

Simulating Language: Lab 7 Worksheet

Download `learning3.py` from the usual place. The simulation explores the *cultural* evolution of a signalling system in a population of agents. In particular, we'll look at the effects on communicative accuracy of:

- (i) different learning biases (weight update rules),
- (ii) different populations models

The new part of our code starts with a set of parameter declarations; their meanings should all be straightforward by now. Note that the `interactions` parameter has two purposes in this simulation:

- to specify the number of utterances produced to create the data.
- to specify the number of times the data is randomly sampled in training.

```
# ----- new code below -----  
  
meanings = 5          # number of meanings  
signals = 5           # number of signals  
interactions = 100    # both the number of utterances produced and the number  
                      # of times this set is randomly sampled for training.  
size = 100            # size of population  
method = 'replacement' # method of population update  
rule = [1, 0, 0, 0]    # learning rule (alpha, beta, gamma, delta)
```

Below this, the function `new_agent` creates a new agent, with every cell in their signalling matrix set initially to zero, and the function `new_population` creates a population of new agents.

```
def new_agent():  
    system = []  
    for row in range(meanings):  
        row = []  
        for column in range(signals):  
            row.append(0)  
        system.append(row)  
    return system  
  
def new_population(size):  
    population = []  
    for i in range(size):  
        population.append(new_agent())  
    return population
```

The Simulation

The simulation function runs the simulation. It takes three parameters, as follows:

`generations`: the number of generations in the simulation

`mc_trials`: the number of trials used to calculate communicative accuracy

`report_every`: the frequency with which data points (for printing in a graph) are returned

```

def simulation(generations, mc_trials, report_every):
    population = new_population(size)
    data_accumulator=[ ]
    for i in range(generations):
        data = pop_produce(population, interactions)
        if method == 'chain':
            population = new_population(size)
            pop_learn(population, data, interactions, rule)
        if method == 'replacement':
            population = population[1:] #This removes the first item of the list
            learner=new_agent()
            pop_learn([learner], data, interactions, rule)
            population.append(learner)
        if method == 'closed':
            pop_learn(population, data, interactions, rule)
        if (i % report_every == 0):
            data_accumulator.append(ca_monte_pop(population, mc_trials))
    return [population,data_accumulator]

```

It then runs through the following steps:

1. Initialise the population
2. For each generation:
 - a. Produce some data
 - b. Update the population (by adding new agents)
 - c. Get (some of) the new population to learn from the data produced in 2a.
 - d. Evaluate the population's communicative accuracy
3. Output the final state of the population, and the list of communicative accuracy scores

The parameter `method` defines exactly how the population is updated, based on the scheme outlined by Mesoudi & Whiten:

chain: create a completely new population
replacement: remove one agent from the population, and replace with a new agent
closed: do not change the population at all

There are two things to note about the Python code in this function.

Review: slicing a list

The slice (`start : end`) operator allows us to take a slice of sequential elements between `start` and `end` from a list.

As usual in Python, the sequence extracts starts at `start`, and continues up to, *but not including*, `end`. Either the start or end (or both) indexes can be omitted, in which case the start or end of the list is assumed, respectively.

```

>>> x = ['a','b','c','d']
>>> x[1:3]
['b','c']
>>> x[1:]
['b','c','d']
>>> x[:3]
['a','b','c']

```

```
>>> 7 % 3
1
>>> 11 % 4
3
>>> 10 % 2
0
```

Modulus (Remainder)

The `x%y` operator returns the remainder of the division of `x` by `y`.

In the `simulation` function, the modulus operator is used to decide whether or not to calculate the value of `ca_monte_pop` and output it for the graphs. Can you see how it works?

Questions

1. Run the simulation for 500 generations, with 1000 `mc_trials` per generation, outputting communicative accuracy every 10 generations. Plot the values on a graph.
2. Experiment with different learning rules, re-running the simulation and inspecting the output. Which rules *construct* perfect communicative systems from random languages? How many different kinds of output pattern can you find with different rules? Plot them.
3. Change the population update method to ‘chain’, and re-run the simulation. What happens? Why? Increase the number of interactions by a factor of 100, and reduce the number of generations by a factor of 10. What happens now?
4. Experiment with the ‘closed’ method as well. What difference does the update method make to the way the simulation works?
5. How would you alter the code to test whether a learning rule can *maintain* (rather than construct) a perfect system? Make these changes, then re-test the rules you looked at in answering question 2 above. If a rule fails the construction test, does that mean it always fails the maintenance test? If it passes the construction test, does it always pass the maintenance test?
6. In previous worksheets you have had the opportunity to write and play with code which models genetic transmission, spatial organisation, reinforcement learning, and so on. How would you fit these things in to this iterated learning model?