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Abstract. Human language is learned, symbolic and exhibits syntactic structure, a set
of properties which make it unique among naturally-occurring communication
systems. How did human language come to be as it is? Language is culturally trans-
mitted and cultural processes may have played a role in shaping language. However,
it has been suggested that the cultural transmission of language is constrained by some
language-specific innate endowment. The primary objective of the research outlined
in this paper is to investigate how such an endowment would influence the acquisition
of langage and the dynamics of the repeated cultural transmission of language. To
this end, a new connectionist model of the cultural evolution of communication is
presented. In this model an individual’s innate endowment is considered to be a
learning rule with an associated learning bias. The model allows manipulations to be
made to this learning apparatus and the impact of such manipulations on the processes
of language acquisition and language evolution to be explored. These investigations
reveal that an innate endowment consisting of an ability to read the communicative
intentions of others and a bias towards acquiring one-to-one mappings between
meanings and signals results in the emergence, through purely cultural processes, of
optimal communication. It has previously been suggested that humans possess just
such an innate endowment. Properties of human language may therefore best be
explained in terms of cultural evolution on an innate substrate.

Keywords: language, communication, cultural evolution, learning bias.

1. Introduction

Human language is unique among the communication systems of the natural world—
it is at least partially culturally transmitted, the relationship between basic lexical
tokens and their meanings is arbitrary and those basic lexical tokens are combined to
form structured forms which are used to communicate complex structured meanings.
How did language come to be as it is and why is it unique?

There is much debate in linguistics about the role played by innate knowledge in
determining the syntactic structure of language. Noam Chomsky, the most prominent
linguistic of modern times, argues that the poverty of the stimulus available to children
during language acquisition forces us to conclude that some of the structure of
language must be encoded in an innate Language Acquisition Device (Chomsky
1987).
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Innate knowledge may also play a role in the transmission of vocabulary. While
no serious linguistic theory disputes that words are culturally transmitted within
a population, it has been suggested that children may come to the task of learning
words with some innate endowment. For example, Bloom (1997) suggests that
children possess an innate capacity to read the intent of speakers, while Macnamara
(1972) suggests that children have an expectation that words refer to whole objects
rather than properties of objects.

We know from mathematical models of dual-inheritance systems (such as those
of Boyd and Richerson 1985) that if a learner’s genetic endowment can influence their
acquisition of cultural artifacts then genetic forces can influence a population’s culture
and a population’s culture can in turn influence the forces acting on genetic trans-
mission. How might the types of genetic endowment suggested by Chomsky, Bloom
and Macnamara influence the cultural artifact language? How might language
influence the genetic endowment of children at subsequent generations?

These are complex questions which need to be tackled piecemeal. The first step
is to consider how a certain genetic endowment might influence the acquisition of a
communication system. There is a tradition of researchers in the connectionist sciences
addressing this question. For example, Elman (1993) considers the role that different
maturational schedules have on a neural network attempting to acquire a simple
grammar, Batali (1994) investigates the role evolution might play in setting initial
connection weights for a neural network attempting to learn a context-free language
and Christiansen and Devlin (1997) show that the consistency of recursion within a
language influences the learnability of that language by a neural network. A recent
paper in this journal (Cangelosi et al. 2000) outlines research in which feedforward
neural networks are used to investigate the problem of symbol grounding in the
acquisition of communication.

While they provide valuable insights, these models do not truly tackle the dynamic
nature of repeated cultural transmission. The agents in these models are adapting
towards a static target behaviour, an externally-determined language or vocabulary.
In a more realistic model of cultural transmission, the target of adaptation shifts as a
result of the adaptations made by previous generations and is determined, at least in
part, by the dynamics of repeated learning.

The investigation described in Hare and Elman (1995) represents an early
attempt to model this kind of cultural dynamic using neural networks. The paper
outlines a scenario under which an ‘immature’ network learns its competence in
a task (verb inflection) based on the behaviour of a ‘mature’ network which has
previously undergone training on the same task. This competence then guides the
network’s behaviour as a mature individual, which is in turn learned from by a new
immature network.

The initial inflectional system in Hare and Elman’s scenario was, however,
externally determined. Can processes of repeated cultural transmission lead to the
emergence of a system of communication? If so, what property of learners leads to the
emergence of that system? This question has been addressed, using neural network-
based simulations, by Hutchins and Hazelhurst (1995), Batali (1998), Hazelhurst and
Hutchins (1998), Kvasni¢ka and Pospichal (1999), Livingstone and Fyfe (1999) and
Kirby and Hurford (2002). These works establish that, given a particular model of a
learner (autoassociative networks in Hutchins and Hazelhurst (1995) and Hazelhurst
and Hutchins (1998), feedforward networks in the others) and a particular model of
cultural transmission (repeated horizontal transmission within a fixed population in
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Hutchins and Hazelhurst (1995), Batali (1998) and Hazelhurst and Hutchins (1998),
vertical transmission between non-overlapping generations in Kvasni¢ka and
Pospichal (1999), Livingstone and Fyfe (1999) and Kirby and Hurford (2002)), com-
munication systems which are in some sense optimal emerge. However, these papers
fail to explain fully why these communications systems emerge—what properties of
the learner result in the emergence of communication systems possessing the optimal
quality?

A promising approach to addressing precisely this question is outlined in Oliphant
(1999). Oliphant investigates how different learning rules influence the development
of a vocabulary-like communication system through cultural processes within a popu-
lation of simple neural networks. While this paper represents a positive development,
it suffers from several shortcomings. Firstly, only three possible learning rules are
considered. Secondly, the results for those three learning rules are not related to
other results in the field, such as those of Hutchins and Hazelhurst (1995), Batali
(1998), Hazelhurst and Hutchins (1998), Kvasni¢ka and Pospichal (1999), Livingstone
and Fyfe (1999) and Kirby and Hurford (2002). Thirdly, while it is shown that certain
learning rules result in the emergence of optimal communication, the properties of the
learning rules that result in this behaviour are not explicitly identified.

