
Simulating Language: Lab 8 Worksheet

Download learning4.py from the usual place. The simulation explores how to implement
cross-situational learning, with as few changes to the code we already know as possible.

The new code starts with a set of parameter declarations:
• The context_size parameter specifies how many candidate meanings the learner

receives in a learning episode (including the target).

What kind of learning does context_size = 1 simulate?

New Agent

The function new_agent creates a new agent. This is slightly modified from the equivalent
function in the last simulation, in that it now takes a parameter type which defines the type of
agent created:

• random: every cell in the signalling matrix is set initially to zero.
• optimal: every cell is set to zero except those on the leading diagonal.

Adding Context

The function add_context takes the speaker’s intended meaning as a parameter and returns a
context made up of this meaning and additional candidate meanings chosen at random from the
other possible meanings to make the context the appropriate size defined by the parameter
context_size. It works as follows:

------- new code below ------------

meanings = 5 # number of meanings
signals = 5 # number of signals
context_size = 3 # context size
rule = [1, 0, 0, 0] # learning rule

creates a new agent, with initial weights either all 0 (if type is given as
"random"), or specifying an optimal system (if type is given as "optimal")
def new_agent(type):
 system = []
 for i in range(meanings):
 row = []
 for j in range(signals):
 if type == 'optimal':
 if i == j:
 row.append(1)
 else:
 row.append(0)
 if type == 'random':
 row.append(0)
 system.append(row)
 return system

1. Create a list of all possible meanings (m_list)
2. Remove the speaker’s intended meaning from this list.
3. Choose context_size-1 meanings at random from the remaining list to be the

context.
4. Add the speaker’s intended meaning back in to the context.
5. Return the context.

Producing Data

The function produce_data produces a single piece of data from the given signalling system.
Each data item is no longer a meaning-signal pair, but instead a signal paired with a list of meanings
(the context).

Learning from Uncertain Data

The function multiple_meaning_learn is based
on the learn function we’ve used before.

This function makes use of a couple of new Python list
operators, namely in and not in. These provide an
easy way to check whether or not an object is a
member of a list, as shown in the code box. Make sure
you understand how they work.

Can you see how multiple_meaning_learn differs from learn (in learning3.py)?
Do you understand how the matrix is updated when the agent receives a signal-meaning list pair? If
not, create your own blank agent (use the new_agent function) and test it with some random
meanings and signals.

>>> x = [1, 2, 3, 4]
>>> 3 in x
True
>>> 5 in x
False
>>> 0 not in x
True
>>> 2 in x[2:]
False

add random context to target meaning m
def add_context(m):
 m_list = range(meanings)
 if m in m_list:
 m_list.remove(m)
 random.shuffle(m_list) # randomizes list of non-target meanings
 context = m_list[: (context_size-1)] # take first however many
 context.append(m) # add back in target meaning
 return context

produce a single data items from speaker_system
def produce_data(speaker_system):
 meaning = random.randrange(len(speaker_system))
 signal = wta(production_weights(speaker_system,meaning))
 context = add_context(meaning)
 return [context,signal]

The Simulation

The xsl_simulation function runs the simulation. It uses the global parameters defined at the
beginning, and takes three additional parameters as follows:

 learning_episodes: the number of learning episodes to simulate
 trials: number of trials over which communicative accuracy is
 calculated
 report_every: the frequency with which communicative accuracy should be
 measured

It runs through the following steps:

1. Initialise the population, by creating an optimal adult/speaker and a blank learner/hearer.
2. For a number of times specified in learning_episodes:

a. Produce some data.
b. Learn this data.
c. Every report_every trials, calculate the communicative accuracy between

speaker and hearer and append to data_accumulator.
3. Finally, return details of the hearer’s signalling system, plus the list of accumulated

communicative accuracy scores.

learn a signal paired with multiple meanings
def multiple_meaning_learn(system,meaning_list,signal,rule):
 for m in range(len(system)):
 for s in range(len(system[m])):
 if m in meaning_list and s == signal: system[m][s] += rule[0]
 if m in meaning_list and s != signal: system[m][s] += rule[1]
 if m not in meaning_list and s == signal: system[m][s] += rule[2]
 if m not in meaning_list and s != signal: system[m][s] += rule[3]

def xsl_simulation(learning_episodes, trials, report_every):
 adult = new_agent('optimal')
 learner = new_agent('random')
 data_accumulator = []
 for i in range(learning_episodes):
 utterance = produce_data(adult)
 context = utterance[0]
 signal = utterance[1]
 multiple_meaning_learn(learner, context, signal, rule)
 if (i % report_every == 0):
 data_accumulator.append(ca_monte(adult, learner, trials))
 return [learner,data_accumulator]

Questions

1. Exploring the parameters.

a. Run the simulation with the default parameters, using 1000 trials to calculate communicative
accuracy and outputting data every 10 learning episodes. Plot these values on a graph.

b. Change the size of the context, and plot the data on the graph. How does the size of the
context affect learning? Are there any circumstances in which learning doesn’t happen?

c. Now increase the number of meanings and signals in an agent’s signalling system, and run
the simulation again. What is the relationship between the context size, the number of
meanings, and the time taken to learn the signalling system?

2. The xsl_simulation function calls ca_monte to calculate the level of success in
communication from speaker to hearer. Change this function call so that it calculates
communicative success from hearer to speaker, and re-run the simulation.

a. How does this change the results?

b. Why does communicative success measured in this way sometimes go down?

3. Experiment with learning a random language and with different learning rules.

a. Can you use cross-situational learning to construct a perfect language from random data?

b. Do all the update rules classified by Smith (2002) as ‘learners’ still learn cross-situationally?

c. Do you see any differences in learning time between different rules?

4. Adjust the code so that a learner is exposed to multiple signals at each exposure, with a context
which includes the meanings of all of those signals. Is learning still possible? What might this
model correspond to in real language learning?

5. What kinds of word learning event are likely to be particularly challenging for a cross-situational
learner?

