
Simulating Language: Lab 10 Worksheet
Download bayes2.py from the usual place. This simulation implements a simplified version of
the language model from Kirby, Dowman & Griffiths (2007) using an explicit agent-based
simulation, and embeds this language model in a slightly more sophisticated population model.

Rather than using the two-grammar model we used in bayes1.py, we assume a language is made
up of a set of variables, each of which can exist in a number of different variant forms. This is a
rather general characterisation that actually applies well to a number of linguistic phenomena. For
example, we can think of the variables as different syntactic categories, and the variants as word
orders. Alternatively, the variables could be verb-meanings and the variants different realisations of
the past tense, and so on. Agents will produce (and learn from) data which simply exemplifies
which variant they have for a particular variable (with the possibility of noise on transmission). We
will group languages into two classes: regular languages (where the same variant is used for all
variables) and irregular languages (where more than one variant is used). In this respect the model
is similar to the two-grammar model - we have two classes of languages - but there are now
multiple languages per class.

As usual, the new code starts with a set of parameter declarations:

Production of data

The function produce takes a language, selects a random variant, and produces the relevant
variant from the language.

• By looking at this code, can you tell how languages are represented in the simulation?
• Can you see how ‘noise’ - errors on production - works?

import random
import matplotlib.pyplot as plt

learning = 'sample' # The type of learning ('map' or 'sample')
bias = 0.6 # The preference for regular languages
variables = 2 # The number of different variables in the language
variants = 2 # The number of different variants each variable can take
noise = 0.05 # The probability of producing the wrong variant
population_size = 1000 # Size of population
teachers = 'single' # Either 'single' or 'multiple'
method = 'chain' # Either 'chain' or 'replacement'

Produces a variant for a particular language and random variable
def produce(language):
 variable = random.randrange(len(language))
 correct_variant = language[variable]
 if random.random() > noise:
 return [variable,correct_variant]
 else:
 possible_noise_variants = range(variants)
 possible_noise_variants.remove(correct_variant)
 noisy_variant = random.choice(possible_noise_variants)
 return [variable,noisy_variant]

Classifying languages

In this language model, prior probability is determined by language class: regular languages differ
from irregular languages in their prior probability, and ultimately we are interested in the proportion
of our simulated population who use regular languages. We therefore need a function to take a
language and classify it as regular or not - the function regular does this.

The Bayesian bits

The function prior returns the prior of a particular language - if bias is over 0.5, regular languages
have higher prior probability.

• Why are we dividing the bias by the number of regular and irregular languages in this
function? Check you understand how these numbers are calculated.

• How does this function differ from the prior from the Kirby, Dowman & Griffiths (2007)
paper? (Hint: consider the case of more than two variables.)

The function likelihood takes a language and a list of data and works out the likelihood of the
data given the language - this is essentially the same function as in the two-grammar model, but
modified to account for the fact that each utterance consists of a meaning and a form.

classifies a language as either regular (all variables expressed with the
same variant) or irregular (multiple variants used)
def regular(language):
 regular = True
 first_variant = language[0]
 for variant in language:
 if variant != first_variant:
 regular = False
 return regular

Gives the prior bias for a particular language. Note that this must sum to
1 for all languages, so there is some normalisation in here
def prior(language):
 if regular(language):
 number_of_regular_languages = variants
 return bias / number_of_regular_languages
 else:
 number_of_irregular_languages = pow(variants, variables) - variants
 return (1 - bias) / number_of_irregular_languages

Calculates P(data | language)
def likelihood(data, language):
 total = 1.
 for utterance in data:
 variable = utterance[0]
 variant = utterance[1]
 if variant == language[variable]:
 total = total * (1. - noise)
 else:
 total = total * (noise / (variants - 1))
 return total

Learning

Bayesian learners calculate the posterior probability of every possible language based on some data,
then select a language (‘learn’) based on those posterior probabilities. all_languages
enumerates all possible languages using a cute recursive method (don’t worry too much if you can’t
figure out how it works!), select_language implements hypothesis selection - this is
essentially the same function as in bayes1.py, so I have eliminated wta and
roulette_wheel here to save space.

The simulation

There are two main functions to actually carry out the relevant simulation runs. The first is
pop_learn, creates a new population of a specified size who learn a language from data produced
by an adult population. It calls on the teachers global parameter to decide whether these
learners should earn from a single individual in the adult population, or whether it learns each
utterance from a randomly-selected member of the adult population (i.e. learns from multiple
teachers).

