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Which reading are you doing / planning to do?

. Stone, chapter 1 only
. Stone, chapters 1-4

. Kruschke, chapters
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. Some other really great introduction to Bayes

. None of the above

1.1. Example 1: Poxy Diseases
The Patient’s Perspective

Suppose that you wake up one day with spots all over your face, as in
Figure 1.2. The doctor tells you that 90% of people who have smallpox
have the same symptoms as you have. In other words, the probability
of having these symptoms given that you have smallpox is 0.9 (ie 90%).
As smallpox is often fatal, vou are naturally terrified,

However, after a few moments of contemplation, you decide that you
do not want to know the probability that vou have these symptoms
(after all, you already know you have them). Instead, what you really
want to know is the probability that you have smallpox.

So you say to vour doctor, “Yes, but what is the probability that I

have smallpox given that T have these symptoms?”, “Ab”,

your
doctor, “a very good question.” After scribbling some equations, vour
doctor looks up. “The probability that you have smallpox given that

you have these symptoms is 1.1%, or equivalently, 0.011." Of course,

Figure 1.2.: Thomas Bayes diagnosing « patient
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1just want someone who I can believe in,
Someone at home who will not leave me grievin'.
Show me a sign that you'll always be true,

and I'll be your model of faith and virtue.

Inferential statistical methods help us decide what to believe in. With inferen-
tial statistics, we don't just introspect to find the truth. Instead, we rely on data
from observations. Based on the data, what should we believe in? Should we
believe that the tossed coin is fair if it comes up heads in 7 of 10 flips? Should
we believe that we have cancer when the test comes back positive? Should we
believe that she loves me when the daisy has 17 petals? Our beliefs can be
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The story so far, and what comes next

- Signalling systems (and languages) can evolve as a result of their
transmission

 We can model this

- The biases of learners shapes what evolves

 This potentially allows us to link findings about biases in learning at the

individual level to predictions / observations about language at the population
level

- But caution (or better, a model) is required - the acquisition test here was
misleading

« Next up: a class of models that allow us to be very clear and very precise
about bias



We need a more general model

- |deally, we’d like to be able to mix up a bunch of simple ingredients and work
out what language should look like after cultural evolution has run for some

time:
 BIAS (i.e. what agents are born with)
- LANGUAGE MODEL (i.e. set of possible languages, set of possible data)
- POPULATION MODEL (e.g. diffusion chain, closed group etc.)

- OTHER FEATURES OF CULTURAL TRANSMISSION (e.g. how much data
a learner sees, the type of errors that occur, ...)



Towards a more general model of learning bias: a
medical quiz

* Your friend coughs. Is this cough caused by:

A. Lung cancer

B. Acold

C. Athlete’s foot socrative.com, room number 1f2864a3
* Resolving this question requires you to draw on two probabillities:

* How likely is it that someone with the iliness in question would exhibit that
symptom?

* How common is each illness?



Likelihood of symptoms given illnesses

Lung cancer: coughing is very likely, if you have lung cancer
A cold: coughing is very likely, if you have a cold
Athlete’s foot: coughing is very very unlikely to be caused by athlete’s foot

- If all we care about are the likelihood of the symptoms given each iliness, we
would conclude that your friend either has lung cancer or a cold



Probabllity of illnesses

Lung cancer: is fairly rare
A cold: the common cold is very common
Athlete’s foot: is very common (let’s say)

- If all we care about are the prevalence of each illness, we would conclude that
your friend either has a cold or athlete’s foot

- But you didn’t conclude this: you brought these two quantities together in a
smart way. How did you do it?



The Bayesian approach

- What you’re trying to figure out is the probability that your friend has a

particular iliness, given the symptoms they are exhibiting. We call this
quantity:

P(illness|symptoms)

« We are trying to work this out based on two quantities which we know
(roughly):

 The likelihood of exhibiting a particular symptom given that you have a
certain illness

P(symptomslillness)

 The prior probability of each iliness

P(illness)



Sayes’ rule

- Bayes’ rule provides a convenient way of expressing the quantity we want to
know Iin terms of the quantities we already know:

P(illness|symptoms) o< P(symptomslillness)P(illness)

* Or, in full:

P(symptoms|illness) P(illness)
P(symptoms)

P(illness|symptoms) =



P(symptoms|illness)P(illness)

Breaklng I-t dOWﬂ P(illness|symptoms) = Blsympionts)

P(illness|symptoms) * The thing we want to know is called the posterior

» The probability of a particular set of symptoms given

P t 1l
(symptoms|illness) that you have a specific iliness is called the likelihood

* The probability that you have a particular iliness, before |
P(illness) have any evidence from your symptoms, is called the
prior

- The term on the bottom (the probability of the symptoms
P(symptoms) independent of illness) is actually not very interesting to
us, since it is the same for all ilinesses.



