Simulating Language: Lab 4 Worksheet

This simulation implements the evelution of an innate signalling system, using the same basic
signalling system code from last time. Make sure that you are familiar with the way in which agents
and signalling systems were encoded; the same data structures are used here. On this worksheet, the
program is relatively long, so only the new code is reproduced. The file evolutionl.py
nevertheless contains all the code we have already seen in signalling2.py. Copy
evolutionl.py from WebCT, and save it to your own file space as before.

Copying Lists

from copy import deepcopy

The first part of the new code imports the deepcopy function; this is needed because of the way in
which Python treats copies of lists. Have a look at the code in the example below, and see if you can
understand what is happening.

First, list a is created, then is ‘copied’ to b, then one of

the values in a is changed. But note that the value in b is zzz g _ (_Ell 2, 3]
also changed! >>> b

' , . [1, 2, 3]
When copying compound objects (i.e. lists), by default | 555 a[l] = 5
Python fills the new list (here: b)with references to | >>> p
elements in the old list (a); this means that the contents [1, 5, 3]

of b is actually the same as that of a, even if we change
a after we ‘copied’ it.

If, instead, we want to ensure that the copied list

>>> i) .)
from copy import deepcopy contains new and different items, then we need to

>>> = . i

. * _ ([i;é zc') 3 zx) make a deep copy, using the deepcopy function

. 1; PeoPY from the copy module rather than simple

(1, 2, 3] assignment. Look at the next example to see how
4 4 .

>>> x[1] = 5 this works.

>>> y

[1, 2, 3] Make sure that you understand the difference,

>>> x given a list x, between the statements y = x and

[1, 5, 3] y = deepcopy(X).

Simulation Parameters

The next section defines a number of variables which are used as parameters in the simulation, with
comments explaining what they are used for (remember that anything after the hash sign (#) is a
comment, and thus ignored by the Python interpreter). We define the variables individually, and
then refer to them by name in the following functions, so that when we want to run the simulation

mutation rate = 0.01
mutation max = 1

probability of mutation per weight
maximum value of a random weight

send_weighting 10 weighting factor for send score
receive weighting = 10 weighting factor for receive score
meanings = 3 number of meanings

signals = 3 number of signals

interactions = 1000
size = 100

number of interactions per generation
size of population

HHoW oKW KR HHH®

with different parameters, all we need do is either change the values here and re-run the module, or
enter new values at the prompt in IDLE and run a new simulation.

How would you change the number of agents in the population?
Fitness Functions
Evolutionary algorithms require a function which measures fitness and helps determine which
agents will reproduce into the next generation. The following functions define fitness for an

individual agent (fitness) and for the whole population (sum_fitness); study them and make
sure you understand how they work.

def fitness(agent):
send_success = agent[2][0]
send n = agent[2][1]
receive success = agent[2][2]
receive n = agent[2][3]
if send n == 0:
send n =1
if receive_n ==
receive n =1
return ((send_success/send_n) * send weighting +
(receive_success/receive _n) * receive_weighting) + 1

def sum fitness(population):
total = 0
for agent in population:
total += fitness(agent)
return total

Why are the variables send n and receive nsetto I in the fitness function?

What do the send _weightingand receive weighting variables do?

What variables does the fitness function depend on? Why is there a “+1" here?
Mutation
This function mutates the signalling system by going through each cell in the matrix, deciding

whether a mutation should take place, and, if so, assigning a new value to the cell. Note that this
function contains a new random function random.randint(x, y); this returns a random integer

between x and y, including both x and y; random.randint (x, y) is therefore equivalent to
random.randrange(x, y + 1)

def mutate(system):
for row_i in range(len(system)):
for column_i in range(len(system[0])):
if random.random() < mutation_rate:
system[row_i][column_i] = random.randint(0, mutation_ max)

How does the program make sure that it goes through each cell in the matrix?
How frequently does mutation happen?

Breeding the next generation of agents

The following functions create a new population of agents based on the fitness of the existing
agents. The probability of being picked as a parent agent is proportional to the agent’s fitness.
There is another new random function random.uniform(x, y), which returns a random floating-
point number between x and y; random.uniform(0, 1) is equivalent to random.random().

Make sure you understand how the pick parent function works.

def pick_parent(population,sum f):
accumulator = 0
r = random.uniform(0, sum f)
for agent in population:
accumulator += fitness(agent)
if r < accumulator:
return agent

def new population(population):
new p = []
sum_f = sum fitness(population)
#print(sum_f) #uncomment this line if you would like updates during runs
for i in range(len(population)):
parent=pick_ parent(population, sum_ f)
child production_system = deepcopy(parent[0])
child reception system = deepcopy(parent[1l])
mutate(child production_ system)
mutate(child reception system)
child=[child production_system,
child reception_system,
[0., 0., 0., 0.71]
new_p.append(child)
return new_p

How does the program ensure that the probability of being picked as a parent is proportional
to fitness?

Why is deepcopy used in new_population?

Establishing a random population of agents

The function random_system generates a random signalling system, and this is used to generate

a random population of agents (random population).

def random system(rows,columns):

def

system = []
for i in range(rows):
row = []
for j in range(columns):
row.append(random.randint (0, mutation max))
system.append(row)
return system

random_ population(size):
population = []
for i in range(size):
population.append([random system(meanings,signals),
random_system(signals,meanings),
[0., 0., 0., 0.11])

return population

Running the simulation

def simulation(generations):

accumulator=J[]
population = random population(size)
for i in range(generations):
for j in range(interactions):
pop_update(population)
average fitness=(sum_fitness(population)/size)
accumulator.append(average fitness)
population = new population(population)
return [population,accumulator]

This function runs the main simulation. Make sure that you understand how it works, by studying
the above functions again if necessary. After having run this module (remember that you choose
Run-Run Module in the editor to load the program into Python), run the simulation by simply
typing simulation(n) at the prompt, where n specifies the number of generations you want to

simulate.

How often does the population communicate in each generation?

At what point are agents assessed for fitness?

Run the simulation for a few generations: what do values returned by simulation signify?
Run it again, with different numbers of generations: how long does it take for a stable,

successful communication system to emerge? (Note: 1000 generations takes about 40 seconds
on my laptop, so be wary of starting very very long runs)

Questions

1. Under what conditions does stable, successful communication evolve? (Note that it is a very
good idea to run the simulation a few times, and plot the results).

2. Can you speed up evolution (or slow it down)? How? Is there a limit to how fast evolution can
happen in the model?

3. In earlier worksheets we gave you the option of modelling production and reception using a
single matrix of weights, or of modelling populations in a more structured way (e.g. where each
individual communicated with their neighbours). What difference do you think these factors will
make to the evolution of communication? Make the necessary adjustments to the code and find
out.

4. In this model a parent’s signalling system is transmitted directly to their offspring - this is our
model of the genetic transmission of an innate signalling system. How else might a signalling
system be transmitted from parent to offspring, and how might you model that process?

