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Lecture 8: Learning bias considered
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Deadline for questions about the assignment: 
midnight tonight



Rule: [1, -1, -1, 0]

Passes acquisition test? Yes

Maintenance: Yes Construction: Yes



Rule: [1, 0, 0, 0]

Passes acquisition test? Yes

Maintenance: Yes Construction: No



Rule: [1, -1, 1, 0]

Passes acquisition test? Yes

Maintenance: No Construction: No



Bias

• Different weight update rules correspond to different ways of learning

• They come with different biases

• Although that’s not immediately obvious just from looking at acquisition

• Population’s language (in this case, just a vocabulary really) evolves to fit 
these biases

• Biases are a consequence of α, β, γ and δ

• But what exactly are these different biases?



• A constructor rule: [+1, -1, -1, +1]

Working out bias
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(not s2 or s3)



• A constructor rule: [+1, -1, -1, +1]

Working out bias
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• A constructor rule: [+1, -1, -1, +1]

Working out bias

m1

s1

1 -1 -1

11-1

-1 1 1
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m3

s2 s3

Production:
m2→s2 or s3

(not s1)



• Constructors in general: α > β & δ > γ
After one exposure to m1→s1

Working out bias

m1

s1

α β β

δδγ

δ δ

m2

m3

s2 s3

Production:
m1→s1

m2→s2 or s3
m3→s2 or s3 γ



The constructor bias

• Constructors don’t like:

• One meaning to multiple signals

    because α > β
    bias against synonymy

• Multiple meanings to one signal

     because δ > γ
     bias against homonymy
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The constructor bias

• Constructors biased in favour of one-to-one mappings between meanings and 
signals

• Population’s vocabulary changes over time to match this bias

• One-to-one systems happen to be optimal for communication



• A maintainer rule: [+1, 0, 0, 0]

Working out bias

Observation:
m1→s1

m1

s1

1 0 0

000

0 0 0

m2

m3

s2 s3



The maintainer bias

• Biased against synonymy

    because α > β

• Neutral with respect to homonymy

     because δ = γ
    

m
s

s

s
m

m



Rule: [1, 0, 0, 0]

Passes acquisition test? Yes

Maintenance: Yes Construction: No

no homonyms
accumulate

no homonyms
eliminated



• A learner rule: [+1, -1, 1, 0]

Working out bias

Observation:
m1→s1

m1

s1

1 -1 -1

001

1 0 0

m2

m3

s2 s3



The learner bias (in most cases)

• Biased against synonymy

    because α > β

• Biased in favour of homonymy

     because δ < γ
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Rule: [1, -1, 1, 0]

Passes acquisition test? Yes

Maintenance: No Construction: No

homonyms
accumulate

homonyms
accumulate



What about this rule? [0,-1,0,+1]

• A:  it can neither maintain or construct

• B: it can maintain but not construct

• C: it can construct but not maintain

• D: it can maintain and construct

• socrative.com, room number 1f2864a3



Rule: [0, -1, 0, +1]

Passes acquisition test? Yes

Maintenance: Yes Construction: Yes



The constructor bias

• Constructors don’t like:

• One meaning to multiple signals

    because α > β
    bias against synonymy

• Multiple meanings to one signal

     because δ > γ
     bias against homonymy
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What about real humans?

• Experiment on children’s learning bias
Markman & Wachtel (1988) on synonymy

• Children pick the unfamiliar object given an unfamiliar word

“Show me the fendle.”



Anti-synonymy bias (Mutual Exclusivity)

Before

banana

After (two possibilities)
banana
fendle

???
???

banana

fendle



Homonymy bias (Doherty 2004)

• “... at the zoo, they saw a strange tapir from Brazil. Hamish thought the tapir’s 
long nose looked funny”

“Which one is the tapir in this story?”



Homonymy bias (Doherty 2004)

• “... at the zoo, they saw a strange cake from Brazil. Hamish thought the 
cake’s long nose looked funny”

“Which one is the cake in this story?”



Anti-homonymy bias

Before

cake

After (two possibilities)

cake

???
cake

cake

???