It makes Iintultive sense...

P(illness|sgmptoms) < P(sym liness) P )

- If the likelihood of symptoms given a certain illness is high, this will increase
the posterior probability of that illness

- If the prior probability of a certain iliness is high, this will increase the
posterior probability of that illness

- If a particular illness has low prior probability, we need some really convincing
evidence to make us believe it to be true

 imagine if your friend was coughing blood and having seizures



—rrr... hello... isn’t this a course about language”

- In the medical example, we were trying to use evidence provided by
symptoms to infer what underlying iliness your friend had

- What if you aren’t a medic, but a child hearing utterances from a parent and
learning a language? You are trying to use evidence provided by utterances to
infer what grammar your parent has in their head

IliInesses = languages
symptoms = utterances
prior for each illness = bias in favour of particular languages

* An ideal language learner will estimate the posterior probability of each
possible language given the utterances heard

- Children probably don’t calculate sums in their head while learning, but if their
learning process is sensible, we can characterise it this way



Bayesian language learning

- Evaluate hypotheses about language given some prior bias (perhaps provided
by your biology?) and the data that you’ve heard

* You want to know the posterior but all you have direct access to is the prior
and the likelihood (assuming you know how sentences are produced from a
given model of language)

- Bayes’ rule provides the solution:

P(d|h)P(h)
P(d)

P(h|d) =



Bayesian language learning

- Evaluate hypotheses about language given some prior bias (perhaps provided
by your biology?) and the data that you’ve heard

* You want to know the posterior but all you have direct access to is the prior
and the likelihood (assuming you know how sentences are produced from a
given model of language)

- Bayes’ rule provides the solution:

P(h|d) < P(d|h)P(h)



Bayesian language learning

P(h|d) x P(d|h)P(h)

a

&P(dh
.




How to put numbers on uncertainty: probability

eeeee O2-UK = 19:21

P(hld) o< P(d|R)P(h) Kl

Weather Warning Issued

- Bayes Rule is about a relationship between Tranent
probabilities. What are probabilities?

« How likely is it to rain tomorrow?
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Chance of rain

Rain No rain

- It will definitely either rain or not rain (“precipitate or not precipitate” -
whatever) tomorrow: 100% chance of one of those two outcomes



Chance of rain

Rain No rain

- It will definitely either rain or not rain (“precipitate or not precipitate” -
whatever) tomorrow: 100% chance of one of those two outcomes

« The met office reckons it’s slightly more likely to rain than not: estimate a 60%
chance of rain



Chance of rain

Rain No rain

If there’s a 60% chance it will rain, what chance do the Met Office assign to it
not raining?

A. 0% chance of no rain
B. 40% chance of no rain
C. 60% chance of no rain

D. 100% chance of no rain

socrative.com, room number 1f2864a3



From chance to probability

Rain No rain

- The Met Office are in fact stating their estimate of the probability of it raining
tomorrow.

* They express is as a %

- But probabilities are conventionally expressed as a proportion of possible
events

* I.e. they lie between 0 and 1

« “60% chance” corresponds to probability of 60/100 or 6/10 or 0.6



Assigning probabillities

Consider this scenario

Roughly what probability does the heroic forecaster assign to it raining
heavily?

A. probability of heavy rain = 0
B. probability of heavy rain = 0.5
C. probability of heavy rain = 1
D. probability of heavy rain = 1

E. probability of heavy rain = 2
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https://www.youtube.com/watch?v=rNdrgjjsHsM
https://www.youtube.com/watch?v=rNdrgjjsHsM

Assigning probabillities

Consider this scenario

What probability does the meteorological board assign to it raining heavily?
A. substantially lower probability
B. about the same probability

C. substantially higher probability
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https://www.youtube.com/watch?v=rNdrgjjsHsM
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Discrete probability distributions

p(NO-rain)=

o(rain)=0.6 0.4

A limited set of known possible scenarios
- Rain, no rain
« We can assign a probability to each event

- Since the events are mutually exclusive, the probabilities sum to 1



Continuous probabillity distributions

eeeee O2-UK = 19:21

Wind speed distribution
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Summary and next up P(hld) o< P(d|h)P(h)

- Bayesian learning: a nice simple way to model learning

Make the bias of learners beautifully explicit

Involves probabilities:

« For each possible hypothesis, what is its prior probability? What is the
likelihood of the data under that hypothesis?

* For each possible language, what is its prior probability? What is the
likelihood of the linguistic data if people are using that language?

Thursday’s lecture: a linguistic case study, and iterated Bayesian learning

Friday: lab on iterated Bayesian learning

« Next week: Jennifer Culbertson