The goal of this paper is to investigate how the innate endowment of individuals
influences the cultural evolution of communication within a population of such
individuals. Specifically, building on the promise of Oliphant (1999), a model of the
cultural transmission of a vocabulary-like communication system in a population
of simple networks is developed (sections 2 and 4). The relationship between the
learning rules used by individuals in such populations and the population’s com-
munication system is explored, and the learning rules which result in the emergence
of optimal communication in such populations are identified (sections 3 and 5).
The key features of these learning rules are described and related to features of
other models of the cultural evolution of communication (section 6). Finally, the
implications of this research for our understanding of the evolution of human language
are considered.

2. The basic model
The basic model consists of two elements: a model of communication systems (section
2.1) and a model of a communicative agent (section 2.2).

2.1. Communication systems and communication

A communication system C consists of a production function p(m), mapping from
unstructured meanings m to unstructured signals s, and a reception function r(s),
mapping from signals s to meanings m. m and s are selected such that m e Jl and
s e Pwhere M={m,m,...m, JandF={s,s,...5,}.

How can we evaluate the communicative accuracy of such a population? The
accuracy of a single communicative event involving a producer P with production
function p(m), a receiver R with reception function r(s) and a meaning m, € .,
ca(P, R, m,),is defined as

)

1 if ))=m,
ca(P,R,m,) = itr(p(m.))=m,
0 otherwise
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If p(m) is converted to a probabilistic function p(s; | m,), which gives the probability
of producing signal s; given meaning m, and r(s) is similarly viewed as a probabilistic
function r(m, | s].) then the equation above can be rewritten as

=

ca(P,R,m))= 3" p(s;,Im)-r(m,ls)) (2)

A

The communicative accuracy of P and R over all meanings, ca(P, R) can then be
defined as the average of their communicative accuracy over each meaning m, € M,

e.g.

=l =19
Z Z p(sjlml.)-r(ml.lsj)
ca(P,R)=-—--+- o

®3)

In a population possessing an optimal communication system ca(P, R) = 1 for any
choice of P and R.

2.2. Communicative agents

Communicative agents in the model must be capable of representing such commu-
nication systems, modelling production and reception functions of the type outlined
above and modifying their behaviour based on observations of systems of the type
outlined above.

2.2.1 Representation. Agents are modelled using networks consisting of two sets of
nodes N',, and N and a set of weighted bidirectional connections W connecting every
node in N, with every node in N.

Patterns of activation over N, are considered to represent meanings, whereas
patterns of activation over N ; are considered to be signals. Restricting these patterns
of activation to contain a single active unit yields IN, | orthogonal meaning
representations and [N (| orthogonal signal representations, suitable for representing
sets of unstructured meanings and unstructured signals such as those described above.
If Gi is the ith node from the set N'; and the activation of node Gi is a, then the
meaning m, correspopnds to a pattern of activation over N',, where a,,, = 1 and
= 0. Similarly, the signal s, corresponds to a pattern of activation over N, where

Ay
M(j#i)
= 0. This representational scheme is illustrated in figure 1.

ag=1and Agiiiy
2.2.2. Retrieval. Patterns are retrieved from the network using a k-winners-take-all
strategy. In order to retrieve a pattern of activation over nodes in N'; based on an
input pattern of activation over nodes in N, the weighted sum of inputs to node Si,
q,, for each Si e Nis calculated according to the formula:

=N gl

qs = Z ApW uj si (4)

A

where w_, € W is the weight of the connection between nodes a and b. The k nodes



Communication in a population of neural networks 69

O

M2

<0
e e

S1

Figure 1. A neural network where |\, | = [Nl = 3. Large filled circles represent nodes with

activation of 1, large empty circles represent nodes with activation of 0. The pattern of activation

over N, therefore represents the_ meaning m, (a,,=1,4a,, =y, = 0). Similarly, the pattern of
activation over N  represents the signal s.

in N'; with the highest values of g then have their activations set to 1, while all other
nodes in N have their activations set to 0. If several nodes have equal g a random
winner is selected from among them. Patterns of activation over the nodes in N, are
retrieved based on input patterns of activation over N in exactly the same way. For
all simulations outlined in this paper, k =1—retrieved patterns of activation only ever
consist of a single active node and (IN';| — 1) non-active nodes. This ensures that
retrieved patterns of activation conform to our representration of meanings and
signals outlined above. This retrieval process is illustrated in figure 2.

Retrieving a pattern of activation over N given an input pattern of activation over
N,, corresponds to retrieving the signal associated with a given meaning—production
of a signal associated with a given meaning. Retrieving a pattern of activation over N,
given an input pattern of activation over N corresponds to retrieving the meaning

@ (b)

S. 3 —2 1
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Figure 2. Retrieval of a pattern of activation over N ¢ based on a pattern of activation over N .
As before, large filled circles represent nodes with activation of 1. Connections between nodes
are represented by the intersections of connecting lines and have an associated weight. In (a),
the nodes in N, have been set to a pattern of activation, resulting in a pattern of weighted sums
of inputs over the nodes in N';. The numbers in the centre of the nodes in N represent the
weighted sums to those nodes. In (b) the result of the application of the winner-take-all process
isshown—qy, is greater than g, or g, therefore node S1 has its activation set to 1 while nodes
$2 and S3 have their activations set to 0.
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associated with a given signal—reception of a given signal and interpretation of that
signal to yield a meaning. Note that the production and reception behaviour of such
networks are not necessarily closely related—for example, the network in figure 2
would produce S2 when prompted with M2, but would interpret S2 as meaning M3.
Using a single network for both production and reception, as opposed to two separate
networks, does however allow the possibility of a coupling of production and
reception.

