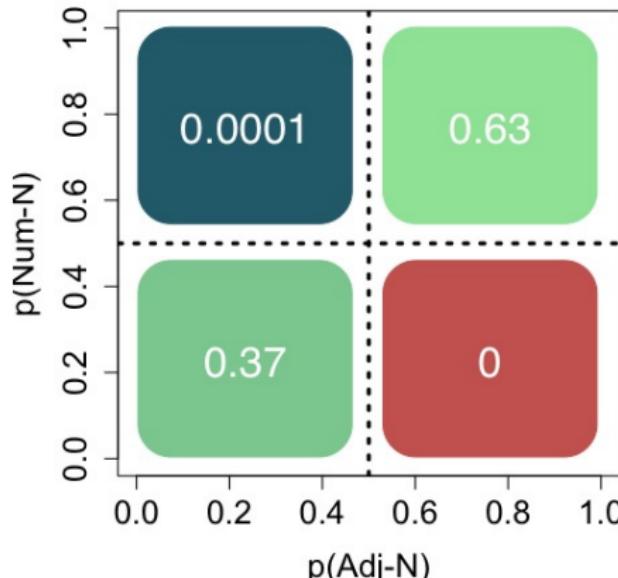


Looking for prior biases

- ▶ What parameters make the testing data most likely?
- ▶ Regularization parameters (α, β) very skewed (16.5, 0.001)

Looking for prior biases

- ▶ What parameters make the testing data most likely?
- ▶ Regularization parameters (α, β) very skewed (16.5, 0.001)
- ▶ Prior probability of pattern types:



Posterior (finally!)

- ▶ What kinds of $p(\text{Adj-N})$, $p(\text{Num-N})$ pairs are learners likely to acquire given set of prior parameters?

Posterior (finally!)

- ▶ What kinds of $p(\text{Adj-N})$, $p(\text{Num-N})$ pairs are learners likely to acquire given set of prior parameters?
- ▶ Prior probability of $p(\text{Adj-N})=\text{high}$, $p(\text{Num-N})=\text{high}$ is high
- ▶ Prior probability of $p(\text{Adj-N})=\text{low}$, $p(\text{Num-N})=\text{low}$ is high
- ▶ Prior probability of $p(\text{Adj-N})=\text{low}$, $p(\text{Num-N})=\text{high}$ is pretty low
- ▶ Prior probability of $p(\text{Adj-N})=\text{high}$, $p(\text{Num-N})=\text{low}$ is zero!

	N-Adj	Adj-N
Num-N	17%	27%
N-Num	52%	4%

For the lab...

- ▶ Calculate posterior distributions
- ▶ Recreate model predictions
- ▶ Investigate the effect of the prior parameters on predicted grammars
- ▶ Extra-credit: iterate it