Simulating Language: Lab 2 Worksheet

Code Walkthrough

This document gives a line-by-line walkthrough of the code in the first file we looked at
(signalling1.py), which measures the communicative accuracy between a production and reception

system.

Data Structures: a signalling matrix represented as a list of lists

A production system can be thought of as a matrix which maps meanings to signals. We are

>>>
>>>

psys = [[1, O,
len(psys)

>>> psys[0]
[1, 0, 0]
>>> psys[0][0]

01,01,

2, 11,103,

4,

4]]

representing this as a list.
Each member of the list is
itself a list containing the
association strengths for one
particular meaning. In the
example here, a production
system called psys is
defined: it has three members,
representing the three
meanings. The length of the

system is equivalent to the number of meanings in the system. psys[0] contains the association
strengths for the meaning m1, psys|[1] contains the association strengths for the meaning m2, and
so on (remember that indexes in Python start from zero!).

members, representing the
three possible signals. So
psys[0][0] is the strength
of association between
meaning m1 and signal s1.

We can do the same thing to
model a reception system, but
in this case we are dealing
with a system which maps
from signals to meanings: so
if rsys

>>>
>>>

>>>
[3,
>>>

rsys =

rsys[2]
1, 2]

rsys[2][1]

[(ro,
len(rsys)

association strength between a signal and three meanings.

Create a variable containing the following production matrix:

OI 1]I[OI 1’

$1 S2 S3
m |1 0 2
mz2 |2 2 0
ms3 |0 1 3

Print the weights for meaning m1
Print the weight of the connection between meaning m2 and signal s3

Each of these sub-lists has three

01,03, 1, 21]

is a reception system then each member of rsys is itself a list which contains the

Create a variable containing the following reception matrix:

S1 1 2 0

S2 0 2 1

S3 2 0 3

Print the weights for signal s3
Print the weight of the connection between signal s1 and meaning m2

The code proper

The code begins by importing the random and pyplot modules; this allows us to use Python’s built-
in random number generator and plotting functions (see the worksheet for lab 1).

import random
import matplotlib.pyplot as plt

Function wta

The function wta (“winner takes all”) takes a list |, . wta(items):

of numbers (items) as its parameter; this maxweight = max(items)
represents a row of a production or reception candidates = []
matrix. The function returns the index of the for 1 in range(len(items)):

. . . if items[i] == maxweight:
largest number in the list items. If there candidates.append (i)

multiple equally large numbers, then one of them return random.choice(candidates)
is chosen at random.

maxweight = max(items) uses the built-in function max to calculate the maximum value of
items and allocates this value to maxweight.

candidates = [] creates an empty list.

for i in range(len(items)):

range(len(items)) creates a sequence of numbers from 0 to (not including) the length of
items. These represent each possible index of items, and in the for loop we go through each in
turn, allocating it to the variable i, and then carrying out everything in the next code block for
each value of i:

if items[i] == maxweight:

candidates.append (i)
This checks each member of items in turn; if its value is equal to maxweight, then the

index (1) is appended to (added to) the list of candidates.

After this loop has been completed, candidates will contain the indexes of all the largest
numbers.

return random.choice(candidates) rcturns a random choice from the numbers in
candidates. If there is only one number in candidates, then this is returned.

Using wta and the variables you created above to store the production and reception matrices:
find the preferred signal for each meaning in turn
find the preferred meaning for each signal in turn

Are the results as you would expect?

Function communicate

The function communicate plays a communication episode; it takes three parameters:
® speaker_system, the production matrix of the speaker;
® hearer_system, the reception matrix of the hearer, and
@ meaning, the index of the meaning which is to be communicated.

