
Simulating Language: Lab 2 Worksheet
Code Walkthrough

This document gives a line-by-line walkthrough of the code in the first file we looked at
(signalling1.py), which measures the communicative accuracy between a production and reception
system.

Data Structures: a signalling matrix represented as a list of lists

A production system
can be thought of as a
matrix which maps
meanings to signals. We
are representing this as
a list. Each member of
the list is itself a list
c o n t a i n i n g t h e
association strengths for
one particular meaning. In the example here, a production system called psys is defined: it has
three members, representing the three meanings. The length of the system is equivalent to the
number of meanings in the system. psys[0] contains the association strengths for the meaning
m1, psys[1] contains the association strengths for the meaning m2, and so on (remember that
indexes in Python start from zero!). Each of these sub-lists has three members, representing the
three possible signals. So psys[0][0] is the strength of association between meaning m1 and
signal s1.

We can do the same thing to model a reception system, but in this case we are dealing with a system
which maps from signals
to meanings: so if rsys
is a reception system then
each member of rsys is
itself a list which contains
the association strength
between a signal and three
meanings.

In [1]: psys = [[1, 0, 0],[1, 2, 1],[3, 4, 4]]
In [2]: len(psys)
Out[2]: 3
In [3]: psys[0]
Out[3]: [1, 0, 0]
In [4]: psys[0][0]
Out[4]: 1

In [5]: rsys = [[0, 0, 1],[0, 1, 0],[3, 1, 2]]
In [6]: len(rsys)
Out[6]: 3
In [7]: rsys[2]
Out[7]: [3, 1, 2]
In [8]: rsys[2][1]
Out[8]: 1

Create a variable containing the following production matrix:

s1 s2 s3

m1

m2

m3

1 0 2

2 2 0

0 1 3

Print the weights for meaning m1
Print the weight of the connection between meaning m2 and signal s3

The code proper

The code begins by importing the random modules; this allows us to use Python’s built-in random
number generator (see the worksheet for lab 1).

Function wta

The function wta (“winner takes all”) takes a list
of numbers (items) as its parameter; this
represents a row of a production or reception
matrix. The function returns the index of the
largest number in the list items. If there
multiple equally large numbers, then one of them
is chosen at random.

maxweight = max(items) uses the built-in function max to calculate the maximum value of
items and allocates this value to maxweight.

candidates = [] creates an empty list.

for i in range(len(items)):
range(len(items)) creates a sequence of numbers from 0 to (not including) the length of
items. These represent each possible index of items, and in the for loop we go through each in
turn, allocating it to the variable i, and then carrying out everything in the next code block for
each value of i:

if items[i] == maxweight:
! candidates.append(i)

Create a variable containing the following reception matrix:

m1 m2 m3

s1

s2

s3

1 2 0

0 2 1

2 0 3

Print the weights for signal s3
Print the weight of the connection between signal s1 and meaning m2

def wta(items):
 maxweight = max(items)
 candidates = []
 for i in range(len(items)):
 if items[i] == maxweight:
 candidates.append(i)
 return rnd.choice(candidates)

import random as rnd

This checks each member of items in turn; if its value is equal to maxweight, then the
index (i) is appended to (added to) the list of candidates.

After this loop has been completed, candidates will contain the indexes of all the largest
numbers.

return rnd.choice(candidates) returns a random choice from the numbers in
candidates. If there is only one number in candidates, then this is returned.

Function communicate

The function communicate plays a communication episode; it takes three parameters:
๏ speaker_system, the production matrix of the speaker;
๏ hearer_system, the reception matrix of the hearer, and
๏ meaning, the index of the meaning which is to be communicated.