Children’s learning biases

• Children don’t like:

• synonymy

• homonymy

• They have the same biases as constructors in our simple model

• Populations of constructors evolve optimal communication systems

• Our model would predict that human vocabularies would be pushed in this 
direction simply through iterated learning, without additional functional 
pressures



Summary of the story so far, and what comes next

• Signalling systems (and languages) can evolve as a result of their 
transmission

• We can model this

• The biases of learners shapes what evolves

• This potentially allows us to link findings about biases in learning at the 
individual level to predictions / observations about language at the population 
level

• But caution (or better, a model) is required - the acquisition test here was 
misleading

• Next up: a class of models that allow us to be very clear and very precise 
about bias



An excellent question from Thursday’s lab

“So, is human language optimal for communication?”

How could we tell?

• We could try to measure communicative accuracy in the same way we did in 
the models

• We could look at language from a design perspective: does it appear to be 
well-designed for communication?



• Zipf (1936): frequent words tend to be short

• Piantadosi, Tily & Gibson (2011): predictable words tend to be short

Are the lexicons of human language well-
designed for communication?

we also present results in English, German, and Dutch measuring
length in number of phonemes and number of syllables.
With these measures, we tested whether average information

content or frequency is a better predictor of word length by
computing the information conveyed by each word in Czech,
Dutch, English, French, German, Italian, Polish, Portuguese,
Romanian, Spanish, and Swedish. In each language, we computed
Spearman rank correlations between (i) information content and
length and (ii) frequency and length. This measure allowed us to
test correlations without making assumptions about the para-
metric form of the relationship.

Results
The solid and striped bars in Fig. 1 show correlations in the 11
languages between orthographic length and frequency, and ortho-
graphic length and information content, as measured by two-gram,
three-gram, and four-grammodels. Because of the size and form of
the Google dataset, these N-gram models were not smoothed (al-
though see SI Text). Statistical significance was assessed by using
Z-tests on bootstrapped estimates of the difference betweenwithin-
language correlations. In the two-grammodel, information content
is more strongly correlated with length than frequency across all 11
languages (P < 0.01, Z > 2.58 for each language). The three-gram
models show similar patterns, showing significant effects in the
predicted direction for 10 of the 11 languages (P< 0.001,Z> 3.30),
with the exception of Polish, in which the trend is not significant
(P > 0.47, Z = 0.71). The four-gram results show effects in the

predicted direction for seven of 11 languages; all differences are
significant (P < 0.001, |Z | > 4.91) except for Swedish (P = 0.29,
Z= 1.05). The decreasing consistency of results for higherN-gram
sizes likely results from increased estimation error caused in part by
our use of Google N-gram counts, as information content in large
N-gram models is more difficult to estimate than frequency, and
estimation error deflates correlations (Table S1). In general, we
take three-gram data—with 10 of 11 languages showing the pre-
dicted result—as the most representative finding, because the
three-gram results have the highest overall correlations.
Because frequency and information content are not in-

dependent, we also computed how well each variable predicts
length controlling for effects of the other. The triangles in Fig. 1
show partial correlations: frequency and length, partialing out
information content; and information content and length, parti-
aling out frequency. In several languages, the partial correlation
of frequency is close to zero, meaning that the effect of frequency
is largely a result of the fact that it is correlated with information
content. In most languages, the partial correlation of length with
information content, controlling for frequency, is larger even than
the absolute correlation between length and frequency.
Information content and frequency exhibit qualitatively differ-

ent relationships with length. Fig. 2 shows the mean length for
(binned) frequency and information content in English, which is
typical of the languages here with large effect sizes. The spread in
the gray lines illustrate that length is more predictable from in-
formation content than from frequency. Frequency does not pre-
dict word length substantially for lower-frequency words: words in
low unigram probability bins have approximately the same average
length. In contrast, length varies as a function of information over
almost its entire range of values, with the exception of just the few
words with the very lowest information content. This pattern is
observed in 11 of 11 languages and indicates that information
content is not a good predictor of length for the 5% to 20% least
informative (and typically also most frequent) words. This is po-
tentially caused by the fact that, in text on the Internet, many long
words occur in highly predictable collocations such as “all rights
reserved.”These long words are highly predictable, conveying little
information, and thus increase the mean length of the least in-
formative words.
To ensure that the results were not driven by artifacts of

the Google dataset, we replicated this study in English by using
the British National Corpus (BNC) (32), state-of-the-art N-
gram smoothing techniques, and separate training corpora for
P(W = w |C = c) and P(C = c |W = w). This was not possible in
all languages because large enough corpora are not available.† In
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Fig. 1. Correlations between information content and word length (solid)
and between frequency (negative log unigram probability) and word length
(striped) for two-gram, three-gram, and four-gram models. Error bars show
bootstrapped 95% confidence intervals. Triangles show partial correlations
(frequency and length partialing out information content; information con-
tent and length partialing out frequency).
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and each bin represents 2% of the lexicon.