In a communication def communicate(speaker system, hearer system, meaning):

episode, the speaker speaker signal = wta(speaker system[meaning])
chooses the signal it uses hearer meaning = wta(hearer system[speaker signal])
to communicate if meaning == hearer meaning:

. return 1
meaning, and else:
expresses this signal to return 0

the hearer; the hearer
then chooses the
meaning it understands by the speaker’s signal. If the hearer’s meaning is the same as the speaker’s
meaning, then the communication episode succeeds, otherwise it fails.

speaker_signal = wta(speaker_system[meaning]) uses speaker system
[meaning] to extract a list of association strengths from the speaker’s production matrix
(speaker system) for meaning, and then uses wta (see above) to find the index
corresponding to the largest of these weights. This value is then stored in the wvariable
speaker signal.

hearer_meaning = wta(hearer_system[speaker_signal]) uses
hearer system[speaker signal] to extract a list of association strengths from the
hearer's reception matrix (hearer system) for speaker signal, and then uses wta (see
above) to find the index corresponding to the largest of these weights. This value is then stored in
the variable hearer meaning.

if meaning == hearer_meaning:
return 1
else:
return O
If the hearer’s interpretation of the speaker’s signal (hearer meaning) equals the

original value of meaning (i.e. the meaning the speaker was trying to convey) and thus the
communication episode succeeds, then the function returns 1, otherwise (else) it
returns 0.

Using the same matrices you created earlier, find out which of the meanings can be successfully
communicated using these production and reception matrices.

Function ca_monte

The function ca monte (“communicative accuracy Monte Carlo”) is the main function in this
program. It performs a Monte Carlo simulation, which runs a set number of communication
episodes between a production system and a reception system, calculates how many of them were
communicatively successful, and returns a trial-by-trial list of results. It takes three parameters:

® speaker_system, the production matrix of the speaker;

® hearer_system, the reception matrix of the hearer, and

® trials, the number of trials of the simulation, or the number of communicative
episodes over which communicative accuracy should be calculated.

def ca monte(speaker system, hearer system, trials):

total = 0.

accumulator = []

for n in range(trials):
total += communicate(speaker system, hearer system,

random.randrange(len(speaker system)))

accumulator.append(total/(n+1))

return accumulator

total = 0. creates a variable called total, which will store the number of successful
communicative episodes. Note the trailing decimal point, which tells Python that this number
should be stored as a floating-point number.

accumulator = [] creates a variable called accumulator, which will be used to build up a list

of trial-by-trial success rates. ~We initialise accumlator with an empty list: before we have
conducted any trials, we don’t have any results for success or failure.

for n in range(trials):

range (trials) creates a sequence of numbers from 0 to (not including) trials, which is then
traversed in the for loop.

total += communicate(speaker_system, hearer_ systenm,
random.randrange(len(speaker_system)))

On each communicative episode, we choose a random meaning (random.randrange
(len(speaker system)) from the speaker’s signalling system, then use the function
communicate to see whether the speaker can successfully communicate this meaning to
the hearer (hearer system). We add the value returned by communicate (i.e. 0 or 1)
to the existing value in total, which therefore contains the number of successful
communicative episodes.

accumulator.append(total/(n+l))

We want to build up an exposure-by-exposure list of the proportion of communicative
episodes so far which have been successful. total/n+1 gives the proportion of events to
date that have been successful: this is the number of successful events (which we are storing
in total), divided by the number of trials we have conducted up to this point, which is n
+1. Note that the number of trials conducted so far is n+1, not just n: because of the way
range works, the first trial is n=0, the second trial is n=1, and so on, so we have to add 1
to this number to get the actual number of trials completed. We then use append to add
this value to accumulator, which is our building list of trial-by-trial successes.

return accumulator returns the list of trial-by-trial list giving proportion of successful

communicative events. Note that this line of code is outside the for loop: accumulator is only
returned once the for loop has run the necessary number of trials.

What is the overall communicative accuracy for the matrices you defined earlier?

Change the ca_monte function so that the trailing decimal point is removed from the definition
and run it again. What happens?

Create another matrix (maybe with more meanings and/or signals). What is its communicative
accuracy?

