
Simulating Language: Lab 10 Worksheet
Download bayes1.py from the usual place.  This simulation implements a simplified version of the 
two-language model from Griffiths & Kalish (2007) using an explicit agent-based simulation - the 
original paper uses a slightly different method to reach the same conclusions. 

The model of language in this simulation is much more abstract that what we have seen before. We 
are going to assume that there are just two language types, which we will call language 0 and 
language 1.  You could think of these as two contrasting classes of language: maybe VO and OV 
languages, or languages which allow null subjects and languages which don’t.  Next week we’ll 
look at  a slightly more complex model where we explicitly  model multiple language per type, but 
for the moment we’ll simplify.  Agents will produce (and learn from) data, which will simply 
exemplify  which language type they use: agents who have acquired language type 0 will produce 
type 0 utterances (with some possibility of noise on transmission meaning they produce type 1 
utterances instead), and vice versa.

Within this broad characterisation, we define a prior bias - a preference the learners have for one 
language type over the other. We implement bayesian learning, and experiment with the MAP or 
Sampling method (described below) for selecting a language from the posterior distribution.

As usual, the new code starts with a set of parameter declarations:

Production of data 

The function produce takes a language and produces an appropriate utterance. The function 
generate_data takes a language and a number, n, and produces a list of n utterances generated 
from the language.

import random
import matplotlib.pyplot as plt

learning = 'sample'  # The type of learning ('map' or 'sample')
bias = 0.6           # The preference for language 1
noise = 0.2          # The probability of producing the wrong utterance

# Produces an utterance for a particular language
def produce(language):
    if random.random() > noise:
        return language
    else:
        if language == 0:
            return 1
        if language == 1:
            return 0

# Generate a list of n utterances from a language
def generate_data(language, n):
    data_accumulator = []
    for i in range(n):
        utterance = produce(language)
        data_accumulator.append(utterance)
    return data_accumulator



Can you see how ‘noise’ - errors on production - works?

The Bayesian bits 

Recall that  Bayes’ rule allows us to calculate the relative posterior probability  (the probability of 
each language given the data heard) from the likelihood (the probability  of the data given each 
language) and the prior (the probability of each language, independent  of the data - in other words, 
the learning bias).

The function prior returns the prior of a particular language.

• If bias is over 0.5, which language has higher prior probability?  If bias is under 
0.5, which language has higher prior probability?  What does it mean if bias is 
exactly 0.5?

The function likelihood takes a language and a list of data and works out the likelihood of the 
data given the language.

• Try it out with a particular language and a list of utterances. Does it give the numbers 
you are expecting?

• What role is noise playing in the calculation of likelihood? What would happen if there 
was no noise (i.e. noise=0.0)?

Learning

Bayesian learners calculate the posterior probability of each language based on some data, then 
select a language (‘learn’) based on those posterior probabilities.  select_language 
implements this.  

# Gives the prior bias for a particular language. 
def prior(language):
    if language == 1:
        return bias
    else:
        return (1 - bias)

# Calculates P(data | language)
def likelihood(data, language):
    total = 1.
    for utterance in data:
        if  utterance == language:
            total = total * (1. - noise)
        else:
            total = total * noise
    return total



There are in fact two ways you could select a language based on the posterior probability 
distribution:

1. You could pick the best language - i.e. the language with the highest posterior probability.  
This is called MAP (“maximum a posteriori”) learning.
2. Alternatively, you could pick a language probabilistically based on its posterior 
probability, without necessarily going for the best one every time (e.g. if language 0 has 
twice the posterior probability  of language 1, you are twice as likely to pick it).  This is 
called sampling (for “sampling from the posterior distribution”).

The next bit of code implements both these ways of learning, using the familiar wta function to do 
MAP learning and using roulette_wheel to do sampling (compare the roulette_wheel 
function with the selection method from our evolutionary simulations early in the course).

• Try out both ways of learning with data generated using the generate_data 
function we looked at earlier. Try and see when it will learn the language that generates 
the data correctly, and when it will fail to learn.  Note that, for sampling learning, you 
may have to run select_language a few times for each set of data to get a sense of 
what it’s doing.