2.2.3. Storage. In order to store the association between patterns of activation over
N,, and N the activations of the nodes in N, and N are set to the required values
and the weights of the connections in W are adjusted according to some weight-update
rule W. If we assume that W must only adjust connection weights based on local
information and that all patterns of activation will be binary, W can be specified by
the 4-tuple (a. By 8), where the value in a specifies how the weight of connection w, .
should be adjusted when a,=a,=1, the value in f3 specifies how w, ; should be adjusted
when a,=1and a, =0, the Value in y specifies how w, . should be adjusted when a,= 0
and a,= 1 and the value in 6 specifies how w, . should be adjusted when a, = =a,= 0. While
weights could be adjusted in many ways we will restrict ourselves here to the simplest
case where a, 3,y and 8 must take integer values in the range (-1, 1). This yields a range
of 3*= 81 possible weight-update rules.

Given our interpretations of patterns of activations of N, and N, this storage
process will be interpreted as the process of learning the association between a
meaning and a signal in a meaning-signal pair <m, s> according to some rule W. The
storage process is illustrated in figure 3.

3. Acquisition of an optimal system

We now have a model of communication, a model of an agent and processes
of production, reception and learning. The first question to be addressed is to
ask whether individual agents, in isolation, can acquire an optimal communication
system. To this end an unambiguous set of meaning-signal pairs o = {<m,, 5,>,

@ (b)

SQ 0 0 0 SO d d c
‘b b a
SO 0 0 0 SQ d d c

S1 S2 S3 S1 S2 S3

g.o 0 0 >

M2

Figure 3. Storage of the meaning-signal pair <m,, s,> using the weight-update rule W= (a b c

d). In (a), the nodes in N,, and N have been set to the pattern of activation representing m,

and s,. All connections have weight 0. In (b) the result of the application of the storage process

is shown—all connections now have weights of a, b, c or d, depending on the activations of the
nodes they connect.
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<m,, s,>...<my,, s> was constructed. Agents using each of the 81 possible weight
update rules were then trained on ¢, by storing each meaning-signal pair in s{ in their
network. The agents were then evaluated to see if they had successfully acquired an
optimal communication system based on exposure to the unambiguous set of
meaning-signal pairs . Agents were judged to have acquired an optimal system, if,
for every <m,, s> e s both

1 production of the signal associated with m, always' resulted in s, being produced,
i.e. <m, s> can be reproduced in production

2 and reception of s, always resulted in the interpretation m,, i.e. <m,, s> can be
reproduced in reception, meaning that the agent would communicate optimally
with itself or another agent using the same weight-update rule exposed to .

The 81 weight-update rules can therefore be classified according to a [+/—learner]
feature. Thirty-one of the 81 possible weight-update rules were judged to be capable
of acquiring the optimal communication system and were classified as [+ learner].
The remaining 50 weight-update rules were classified [- learner].

4. The iterated learning model
As discussed in section 1, many connectionist models of the acquisition of com-
munication end with an experiment of the sort outlined in the preceding section, where
the ability of individual agents to acquire a system with a predefined structure is
investigated. This type of static analysis fails to take the essentially dynamic nature of
repeated cultural transmission into account. The model outlined in section 2 can be
extended to allow the study of the dynamics of repeated cultural transmission, with
the aim of identifying the circumstances under which optimal communication emerges
through purely cultural processes. While there are numerous potential factors which
will influence this matter, the one which will concern us here is that of learning bias—
which weight-update rules result in the emergence of optimal communication through
purely cultural processes, and why?

A model of cultural transmission is presented in section 4.1. In section 4.2 some of
the assumptions of this model are discussed.

4.1. Cultural transmission

The results of repeated cultural transmission can be investigated using an iterated
learning model (Kirby 2001, Brighton 2002). In an iterated learning model agents
require their competence through learning from observations of the external
behaviour of other agents. This competence is then used to generate external
behaviour which is observed in turn by other agents. In the case of our model, the
culturally-transmitted behaviour of interest is linguistic behaviour. Agents acquire
their linguistic competence based on the linguistic behaviour of other agents and use
this acquired linguistic competence to produce linguistic behaviour.

What constitutes the linguistic behaviour that agents are required to acquire their
competence from? External signals are clearly an observable aspect of linguistic
behaviour. However, as with other iterated learning models dealing with the cultural
evolution of linguistic behaviour, we assume that learners are able to observe
meanings in addition to signals, at least during the learning period—immature agents
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Figure 4. The population-level iterated learning model. At every iteration an individual
(represented by a circle) is removed and a new individual joins the population, after observing
and learning from the behaviour of the remaining members of the population.

can identify the communicative intentions of other agents, as well as their signals, and
observe and learn from meaning-signal pairs. The relationship between this assump-
tion and the symbol grounding problem is discussed in section 4.2.

The process of iterated learning requires a model of population turnover. In this
paper we use a gradual population turnover model, illustrated in figure 4. At every
time-step a single agent is selected at random and removed from the population. The
remaining members of the population produce some observable behaviour, in the
case of our model sets of meaning-signal pairs. A new individual arrives and learns
based on observations of the population’s observable behaviour, then enters the
population. The process then repeats.

More formally, the iterated learning model consists of an initialization process and
an iteration process:

Initialization: Create a population of N agents,? each using the weight-update rule W
and possessing communication system L.

Iteration:

(1) Select an agent at random from the population and remove it.

(2) For every remaining member of the population, generate a set of meaning-
signal pairs by applying the network production process to every m e .il. Noise
is added to each meaning-signal pair® with probability p .

(3) Create a new agent with connection weights of 0 who uses weight-update rule
w.

(4) The new agent receives e exposures to the population’s communicative
behaviour.* During each of these e exposures the new agent observes the
complete set of meaning-signal pairs of a randomly selected member of the
population and updates their connection weights according to the observed
meaning-signal pairs and their weight-update rule W.