†Europarl (33), for instance, contains only approximately 50 million words per language-
approximately one 2,500th the size of the non-English Google dataset. Bootstrapping
revealed this to be too small to yield reliable estimates of information content.
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• But ambiguity (homonymy and 
polysemy) are rampant - that 
must be bad, right?

Are the lexicons of human language well-
designed for communication?



• But ambiguity (homonymy and 
polysemy) are rampant - that 
must be bad, right?

• “If you want to make sure that 
we never misunderstand one 
another, for that purpose 
language is not well designed, 
because you have such 
properties as ambiguity. If we 
want to have the property that 
the things that we usually would 
like to say come out short and 
simple, well, it probably doesn’t 
have that property.” (Chomsky, 
2002, p. 107)

Are the lexicons of human language well-
designed for communication?



• But ambiguity (homonymy and 
polysemy) are rampant - that 
must be bad, right?

• “If you want to make sure that 
we never misunderstand one 
another, for that purpose 
language is not well designed, 
because you have such 
properties as ambiguity. If we 
want to have the property that 
the things that we usually would 
like to say come out short and 
simple, well, it probably doesn’t 
have that property.” (Chomsky, 
2002, p. 107)

Are the lexicons of human language well-
designed for communication?



• Maybe ambiguity isn’t always bad?

• There aren’t that many short words, and being short is good

• Having fewer words to learn / select among makes life easier

Are the lexicons of human language well-
designed for communication?

from poorer estimation in the highest phonotactic surpris-
al words, which have the lowest frequency phonotactic tri-
grams. In general, though, these plots show the predicted
trends for the majority of data, indicating that phonotacti-
cally easier—higher probability according to the rest of the
lexicon—phonological forms are assigned more meanings.

We performed several different types of regression
analysis on this data. This allowed us to test the statistical
significance of the trends in Fig. 1 and evaluate the perfor-
mance of each predictor, while simultaneously controlling
for effects of the other predictors. This is especially impor-
tant in the case of, for instance, frequency and length, since
these two variables are correlated and it is important to
know that apparent effects of one variable do not result
from correlations with another. For all regression analyses,
we standardized the covariates by subtracting the mean
and dividing by 1 standard deviation. We first used a qua-
si-Poisson regression to predict the number of additional
meanings each phonological form in CELEX can map to
Gelman and Hill (2006). This regression revealed signifi-
cant effects of length, with longer phonological forms map-
ping to fewer words in all languages (b > ! 0.85, t <
!51.89,p < 0.001 in each language). Higher negative log
probability (lower frequency) words mapped to fewer
meanings (b > !0.71, t > 53.3,p < 0.001 in each language).
Second, words with higher phonotactic surprisal mapped
to fewer words in German and Dutch (b > !0.11, t < !6.59,
p < 0.001), but the trend was only marginally significant in
the wrong direction in English (b = 0.03, t = 2.01,p < 0.045).
This effect is non-significant if controlling for multiple
comparisons. These results demonstrate that the tends in
Fig. 1 are statistically significant while controlling for other
variables, with the exception of the English phonotactic
curve. Several interactions were present, although they
were generally of small magnitude and not of theoretical
interest here.

We additionally performed a regression predicting a
phonological form’s rank in terms of number of meanings.
Thus, the word with the most meanings was rank 1, the
second most meanings was rank 2, etc. This revealed
nearly identical qualitative results: predicted effects of
longer words increasing rank (b > 2436, t > 55.77,p < 0.001
in each language), higher negative log probability (lower

frequency) increasing rank (b > 3175, t < !69.17,p < 0.001
in each language), and higher phonotactic surprisal
increasing rank (b > 142, t > 3.2,p < 0.002 in each lan-
guage). Finally, for comparison, we also included a regres-
sion predicting the entropy over lemmas for each
phonological form, as measured using maximum likeli-
hood entropy estimation with the CELEX frequency counts.
As discussed above, entropy is difficult to estimate, but the
results here appear quite robust even with estimated
entropies. This regression revealed significant, predicted
effects: increasing length decreases entropy (b <!0.0098,t <
!52.2,p < 0.001 in each language), higher negative log
probability (lower frequency) decreases entropy
(b < !0.015, t > 63.3,p < 0.001 in each language), and
increasing phonotactic surprisal decreases entropy
(b < !0.0019, t < !9.9,p < 0.001 in each language).