# Picks a language give the posterior probabilities of all languages.
# This will either be the maximum a posteriori language ('map')
# or a language sampled from the posterior
def select_language(data):    
    list_of_all_languages = [0,1]
    list_of_posteriors = []
    for language in list_of_all_languages:
        this_language_posterior = likelihood(data,language) * prior(language) 
        list_of_posteriors.append(this_language_posterior)
    if learning == 'map':
        map_language = wta(list_of_posteriors)
        return map_language
    if learning == 'sample':
        sampled_language = roulette_wheel(list_of_posteriors)
        return sampled_language
        
# good old winner-take-all
def wta(items):
    maxweight = max(items)
    candidates = []
    for i in range(len(items)):
        if items[i] == maxweight:
            candidates.append(i)
    return random.choice(candidates)

# Given a list of scores, returns a position in that list selected randomly
# in proportion to its score
def roulette_wheel(scores):
    summed_scores = sum(scores)
    r = random.uniform(0,summed_scores)
    accumulator = 0
    for i in range(len(scores)):
        accumulator += scores[i]
        if r < accumulator:
            return i
    



• The function calculates the value of a variable called this_language_posterior 
for each language, but this isn’t actually the real posterior probability. What’s missing 
from Bayes’ rule here, and why doesn’t it matter?

The simulation

There are two main functions to actually carry out the relevant simulation runs. The first is 
simulation, which runs a single chain. It takes three parameters: the number of generations, the 
size of the bottleneck (i.e. the number of utterances the learner hears) and the frequency with which 
it should calculate statistics.  

It returns a list of two things: the final language from the chain (needed by the 
simulation_batch function), and a (plottable) list of the proportion of generations which used 
language 1, calculated over the entire length of the chain to that point.  It also prints out the 
language at each generation, so you can get a feel of how well each agent learns the language of its 
predecessor - you can suppress this behaviour by commenting out the print statement.  

• Try this out. What determines how quickly the language changes? What determines the 
language at the end of a chain?  

The final function is simulation_batch, which simply  runs simulation over and over 
again and reports the proportion of those runs which ended up on language 1. It takes three 
parameters: the number of generations in each chain, the bottleneck, and how many  simulations to 
run.

>>> x = [1, 2, 3, 4]
>>> 3 in x
True
>>> 5 in x
False
>>> 0 not in x
True
>>> 2 in x[2:]
False

# Run a single chain for a particular bottleneck.
# Chains are initialised with a random initial language.
# Returns final language in chain, plus list detailing cumulative
# proportion of language 1 over time
def simulation(generations, bottleneck, output_every):
    language=random.randint(0,1)
    language1_count = 0.
    data_accumulator = []
    for i in range(1,generations+1):
        print language,
        language1_count+=language
        if output_every != 0:
            if (i % output_every) == 0:
                    data_accumulator.append(language1_count/i)
        data = generate_data(language, bottleneck)
        language = select_language(data)
    return [language,data_accumulator]

# Run a lot of simulations and returns the distribution of final languages
def simulation_batch(generations, bottleneck, number_of_runs):
    data_accumulator = []
    for i in range(number_of_runs):
        final_language=simulation(generations, bottleneck, 0)[0]
        data_accumulator.append(final_language)
    proportion_language1 = sum(data_accumulator)/float(number_of_runs)
    return proportion_language1



The distribution you get out of this can be thought of as equivalent to the set of cross-linguistic 
universals that we see in the world’s languages today, assuming we’re seeing the end of many many 
diffusion chains of cultural transmission that have been running for many generations.

Questions

Note: Running the simulations takes some time, particularly if you run large batches using 
simulation_batch. You definitely want to comment out  the print statement in simulation 
before running simulation_batch (i.e., put a “#” sign at the start of line 96).  You may have to 
play  with the parameters carefully  to get reasonable results in a sensible time (remember, you can 
always use CTRL-C to cancel a run). To start with, try 100 runs for 100 generations each, and then 
to get cleaner results, try  1000 runs for 100 generations. For some parameter settings, you may need 
more generations, and higher bottleneck values will take longer to run.  In general, you probably 
want to keep the bottleneck values between 1 and 10.   

1. Griffiths & Kalish (2007) claim that the end result of iterated learning reflects precisely the bias 
of the learners, irrespective of the bottleneck size. This results holds for sampling learners.  Can 
you replicate this result?

2. What happens if you switch from samplers to learners who select the MAP hypothesis - does the 
Griffiths & Kalish result still hold? (Note, because of the way this model has been simplified, 
you should avoid odd-numbered bottleneck sizes with MAP learners. We’ll resolve this issue in 
the next lab.)

3. Finally, an implicit theme earlier in the course was that cultural evolution can take a very weak 
learning bias and amplify it into a strong effect. Can you demonstrate this using the simulation?