In a communication episode, the speaker chooses the signal it uses to communicate meaning, and
expresses this signal to the hearer; the hearer then chooses the meaning it understands by the
speaker’s signal. If the hearer’s meaning is the same as the speaker’s meaning, then the
communication episode succeeds, otherwise it fails.

speaker_signal = wta(speaker_system[meaning]) u s e s
speaker_system[meaning] to extract a list of association strengths from the speaker’s
production matrix (speaker_system) for meaning, and then uses wta (see above) to find the

def communicate(speaker_system, hearer_system, meaning):
 speaker_signal = wta(speaker_system[meaning])
 hearer_meaning = wta(hearer_system[speaker_signal])
 if meaning == hearer_meaning:
 return 1
 else:
 return 0

Using the wta function and the variables you created above to store the production and reception
matrices:

find the preferred signal for each meaning in turn
find the preferred meaning for each signal in turn

For example, if you called your production system my_psys, you could find the preferred signal
for meaning 1 like this:
In [9]: wta(my_psys[0])
This takes the first row of the production system we defined earlier (my_psys[0]), then uses
wta to find the index of the preferred signal for that row. Note that the wta function will only
work if you have clicked the Play button on Canopy to load the signalling1.py code into the
interpreter - otherwise the computer won’t know what wta means!

index corresponding to the largest of these weights. This value is then stored in the variable
speaker_signal.

hearer_meaning = wta(hearer_system[speaker_signal]) u s e s
hearer_system[speaker_signal] to extract a list of association strengths from the
hearer's reception matrix (hearer_system) for speaker_signal, and then uses wta (see
above) to find the index corresponding to the largest of these weights. This value is then stored in
the variable hearer_meaning.

! if meaning == hearer_meaning:
 return 1
! else:
 return 0
 If the hearer’s interpretation of the speaker’s signal (hearer_meaning) equals the
 original value of meaning (i.e. the meaning the speaker was trying to convey) and thus the
 communication episode succeeds, then the function returns 1, otherwise (else) it
 returns 0.

Function ca_monte

The function ca_monte (“communicative accuracy Monte Carlo”) is the main function in this

program. It performs a Monte Carlo simulation, which runs a set number of communication
episodes between a production system and a reception system, calculates how many of them were
communicatively successful, and returns a trial-by-trial list of results. It takes three parameters:

๏ speaker_system, the production matrix of the speaker;
๏ hearer_system, the reception matrix of the hearer, and
๏ trials, the number of trials of the simulation, or the number of communicative

episodes over which communicative accuracy should be calculated.

total = 0. creates a variable called total, which will store the number of successful
communicative episodes. Note the trailing decimal point, which tells Python that this number
should be stored as a floating-point number.

def ca_monte(speaker_system, hearer_system, trials):
 total = 0.
 accumulator = []
 for n in range(trials):
 total += communicate(speaker_system, hearer_system,
 rnd.randrange(len(speaker_system)))
 accumulator.append(total/(n+1))
 return accumulator

Using the same matrices you created earlier, find out which of the meanings can be successfully
communicated using these production and reception matrices.

accumulator = [] creates a variable called accumulator, which will be used to build up a list
of trial-by-trial success rates. We initialise accumlator with an empty list: before we have
conducted any trials, we don’t have any results for success or failure.

for n in range(trials):
range(trials) creates a sequence of numbers from 0 to (not including) trials, which is then
traversed in the for loop.

total += communicate(speaker_system, hearer_system,
! ! ! ! rnd.randrange(len(speaker_system)))

On each communicative episode, we choose a random meaning
(rnd.randrange(len(speaker_system)) from the speaker’s signalling system,
then use the function communicate to see whether the speaker can successfully
communicate this meaning to the hearer (hearer_system). We add the value returned by
communicate (i.e. 0 or 1) to the existing value in total, which therefore contains the
number of successful communicative episodes.

 accumulator.append(total/(n+1))

We want to build up an exposure-by-exposure list of the proportion of communicative
episodes so far which have been successful. total/n+1 gives the proportion of events to
date that have been successful: this is the number of successful events (which we are storing
in total), divided by the number of trials we have conducted up to this point, which is n
+1. Note that the number of trials conducted so far is n+1, not just n: because of the way
range works, the first trial is n=0, the second trial is n=1, and so on, so we have to add 1
to this number to get the actual number of trials completed. We then use append to add
this value to accumulator, which is our building list of trial-by-trial successes.

return accumulator returns the list of trial-by-trial list giving proportion of successful
communicative events. Note that this line of code is outside the for loop: accumulator is only
returned once the for loop has run the necessary number of trials.

What is the overall communicative accuracy for the matrices you defined earlier?

Change the ca_monte function so that the trailing decimal point is removed from the definition
and run it again. What happens?

Create another matrix (maybe with more meanings and/or signals). What is its communicative
accuracy?