(5) The new agent joins the population. Return to (1).
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Each pass through the iteration process will be termed a cohort. Note that the
random removal of agents from the population means that there is no selection based
on communicative ability. The fact that every individual begins its life with a weight-
update rule and initial set of connection weights suggests some kind of innate
endowment of these components. Itis our goal to investigate the impact of this innate
endowment on the communicative behaviour of the population. However, every agent
begins life with the same endowment—there is no possibility of genetic variation
within the population. The emergent behaviour of the population will therefore be
determined by the dynamics resulting from the iterated cultural transmission of
communcation systems among populations of individuals with a common genetic
endowment.

4.2. The environment and internal representations

In this model, as with most other iterated learning models, there is no notion of an
environment outwith the agents—meanings and signals in the model are arbitrary
agent-internal representations. This model assumes that there is some shared, stable
mapping between external situations and internal representations of those events—
indeed, communication would be impossible without an external manifestation of
internal representations of signals. However, this mapping is not the focus of this
paper. An account of language as a mapping from aspects of the environment to other
aspects of the environment must account for two additional mappings (see figure 5):

¢ the mapping between states of the environment representing situations to be
communicated and internal representations of those states (meanings in this
model);

¢ the mapping between states of the environment representing communicative
alterations of the environment and internal representations of those states
(signals in this model).

The nature of the mapping between environment and meaning forms a key part of
the symbol grounding problem (Harnad 1990). The mapping between environment
and signal corresponds to a mapping between strings of phonemes and articulatory

Environment

Figure 5. In a complete model we must account for the mappings between three spaces

(ellipses)—the mappings between the environment space and the internal representational

spaces (dashed lines) in addition to the mapping between internal representational spaces (solid
lines).
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movements. In the model described here these mappings are not under consideration.
For our purposes it is sufficient to assume that all agents share mappings, possibly
based on categorization, between the environment and meanings and between the
environment and signals. While the mapping for the purposes of this model is assumed
to result in unstructured internal representations, it should be noted that structured
internal representations corresponding to a perception of structure in the environment
are a prerequisite for syntactically-structured language (Brighton 2002, Smith in
preparation).

Given the absence of an environment the assumption that learners observe
meaning-signal pairs is unavoidable. In a fuller model, the more reasonable assump-
tion could be made that learners are exposed to an environment which includes
a state being communicated about and a set of articulatory gestures intended as
a communicative alteration to the environment. The learner then has the task of
identifying the communicatively relevant state and the communicative alteration,
representing both internally and then learning the mappings between the internal
representations and possibly the mappings between the internal representations
and the environment. Given that in the current model there is no environment, this
is not possible. We could simulate the difficulty of the environment-meaning and
environment-signal mappings by adding noise to the observed meaning-signal pairs.
However, itis more appropriate to leave the nature of the external-internal mappings
to models which are explicitly designed to deal with them and focus here on the
learning of the internal mapping.

There is a body of evidence which suggests that children have various strategies for
mapping from the environment to internal representations of relevant parts of the
environment. Much of this points to the importance of joint attention and intentional
inference. Studies by Baldwin (1991, 1993b) show that infants cannot learn words for
toys simply by hearing the word for the toy while attending to the toy. The child must
witness an intentional agent direct their attention to the toy while naming it. Under
these circumstances the infant will learn the word for the toy, even if there is a delay
between witnessing the intentional agent directing their attention at the toy and being
able to attend to the toy directly themselves (Baldwin 1993a).

The development of this external-internal mapping in conjunction with the
development of an internal meaning-signal mapping has been modelled computa-
tionally. Neural network models show that genetic evolution can lead to the formation
of internal representations which correspond to a categorization of the environment
(Cangelosi and Parisi 1998). These internal representations may form the basis of
an innate (as in Cangelosi and Parisi 1998) or learned (Cangelosi 1999) communication
system. Hazelhurst and Hutchins (1998) show that the negotiation of ritualized
shifts of joint attention subserves the emergence of alearned communication system.
Symbolic computational models demonstrate that shared mappings from the envi-
ronment to interal representations of meanings can emerge through individual
learning, both with explicit feedback (Steels and Kaplan 1999) and without (Smith
2001). These models and the data from real language acquisition outlined above
give some hope that an integrated model, of the type depicted in figure 5, will be
achievable.
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5. Maintenance and construction of optimal systems

In addition to the static tests of acquisition outlined in section 3, two sets of tests were
carried out on populations of agents using each of the 81 possible weight-update
rules—tests for maintenance of an optimal communication system in a population
over time (section 5.1) and construction of an optimal communication system in a
population over time (section 5.2). These experiments give greater insight into the
dynamics arising from repeated cultural transmission and a fuller understanding of the
properties of learning rules than that afforded by static tests alone.

5.1. Maintenance of an optimal system
The first question to be addressed using the iterated learning model is whether a
population of agents possessing a weight-update rule W can maintain an optimal
system over time in the presence of a small degree of noise. Recall from the description
of the iterated learning model given in section 4 that the agents in the initial population
use some predefined communication system L. For the experiments outlined in
this section, the initial population’s sets of weights W were constructed such that the
p(m) of the initial L generated the set of meaning-signals pairs £ = {<m ,s,>, <m,,s,>
...<m,,s >} Iterated learning models were run with each of the 81 possible learning
rules, with noise introduced with probability p = 0.05. Populations were defined as
having maintained the initial optimal system if the population’s communicative
accuracy remained above 0.95 for every cohort of a run.> Weight-update rules were
classified as [+ maintainer] if the optimal system was maintained for each of ten
2000-cohort runs.

The populations exhibited four typical patterns of behaviour, illustrated in figure
6. Populations (a), (b) and (c) in figure 6 have failed to maintain the optimal system
and can therefore be classified as [- maintainer], although population () in figure 6
exhibits a more rapid decrease in communicative accuracy than populations (b) and
(¢). Unsurprisingly, all 50 populations using weight-update rules with the [- learner]
feature followed the pattern of (@) and can therefore be classified [~ learner,
— maintainer]. Of the remaining 31 weight-update rules, 13 resulted in the type of
pattern exemplified by populations (b) and (c¢) and can be classified as [+ learner,
— maintainer| and 18 resulted in patterns similar to that of population (d) in figure 6
and can be classified as [+ learner, + maintainer].

