Simulating Language: Lab 8 Worksheet

Download learning4.py from the usual place. The simulation explores how to implement
cross-situational learning, with as few changes to the code we already know as possible.

The new code starts with a set of parameter declarations:
. The context size parameter specifies how many candidate meanings the learner
receives in a learning episode (including the target).

# —————— new code below ------—-—---
meanings = 5 # number of meanings
signals = 5 # number of signals
context_size = 3 # context size

rule = [1, 0, 0, 0] # learning rule

What kind of learning does context size = 1 simulate?

New Agent

The function new_agent creates a new agent. This is slightly modified from the equivalent
function in the last simulation, in that it now takes a parameter type which defines the type of
agent created:

. random: every cell in the signalling matrix is set initially to zero.

. optimal: every cell is set to zero except those on the leading diagonal.

# creates a new agent, with initial weights either all 0 (if type is given as
# "random"), or specifying an optimal system (if type is given as "optimal")
def new agent(type):
system = []
for i in range(meanings):
row = []
for j in range(signals):
if type == 'optimal':
if i == j:
row.append(1l)
else:
row.append(0)
if type == 'random':
row.append(0)
system.append (row)
return system

Adding Context

The function add_context takes the speaker’s intended meaning as a parameter and returns a
context made up of this meaning and additional candidate meanings chosen at random from the
other possible meanings to make the context the appropriate size defined by the parameter
context_ size. It works as follows:



1.  Create a list of all possible meanings (m_list)

2. Remove the speaker’s intended meaning from this list.

3.  Choose context size-1 meanings at random from the remaining list to be the
context.

4.  Add the speaker’s intended meaning back in to the context.

5. Return the context.

# add random context to target meaning m
def add context(m):
m list = range(meanings)
if m in m list:
m_list.remove(m)
random.shuffle(m_list) # randomizes list of non-target meanings
context = m _list[ : (context size-1)] # take first however many
context.append(m) # add back in target meaning
return context

Producing Data

The function produce data produces a single piece of data from the given signalling system.
Each data item is no longer a meaning-signal pair, but instead a signal paired with a list of meanings
(the context).

# produce a single data items from speaker system
def produce data(speaker system):
meaning = random.randrange(len(speaker system))
signal = wta(production weights(speaker_ system,meaning))
context = add_context(meaning)
return [context,signal]

Learning from Uncertain Data
>>>x = [1, 2, 3, 4]

>>> 3 in X
True
>>> 5 in X

False
This function makes use of a couple of new Python list | 555 o pnot in x

operators, namely in and not in. These provide an | prye

easy way to check whether or not an object is a | >>> 2 in x[2:]
member of a list, as shown in the code box. Make sure False

you understand how they work.

The function multiple meaning learn is based
on the 1learn function we’ve used before.

Can you see how multiple_meaning learn differs from learn (in learning3.py)?

Do you understand how the matrix is updated when the agent receives a signal-meaning list pair? If
not, create your own blank agent (use the new_agent function) and test it with some random
meanings and signals.



I learn a signal paired with multiple meanings
def multiple meaning learn(system,meaning list,signal,rule):
for m in range(len(system)):
for s in range(len(system[m])):

if m in meaning list and s == signal: system[m][s] += rule[0]
if m in meaning list and s != signal: system[m][s] += rule[l]
if m not in meaning list and s == signal: system[m][s] += rule[2]
if m not in meaning list and s != signal: system[m][s] += rule[3]

The Simulation

The xs1 simulation function runs the simulation. It uses the global parameters defined at the
beginning, and takes three additional parameters as follows:

learning episodes: the number of learning episodes to simulate

trials: number of trials over which communicative accuracy is
calculated

report every: the frequency with which communicative accuracy should be
measured

def xsl simulation(learning episodes, trials, report every):
adult = new_agent('optimal')
learner = new_agent('random')
data_accumulator = []
for i in range(learning episodes):
utterance = produce data(adult)
context = utterance[0]
signal = utterance[l]
multiple meaning learn(learner, context, signal, rule)
if (i % report every == 0):
data_accumulator.append(ca monte(adult, learner, trials))
return [learner,data_accumulator]

It runs through the following steps:

1.  Initialise the population, by creating an optimal adult/speaker and a blank learner/hearer.
2. For a number of times specified in learning episodes:
a.  Produce some data.
b.  Learn this data.
c. Every report every trials, calculate the communicative accuracy between
speaker and hearer and append to data accumulator.
3.  Finally, return details of the hearer’s signalling system, plus the list of accumulated

communicative accuracy scores.



Questions

1. Exploring the parameters.

a. Run the simulation with the default parameters, using 1000 trials to calculate communicative
accuracy and outputting data every 10 learning episodes. Plot these values on a graph.

b. Change the size of the context, and plot the data on the graph. How does the size of the
context affect learning? Are there any circumstances in which learning doesn’t happen?

c. Now increase the number of meanings and signals in an agent’s signalling system, and run
the simulation again. What is the relationship between the context size, the number of
meanings, and the time taken to learn the signalling system?

2. The xsl simulation function calls ca monte to calculate the level of success in
communication from speaker to hearer. Change this function call so that it calculates
communicative success from hearer to speaker, and re-run the simulation.

a. How does this change the results?
b. Why does communicative success measured in this way sometimes go down?
3. Experiment with learning a random language and with different learning rules.
a. Can you use cross-situational learning to construct a perfect language from random data?
b. Do all the update rules classified by Smith (2002) as ‘learners’ still learn cross-situationally?
c. Do you see any differences in learning time between different rules?

4. Adjust the code so that a learner is exposed to multiple signals at each exposure, with a context
which includes the meanings of all of those signals. Is learning still possible? What might this
model correspond to in real language learning?

5. What kinds of word learning event are likely to be particularly challenging for a cross-situational
learner?