• How is the difference between single and multiple teachers implemented? In the
multiple-teacher version, is each data item guaranteed to be produced by a separate
teacher?

Returns a list of all possible languages for expressing n variables
def all_languages(n):
 if n == 0:
 return [[]]
 else:
 result = []
 smaller_langs = all_languages(n - 1)
 for l in smaller_langs:
 for v in range(variants):
 result.append(l + [v])
 return result

Picks a language give the posterior probabilities of all languages
This will either be the maximum a posteriori language ('map')
or a language sampled from the posterior
def select_language(data):
 list_of_all_languages = all_languages(variables)
 list_of_posteriors = []
 for language in list_of_all_languages:
 this_language_posterior = likelihood(data,language) * prior(language)
 list_of_posteriors.append(this_language_posterior)
 if learning == 'map':
 map_language_index = wta(list_of_posteriors)
 map_language = list_of_all_languages[map_language_index]
 return map_language
 if learning == 'sample':
 sampled_language_index = roulette_wheel(list_of_posteriors)
 sampled_language = list_of_all_languages[sampled_language_index]
 return sampled_language

initial_population is a subsidiary function which generates a population of a specified size
of individuals speaking randomly-selected languages.

The second main function is simulation, which is the top-level function which actually runs
simulations. This function calls on the method parameter, to run either chain simulations (where
a population consists of a series of generations, where the entire population is replaced at each
generation) and replacement simulation (where a single individual is replaced at each
‘generation’). It returns a list of two things: the final population, and a (plottable) list of the
proportion of generations which used regular languages.

>>> x = [1, 2, 3, 4]
>>> 3 in x
True
>>> 5 in x
False
>>> 0 not in x
True
>>> 2 in x[2:]
False

 return new_population
Returns a list of n randomly languages
def initial_population(n):
 population = []
 possible_languages = all_languages(variables)
 for agent in range(n):
 language=random.choice(possible_languages)
 population.append(language)
 return population

Generates a new population, consisting of a specified number_of_learners,
who learn from data generated by the adult population
def pop_learn(adult_population,bottleneck,number_of_learners):
 new_population = []
 for n in range(number_of_learners):
 if teachers == 'single':
 potential_teachers = [random.choice(adult_population)]
 if teachers == 'multiple':
 potential_teachers = adult_population
 data = []
 for n in range(bottleneck):
 teacher = random.choice(potential_teachers)
 utterance = produce(teacher)
 data.append(utterance)
 learner_grammar = select_language(data)
 new_population.append(learner_grammar)

Returns a list of two elements: final population, and accumulated
data, which is expressed in temrs of proportion of the population using
a regular language
def simulation(generations, bottleneck, report_every):
 population = initial_population(population_size)
 data_accumulator=[]
 for i in range(1,generations+1):
 if method == 'chain': # Replace whole population
 population = pop_learn(population, bottleneck, population_size)
 if method == 'replacement': #Replace one individual at a time
 population = population[1:]
 new_agent = pop_learn(population, bottleneck, 1)[0]
 population.append(new_agent)
 if (i % report_every == 0):
 regular_language_count = 0
 for agent in population:
 if regular(agent):
 regular_language_count += 1
 data_accumulator.append(regular_language_count / float(population_size))
 return [population,data_accumulator]

Questions

Note: As for bayes1.py, running the simulations takes some time, particularly if you run large
populations for large numbers of generations. In general, you probably want to keep the bottleneck
values between 1 and 10, in which case you should get representative results within 100 to 500
generations (for chain populations). Larger populations (e.g. 1000 individuals) generally give you
cleaner results (have a think about why this is).

1. Using the default parameters (single teacher, chain method), check that you can replicate the
standard results for sampling and MAP learners: convergence to the prior for samplers,
exaggeration of the prior for MAP. Also verify that the annoying odd vs. even bottleneck result
for map learners goes away now we have dropped the two-grammar model.

2. What happens if you switch from single teachers to multiple teachers? Does the sampler result
change? Does the MAP result change? How does the bottleneck effect these results? Is this
what you expected?

3. Finally, what happens if you switch from the chain method to the replacement method? Don’t
forget that each ‘generation’ in a replacement simulation just replaces a single individual, so
you’ll have to run the simulations for lots more generations to get equivalent results to those you
got under the chain method.