5.2. Construction of an optimal system

Finally, the 81 weight-update rules were examined to see whether they resulted in the
emergence of optimal communication systems from random behaviour when placed
in the context of the iterated learning model. In the previous section the initial
population’s communication system, L, was optimal. In the iterated learning models
outlined in this section L has maximum entropy—every m € J is associated with
every s € & with equal probability, [l = |¥] = 10. This was achieved by setting
the connection weights of every individual in the initial population to 0. Unlike the
previous section, cultural transmission is noise-free—p, = 0 (although results show
that similar behaviour occurs with p_ > 0). Iterated learning models were run for each
of the 81 possible learning rules. A population was defined as having constructed
an optimal system if the population’s communicative accuracy reached 1.0. Weight-
update rules were classified [+ constructor] if optimal systems were constructed in
each of ten 2000-cohort runs.
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Figure 6. Populations of agents using the 81 learning rules exhibit four patterns of behaviour

when attempting to maintain an optimal system. This figure plots the communicative accuracy

over time of single populations exhibiting these patterns of behaviour: rapid collapse to chance

levels of communicative accuracy, as in (a); less rapid collapse to chance levels of communicative
accuracy, as in (b) and (c); maintenance of the optimal system, as in (d).

The populations exhibited three typical patterns of behaviour, of which populations
(a), (b) and (¢) in figure 7 are representative examples. The populations which fit the
pattern exemplified by (&) in figure 7 have clearly failed to construct an optimal system
and in fact persist at the random level of performance for Ml = |¥| = 10. All of the
weight-update rules which were classified as [- maintainer] follow this pattern and can
be classified as [~ constructor].

Populations behaving similarly to population (b) in figure 7 are clearly performing
above the random level, but have not constructed an optimal system as defined above.
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Figure 7. Populations of agents using the 81 learning rules exhibit three patterns of behaviour

when attempting to construct an optimal system: failure to construct an optimal system and

chance-level communicative accuracy, as in (a); failure to construct an optimal system, but

levels of communicative accuracy significantly above chance, as in (b); construction of an
optimal system, as in (c).
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In fact, as suggested for a more limited case by Oliphant (1999), the level of commu-
nicative accuracy in these populations hovers around the level we would expect given
a random assignment of signals from || to meanings from l./il| with replacement

cax~ 1—(1—|—;Jmt ®)

The reasons for this level of performance will be made clear in section 6. Nine of
the 18 weight-update rules which were classified [+ maintainer] fit this pattern and can
be classified as [~ constructor].

Populations fitting the pattern exemplified by population (¢) in figure 7 have clearly
succeeded in constructing an optimal system from random behaviour and can be
classified as [+ constructor]. Nine of the 18 weight-update rules which were classified
as [+ maintainer] fit this pattern.

5.3. The classification hierarchy
The three tests outlined above divide the 81 weight-update rules into four groups,
summarized in table 1.

The fact that all weight-update rules which are [+ constructor] are [+ maintainer]
and all rules which are [+ maintainer] are [+ learner] suggests a hierarchy of weight-
update rules, summarized in figure 8.

6. The key bias
What is it about the particular assignment of —1s, Os and 1s to the four conditions a,
B, vy and & that makes one weight-update rule incapable of learning an optimal
communication system whereas another weight-update rule is capable of constructing
such a system from random behaviour in the context of iterated cultural transmission?
There is in fact a clear pattern relating the properties of weight-update rules to the
assignment of actions to values in the (o B vy 8) 4-tuple. This bias is best described in
terms of the one-to-one nature of mappings between meanings and signals.

As defined in section 2.1, in an optimal communication system r(p(m)) = m for all
m e Jl. This requires that:

1 Each m e M should be expressed by a distinct s € ¥, i.e. p(m) should be a
one-to-one function.

Table 1. The number of weight-update rules of each particular complete classification, from
the sample of 81.

Classification Number
[~ learner, — maintainer, — constructor] 50
[+ learner, — maintainer, — constructor| 13
[+ learner, + maintainer, — constructor| 9

[+ learner, + maintainer, + constructor] 9
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weight-update rules
(81)

{+learner} {-learner}
(31) (50)
{+maintainer} {-maintainer}
(18) (13)
{+constructor} {-constructor}

(9) 9)

Figure 8. The hierarchy of weight-update rules. Read from the top, each node places additional
restrictions on the properties of the weight-update rules. The numbers possessing each feature
are given in parentheses at each point in the tree.

2 Eachs € ¥ should map back to a single m e Jl such that p(m) =s, i.e. r(s)
should be a superset of the inverse of p(m).

Given the (approximately) bidirectional nature of the networks and assuming
IF1>1Al, point 1 above proves to be crucial in determining which weight-update rules
are [+ constructor], which are [+ maintainer, — constructor] and which are [+ learner,
—maintainer, — constructor]. Weight-update rules which are [+ constructor] are biased
in favour of a one-to-one p(m), those which are [+ maintainer, — constructor] are
neutral with respect to the one-to-one nature of p(m) and those which are [+ learner,
— maintainer, — constructor] are biased in favour of a many-to-one p(m).

6.1. The [+ constructor] bias

Is there any pattern of assignment of values to conditions in the weight-update rule
specification (o By 8) that characterizes rules which are [+ constructor] but not rules
which are [- constructor]? Yes.

