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Greenberg’s Universal 1

1. SOV, SVO, VSO (not VOS, OSV, OVS)
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Greenberg’s Universal 26

26. Suffixes (not prefixes)
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Greenberg’s Universal 18

18. If Adjective-Noun → Numeral-Noun
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Diversity constrained by cognitive biases?

I Lots of variation across languages

I Lots of confounding factors (e.g.,...?)

I But could indicate cognitive biases

I Cognitive bias = prior bias

I Non-uniform preference among patterns

I (Could be innate or learned)

I (Could be general or specialized for language)

I How to investigate? Preferences in a single generation??
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Universal 18

18. If Adjective-Noun → Numeral-Noun

6 / 37



Universal 18

I Actually, there is more than one asymmetry here...

I Related to another bias you’ve read about??
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Setting up the experiment

I The conditions

I Easy or hard to learn...?

I Adding in regularization...

I 70% dominant pattern, 30% minority pattern

I What would regularization look like in this case?
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Formulating hypotheses

I Training = listing to Adj-N, N-Adj, Num-N, N-Num phrases

I Testing = producing phrases

I Three reasonable hypotheses...

H1. Learning involves tracking input statistics

H2. Learners regularization variation

H3. Learners regularize but only orders that are easy to learn
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Formulating hypotheses

I In terms of Bayesian inference...

H1. Input likelihood × flat/uninformative prior

H2. Input likelihood × regularization prior

H3. Input likelihood × regularization prior ×order prior
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Making predictions

I Three predicted outcomes...

1. Probability matching
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Making predictions

I Three reasonable outcomes...

1. Probability matching

2. Across the board
regularization
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Making predictions

I Three reasonable outcomes...

1. Probability matching

2. Across the board
regularization

3. Regularization
modulated by order
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Results

I Participants: 65 native-English-speaking undergrads
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Individual learner outcomes
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Formulating hypotheses

I In terms of Bayesian inference...

H1. Input likelihood × flat/uninformative prior

H2. Input likelihood × regularization prior

H3. Input likelihood × regularization prior × order prior

I Likelihood

I Regularization prior

I Ordering prior
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Likelihood

I Coin toss example

I How many heads out of total tosses?

I Fair coin?

I Biased coin?

I Likelihood

binomial(5 heads |p =0.5, 10 tosses) = 0.2

binomial(5 heads |p =0.9, 10 tosses) = 0.001
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Likelihood

I Adj, N ordering

I How many Adj-N out of total Adj utterances?

I Does the grammar tend to use Adj-N?

I Likelihood

binomial(28 Adj-N |p =0.5, 40 Adj) = 0.005

binomial(28 Adj-N |p =0.7, 40 Adj) = 0.14

binomial(28 Adj-N |p =0.3, 40 Adj) = 0.0000018
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Likelihood

I Adj and Num ordering

I Grid of possible
probability combos

I Each assigns likelihood
to a set of counts

I (Total likelihood just
multiplies Adj and Num
likelihoods)
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Formulating hypotheses

I In terms of Bayesian inference...

H1. Input likelihood × flat/uninformative prior

H2. Input likelihood × regularization prior × flat order prior

H3. Input likelihood × regularization prior × biased order prior

I Likelihood

I Regularization prior

I Ordering prior
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Regularization prior

I Which points in the grid are more likely a priori?

I Asymmetrical beta distributions: skewed parameters → one-way
regularization
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Effect of prior on posterior

I Likelihood alone vs. likelihood × regularization prior
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I Likelihood alone vs. likelihood × regularization prior
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Regularization prior

I Which points in the grid are more likely a priori?

I Parameters of the beta: α, β

I Same as the regularization prior from Reali & Griffiths, but
asymmetrical

I Conceptually: prior counts, e.g. of Adj-N utterances
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Formulating hypotheses

I In terms of Bayesian inference...

H1. Input likelihood × flat/uninformative prior

H2. Input likelihood × regularization prior × flat order prior

H3. Input likelihood × regularization prior × biased order prior

I Likelihood

I Regularization prior

I Ordering prior
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Ordering prior

I Which patterns are more likely a priori?
I Combination of two beta distributions gives pattern type
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Ordering prior

I Which pattern is more likely a priori?

I Combination of two beta distributions gives pattern type

I Ordering prior is probability of each type, e.g.

[0.25, 0.25, 0.25, 0.25]

[what would a biased one look like??]
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Complete prior

I Complete prior probability of a grammar p(Adj-N), p(Num-N) is a
sum over four beta combinations of:

I prior probability of p(Adj-N) given regularization bias ×

I prior probability of p(Num-N) given regularization bias ×

I prior probability of particular combination of betas

I e.g., prior for p(Adj-N)=0.8, p(Num-N)=0.2

beta(0.8|α = 10, β = 2)× beta(0.2|α = 10, β = 2)× 0.25+
beta(0.8|α = 2, β = 10)× beta(0.2|α = 2, β = 10)× 0.25+
beta(0.8|α = 2, β = 10)× beta(0.2|α = 10, β = 2)× 0.25+
beta(0.8|α = 10, β = 2)× beta(0.2|α = 2, β = 10)× 0.25+
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Looking for prior biases

I What parameters make the testing data most likely?
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Looking for prior biases

I What parameters make the testing data most likely?
I Regularization parameters (α, β) very skewed (16.5, 0.001)

I Prior probability of pattern types:
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Posterior (finally!)

I What kinds of p(Adj-N), p(Num-N) pairs are learners likely to
acquire given set of prior parameters?

I Prior probability of p(Adj-N)=high, p(Num-N)=high is high
I Prior probability of p(Adj-N)=low, p(Num-N)=low is high
I Prior probability of p(Adj-N)=low, p(Num-N)=high is pretty low
I Prior probability of p(Adj-N)=high, p(Num-N)=low is zero!
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For the lab...

I Calculate posterior distributions

I Recreate model predictions

I Investigate the effect of the prior parameters on predicted
grammars

I Extra-credit: iterate it
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