These regression analyses indicate that every factor that
we predicted to increase ease of use also increases the
number of meanings assigned to phonological forms. This
finding is relatively robust to the way in which ambiguity
is quantified.

3.2. Polysemy

Next, we consider similar predictions about the number
of word senses each word has as a function of the word’s
length. For this analysis, we looked at word forms found
in the English versions of WordNet (Fellbaum et al.,
1998) and CELEX (Baayen et al., 1995). We chose to look
at part of speech categories separately to ensure that find-
ings are not driven by a single part of speech category, and
also to check that these effects go beyond effects of
homophony. For each word and part of speech, we com-
puted the number of senses using WordNet. Words such
as ‘‘run’’ have many senses—while homophone sets only
distinguish substantially different meanings, word senses
separate related meanings, such as those in ‘‘John runs to
the store’’, ‘‘she runs her fingers through her hair’’, and ‘‘the
train runs between Boston and New York’’. For each word,
CELEX was used to find the phonological length of each
word, as well as its phonotactic probability and frequency
(negative log probability), using the same methods as the
previous section. However, here we analyzed the number
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Fig. 1. Raw number of additional meanings each a phonological form has, as a function of length, negative log probability, and phonotactic surprisal. This
shows predicted effects, with shorter, lower negative log probability (higher frequency), and lower phonotactic surprisal forms having more meanings. All
y-axes are logarithmically spaced and error bars show standard errors within each bin.
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From Piantadosi, Tily & Gibson (2012)

decreases the probability of phoneme merger. This e�ect can be seen graphically in the

boxplot in figure 1, where the merged pairs have lower minimal pair counts than the

unmerged pairs. The continuous predictors were centered and standardized prior to

model-fitting, and positive values indicate increased probability of merger. Thus the

coe⇤cients in table 2 can be interpreted as the change in the log-odds of merger for a

change of one standard deviation in the predictor. For example, if the probability of merger

was otherwise estimated as 5% (log-odds -2.94), a one-standard-deviation increase in the

number of minimal pairs would change the estimate by -3.44, which translates into a

decrease from 5% down to 0.17%.
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Figure 1 . Relationship between minimal pair count and merger

The e�ect of phoneme frequency is more subtle because of its interaction with the

presence/absence of minimal pairs. In the model in table 2, the presence of minimal pairs

is taken as the ‘baseline,’ and so the non-significant simple e�ect of phoneme frequency is

interpreted to mean that for phoneme pairs which have minimal pairs in the language,

phoneme frequency does not play a reliable role in predicting merger. However, the

significant interaction indicates that where there are no minimal pairs, merger is more

10

From Wedel, Kaplan & Jackson (2013)



• Maybe ambiguity isn’t always bad?

• There aren’t that many short words, and being short is good

• Having fewer words to learn / select among makes life easier

• And anyway, how often is an ambiguous word actually ambiguous?

• Context matters (and is lacking from our signalling models)

Are the lexicons of human language well-
designed for communication?



A co-evolutionary hypothesis (Smith 2004)

• Examine this idea using our model

• Two central assumptions:

• Weight update rule is given by a genotype

• Better communicators breed more

Children’s learning biases have evolved 
through natural selection, because they’re 

good for communication.



Invasion of the mutants

• Smith (2004) plays constructors, maintainers, and learners off against each 
other

• Create a population mainly made up of one type, but with a small number of 
another type (the mutant)

• Agents inherit both the communication system (by cultural transmission), and 
their learning strategy (by genetic transmission)

• Both culture and biology evolve

• If selection is based on communicative success, which mutants will invade?



Surprising result: evolution is hard

• Constructors don’t often invade, even though it would increase the fitness of 
the population if they did

• Two problems:

• Need a lot of mutants before they start to have a good effect on the 
population’s language...

• ...and even then, there’s a time-delay before the good language evolves 
culturally.

• Speculative conclusion: human learning biases haven’t evolved only for 
communication.



Summary

• Smith (2002, 2004) look in detail at how learning bias can give us (or fail to 
give us) language

• Brings together 3 complex processes in one model:

     Learning
     Cultural transmission
     Biological evolution

• Highlights the crucial importance of the second of these three
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