A weight-update rule is [+ constructor] iff a>BAS>y

Why does this pattern of weight changes result in the construction of optimal
systems from random behaviour? Consider a network where IN, | = IN (| =2 using
the weight-update rule (a b ¢ d). Prior to learning, all the connection weights in W
are 0. If we represent W' as a matrix with the value in row i and column j representing
the weight of the connection between nodes Mi and Sj then its initial weights will

be
{ ]
0 O
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If this network is exposed once to the meaning m, (recall from section 2.2.1. that for
this meaning a,,, = 1, a,,, = 0), paired with the signal s, (similarly, ay, = 1, ag, = 0), its
weight matrix will be
<2
c d

For rules which are [+ constructor] a > b. This means that if our simple network uses
a [+ constructor] rule it will correctly produce s, to communicate m,, due to the winner-
take-all retrieval procedure.

For [+ constructor] rules, d > c. In the context of our simple network, this
means that if the network uses a constructor rule it will automatically prefer to use
the signal s, to communicate meaning m,, despite the fact that it has only been trained
to associate m, with s,. This is the crucial property of [+ constructor] rules—they are
biased in favour of acquiring one-to-one mappings between meanings and signals.
What consequences does this bias have in the context of iterated cultural trans-
mission?

Only communication systems which conform completely to the biases of learners
will be stable over iterated cultural transmission—communication systems which
partially conform to learner biases will be less likely to be acquired than systems which
conform more fully to the learner biases, and will therefore be filtered out of the
population over time. This differential retention of communication systems resulting
from learner biases can be termed cultural selection. The [+ constructor] bias in favour
of one-to-one mappings between meanings and signals results in many-to-one
mappings being filtered out of the population. Eventually, through the process of
iterated learning, the population converges on a shared one-to-one mapping between
meanings and signals—an optimal communication system is constructed.

6.2. The [+ maintainer] bias

Can the [+ maintainer] property also be explained in terms of allocations of actions
to the (o B y 8) weight-update rule specification? First, is there any pattern which
uniquely identifies the [+ maintainer, — constructor] rules? Yes.

A weight-update rules is [+ maintainer, — constructor] iff a > B A& =8

Once again consider a network where IN', | =N (| =2 using the rule (a b ¢ d) exposed
once to m, paired with s,. As before, the resultant weight matrix is

c d
As for [+ constructor] rules, for [+ maintainer, — constructor] rules a > b. This means
that if our simple network uses a [+ maintainer, — constructor] rule it will correctly
produce s, to communicate m,.

For [+ maintainer, — constructor] rules d = c¢. This means that, unlike [+ constructor]
rules, the network using a [+ maintainer, — constructor] rule will be equally likely to
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express m, using s, and s,, due to their equal weights in the network. [+ maintainer,
— constructor] rules are therefore neutral with respect to one-to-one mappings. This
explains both the ability of populations of agents using such rules to maintain optimal
systems in the context of the iterated learning model and the behaviour of these
populations as they attempt to construct optimal systems.

[+ maintainer, — constructor] rules can maintain an optimal system in the presence
of noise. The initial optimal system is, by definition, a one-to-one mapping between
meanings and signals. Given the neutrality of [+ maintainer, — constructor] rules to
the one-to-one nature of mappings, such optimal systems can be acquired in the
presence of noise, provided the noise is not sufficient to drown out the one-to-one
nature of the mapping.

Recall from section 5.2 and figure 7 that, when provided with an initially random
system, populations of agents using [+ maintainer, — constructor] rules converge on
the level of communicative accuracy one would expect given a random assignment,
with replacement, of signals to meanings. This can be explained in terms of the
neutrality of [+ maintainer, — constructor] rules to the one-to-one nature of mappings.
The initial population’s random behaviour, when taken as a whole, will embody a
random assignment of signals to meanings. This random assignment will become
shared among the population through the process of iterated learning. While
[+ constructor] agents remove the many-to-one elements of the initial random
system, [+ maintainer, — constructor] agents do not—the population’s eventual com-
munication system will embody the same number of many-to-one mappings as the
initial random behaviour.

What then of the [+ maintainer] property in isolation from the [+/— constructor]
feature? This can be captured thus

A weight-update rule is [+ maintainer] iffa > B A 8> vy

The fact that rules which are [+ constructor] are always [+ maintainer] is captured
by this statement, as is the fact that it is possible to be [+ maintainer, — constructor].

6.3. The [+ learner] bias
The pattern of assignments of actions to the weight-update rule specification (a. 3y d)
that characterizes rules which are [+ learner] is

A weight-update rule is [+ learner] iff o + § > B+ y

or, in simple terms, in order to be able to acquire an optimal communication system
you must make stronger associations between units which tend to have matching
activations than between units which tend to have conflicting activations. Note that
the a. > B A & >y constraint on [+ maintainer] rules guarantees that all such rules are
also [+ learner].

Why are rules which are [+ learner, — maintainer, — constructor| unable to maintain
or construct optimal communication systems? As we might expect, such weight-
update rules are biased against one-to-one mappings between meanings and signals
and in favour of many-to-one mappings. This immediately rules out construction of
the one-to-one mappings characterizing optimal systems, and also maintenance of
such systems. Any many-to-one mappings introduced by noise will be preferentially
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weight-update rules

[+learner] [-learner]
(a+0>P+7) (e +0<=P+7v)
[+maintainer] [-maintainer]
(a>PBrd=v) (a>PBrd<y)
[+constructor] [-constructor]
(a>B"38>7) (a>Brd=v)

Figure 9. The hierarchy given in figure 8, expressed in terms of restrictions on possible values
in each condition of weight-update rules.

acquired by [+ learner, — maintainer, — constructor] agents and will spread through
populations of such agents, resulting in the type of decrease in communicative
accuracy seen in figure 6.

6.4. Summary of the key bias

The weight-update rule hierarchy given in figure 8 is re-presented in figure 9 in terms
of the constraints on the values of the weight-update rules. Each terminal node of the
tree has a bias, summarized in table 2.

6.5. The key bias in other models
Does this key bias appear in other computational models of the cultural evolution of
communication? Specifically, does it appear in the neural network models of Hutchins
and Hazelhurst (1995), Batali (1998), Hazelhurst and Hutchins (1998), Kvasnicka
and Pospichal (1999), Livingstone and Fyfe (1999) and Kirby and Hurford (2002)?
The models of Hutchins and Hazelhurst (1995) and Hazelhurst and Hutchins
(1998) can be treated separately from the other models, which all share a common
model of a learner. Hutchins and Hazelhurst use autoassociator networks to model

Table 2. A summary of the learning biases of each particular combination of features.
Weight-update rules which are classified as [- learner, — maintainer, — constructor] cannot
be said to have a learning bias as they cannot learn.

Classification Bias

[~ learner, — maintainer, — constructor] NA

[+ learner, — maintainer, — constructor| Favours many-to-one mappings
[+ learner, + maintainer, — constructor| Neutral

[+ learner, + maintainer, + constructor] Favours one-to-one mappings
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communicative agents in both cases, with patterns of activation over the hidden layer
being interpreted as signals. Autoassociative networks must develop a distinct pattern
of activation over the hidden layer for every input-output pair (input—-output pairs are
equivalent to meanings as defined here, although Hutchins and Hazelhurst consider
them to be visual stimuli) in order to succeed in the autoassociator task. Interpreting
the hidden-layer patterns of activation as signals therefore builds in a one-to-one bias
of the type identified as crucial for developing an optimal communication system.

Batali (1998), Kvasni¢ka and Pospichal (1999), Livingstone and Fyfe (1999) and
Kirby and Hurford (2002) all use feedforward networks mapping from signals to
meanings to model agents. The feedforward activation process in these networks
therefore corresponds to r(s). In order to derive p(m) from non-reversible networks
a somewhat ad-hoc reversal process is used. Briefly, if the feedforward network has
learned to associate a set of inputs ¥ with a single output m, the reversal process
deterministically selects a signal s € ¥ when prompted to produce a signal for m—
the network’s p(m) is a subset of its r(s).

These networks adjust their connection weights using the backpropagation
procedure on the basis of signal-meaning pairs, which are derived from observed
meaning-pairs. From observing systems with a many-to-one p(m) agents attempt to
learn to associate multiple meanings with a single signal. However, such one-to-many
mappings are unlearnable by feedforward networks. Many-to-one mappings from
meanings to signals are therefore culturally unstable. One-to-many mappings between
meanings and signals are learnable but unstable due to the reversal process. The only
culturally stable mapping is therefore a one-to-one mapping between meanings and
signals. These networks therefore encode the same bias as the [+ constructor] agents
described in this paper.

7. Conclusions
Investigation of the properties of a range of weight-update rules for simple networks,
both in isolated learning tasks and in the context of the iterated learning model, reveals
a hierarchy of such rules. This hierarchy can be described in terms of restrictions on
the possible assignment of actions to conditions in a weight-update rule. Further
investigation of these restrictions reveals that the bias of the rules with respect to the
one-to-one nature of meaning-signal mappings is crucial. Assuming the capacity
to acquire an observed mapping (i.e. ignoring the [- learner]| rules), a bias against
one-to-one mappings results in failure to maintain an optimal communication system
over time in the presence of noise. Neutrality with respect to the one-to-one nature
of meaning-signal mappings gives the ability to maintain an optimal system in the
presence of a degree of noise, but inability to construct an optimal system from initially
random behaviour. A bias in favour of one-to-one mappings between meanings and
signals results in cultural selection in favour of such mappings and the emergence of
optimal communication through purely cultural processes.

What can this simple model tell us about the evolution of communication in general
and human language in particular? This model suggests two necessary preconditions
for the emergence of optimal communication through cultural processes:

(1) the capacity to read, at least to some extent, the communicative intentions of
others.

(2) possession of a bias in favour of one-to-one mappings between meanings and
signals.
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It should be noted that these preconditions are perhaps not sufficient for the
cultural evolution of optimal communication—there may be other preconditions
which do not feature in this model. Notwithstanding this caveat, does any species
meet these two criteria?

Human infants come to the language-learning task equipped with a sophisticated
ability to judge the communicative intention of others (e.g. Baldwin 1991, 1993a, b,
Bloom 1997) and an apparent bias in favour of one-to-one mappings between objects
and words (the principle of contrast (Clark 1988)). This model suggests that the
iterated application of these biases should result in the cultural emergence of a near-
optimal, or at least effective, learned communication system. The uniqueness of
human language suggests that no other species possesses these biases, although a
fuller understanding of all necessary preconditions may shed more light on this issue.

Where might these biases in humans come from? It is tempting to conclude that
such an endowment must have evolved through natural selection to facilitate
communication or language. However, preliminary results from a model based on
the model outlined here, where genetic evolution of weight-update rules occurs
alongside cultural transmission of communication systems, suggest that the evolution
of appropriate learning biases may not be straightforward (Smith 2001).

In addition to its learned and symbolic nature, human language is unique in
possessing syntactic structure. While previous work (e.g. Kirby 2001, Brighton 2002)
suggests that this structure may be due to cultural dynamics rising from the poverty
of the stimulus available to language learners, the results of the model outlined in this
paper suggests that learner biases may also have a role to play. Is a bias in favour of
one-to-one mappings between (parts of) meanings and (parts of) signals a necessary
precondition for the cultural evoluton of syntax? As this paper illustrates, the
combination of associative networks and the iterated learning model is a powerful
technique for investigating such questions.
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Notes

1 The term ‘always’ has to be introduced to account for the stochastic nature of the behaviour of some
networks, resulting from multiple nodes in the network receiving the same weighted sum of inputs on
presentation of a pattern. In practice, ‘always’ was reduced to ‘for every one of 1000 trials’.

2 N =100 for all iterated learning models outlined in this paper. However, different values on N yield
qualitatively similar results.

3 Inorder to add noise to a meaning-signal pair <m,, s>, s; is replaced with a randomly-selected s, € &,
where k #j.

4 e =3 for all iterated learning models outlined in this paper. Once again, different values of e yield
qualitatively similar results.

5 The population’s communicative accuracy was estimated by evaluating every individual’s average
communicative accuracy as both producer and receiver with two randomly selected partners
according to the measure ca(P, R) given in section 2.1 and averaging over all individuals in the
population.

References
Baldwin, D.A., 1991, Infants’ contribution to the achievement of joint reference. Child Development, 62:
875-890.



84 K. Smith

Baldwin, D.A.,1993a, Early referential understanding: Infants’ ability to recognise referential acts for what
they are. Developmental Psychology,29: 832-843.

Baldwin, D.A., 1993b, Infants’ ability to consult the speaker for clues to word reference. Journal of Child
Language, 20: 395-418.

Batali, J., 1994, Innate biases and critical periods: Combining evolution and learning in the acquisition of
syntax. In R. Brooks and P. Maes (eds) Artificial Life 4: Proceedings of the Fourth International
Workshop on the Synthesis and Simulation of Living Systems (Redwood City, CA: Addison-Wesley),
pp. 160-171.

Batali, J., 1998, Computational simulations of the emergence of grammar. In J. R. Hurford, M. Studdert-
Kennedy and C. Knight (eds) Approaches to the Evolution of Language: Social and Cognitive Bases
(Cambridge: Cambridge University Press), pp. 405-426.

Batali, J., in press. The negotiation and asquisition of recursive grammars as a result of competition among
exemplars. In E. Briscoe (ed.) Linguistic Evolution through Language Acquisition: Formal and
Computational Models (Cambridge: Cambridge University Press).

Bloom, P., 1997, Intentionality and work learning. Trends in Cognitive Sciences, 1: 9-12.

Boyd, P., and Richerson, P.J., 1985, Culture and the Evolutionary Process (Chicago, IL: University of
Chicago Press).

Brighton, H., 2002, Compositional syntax from cultural transmission. Artificial Life: 8.

Cangelosi, A., 1999, Modelling the evolution of communication: from stimulus associations to grounded
symbolic associations. In D. Floreano, J.-D. Nicoud and F. Mondada (eds) Advances in Artificial
Life: Proceedings of the 5th European Conference on Artificial Life (Heidelberg: Springer-Verlag),
pp. 654-663.

Cangelosi, A., Greco, A., and Harnad, S., 2000, From robotic toil to symbolic theft: grounding transfer
from entry-level to higher-level categories. Connection Science, 12: 125-148.

Cangelosi, A., and Parisi, D., 1998, The emergence of a ‘language’ in an evolving population of neural
networks. Connection Science, 10: 83-97.

Chomsky, N., 1987, Knowledge of Language: Its Nature, Origin and Use (Dordrecht: Foris).

Christiansen, M., and Devlin, J., 1997, Recursive inconsistencies are hard to learn: A connectionist
perspective on universal word order correlations. In M. Shafto and P. Langley (eds) Proceedings
of the 19th Annual Cognitive Science Society Conference (London: Lawrence Erlbaum
Associates), pp. 113-118.

Clark, E., 1988, On the logic of contrast. Journal of Child Language, 15: 317-335.

Elman, J., 1993, Learning and development in neural networks: The importance of starting small.
Cognition, 48: 71-99.

Hare, M., and Elman, J. L., 1995, Learning and morphological change. Cognition, 56: 61-98.

Harnad, S., 1990, The symbol grounding problem. Physica D, 42: 335-346.

Hazelhurst, B., and Hutchins, E., 1998, The emergence of propositions from the co-ordination of talk and
action in a shared world. Language and Cognitive Processes, 13: 373-424.

Hutchins, E., and Hazelhurst, B., 1995, How to invent a lexicon: the development of shared symbols in
interaction. In N. Gilbert and R. Conte (eds) Artificial Societies: the Computer Simulation of Social
Life (London: UCL Press).

Kirby, S., 2001, Spontaneous evolution of linguistic structure: an iterated learning model of the
emergence of regularity and irregularity. IEEE Journal of Evolutionary Computation, 5:
102-110.

Kirby, S., and Hurford, J.R., 2002, The emergence of linguistic structure: An overview of the iterated
learning model. In A. Cangelosi and D. Parisi (eds) Simulating the Evolution of Language
(London: Springer-Verlag), pp. 121-147.

Kvasnicka, V., and Pospichal, J., 1999, An emergence of coordinated communication in populations of
agents. Artificial Life, 5: 319-342.

Livingstone, D., and Fyfe, C., 1999, Modelling the evolution of linguistic diversity. In D. Floreany, J.-D.
Nicoud and F. Mondada (eds) Advances in Artificial Life: Proceedings of the 5th European
Conference on Artificial Life (Heidelberg: Springer-Verlag), pp. 704-708.

Macnamara, J., 1972, The cognitive basis of language learning in infants. Psychological Review,79: 1-13.

Oliphant, M., 1999, The learning barrier: Moving from innate to learned systems of communications.
Adaptive Behavior, T: 371-384.

Sampson, G., 1997, Educating Eve: The ‘Language Instinct’ debate (London: Cassell).

Smith, A., 2001, Establishing communication systems without explicit meaning transmission. In J.
Kelemen and P. Sodik (eds) Advances in Artificial Life: Proceedings of the 6th Europeanm
Conference on Artificial Life (Heidelberg: Springer-Verlag), pp. 381-390.

Smith, K., 2001, The importance of rapid cultural convergence in the evolution of learned symbolic
communication. In J. Kelemen and P. Sosik (eds) Advances in Artificial Life: Proceedings of the
6th European Conference on Artificial Life (Heidelberg: Springer-Verlag), pp. 637-640.

Steels, L., and Kaplan, F. 1999, Collective learning and semiotic dynamics. In D. Floreano, J.-D. Nicoud
and F. Mondada (eds) Advances in Artificial Life: Proceedings of the 5th European Conference on
Artificial Life (Heidelberg: Springer-Verlag), pp. 679-688.



