
Simulating Language: Lab 10 Worksheet
Download bayes2.py from the usual place.  This simulation implements a simplified version of 
the language model from Kirby, Dowman & Griffiths (2007) using an explicit agent-based 
simulation, and embeds this language model in a slightly more sophisticated population model.

Rather than using the two-grammar model we used in bayes1.py, we assume a language is made 
up of a set of variables, each of which can exist in a number of different variant forms. This is a 
rather general characterisation that actually applies well to a number of linguistic phenomena. For 
example, we can think of the variables as different syntactic categories, and the variants as word 
orders. Alternatively, the variables could be verb-meanings and the variants different realisations of 
the past tense, and so on. Agents will produce (and learn from) data which simply  exemplifies 
which variant  they  have for a particular variable (with the possibility  of noise on transmission).  We 
will group languages into two classes: regular languages (where the same variant is used for all 
variables) and irregular languages (where more than one variant is used).  In this respect the model 
is similar to the two-grammar model - we have two classes of languages - but there are now 
multiple languages per class.

As usual, the new code starts with a set of parameter declarations:

Production of data 

The function produce takes a language, selects a random variant, and produces the relevant 
variant from the language. 

• By looking at this code, can you tell how languages are represented in the simulation?
• Can you see how ‘noise’ - errors on production - works?

import random
import matplotlib.pyplot as plt

learning = 'sample'     # The type of learning ('map' or 'sample')
bias = 0.6              # The preference for regular languages
variables = 2           # The number of different variables in the language
variants = 2            # The number of different variants each variable can take
noise = 0.05            # The probability of producing the wrong variant
population_size = 1000  # Size of population
teachers = 'single'     # Either 'single' or 'multiple' 
method = 'chain'        # Either 'chain' or 'replacement'

# Produces a variant for a particular language and random variable
def produce(language):
    variable = random.randrange(len(language))
    correct_variant = language[variable]
    if random.random() > noise:
        return [variable,correct_variant]
    else:
        possible_noise_variants = range(variants)
        possible_noise_variants.remove(correct_variant)
        noisy_variant = random.choice(possible_noise_variants)
        return [variable,noisy_variant]



Classifying languages 

In this language model, prior probability  is determined by language class: regular languages differ 
from irregular languages in their prior probability, and ultimately we are interested in the proportion 
of our simulated population who use regular languages.  We therefore need a function to take a 
language and classify it as regular or not - the function regular does this.  

The Bayesian bits 

The function prior returns the prior of a particular language - if bias is over 0.5, regular languages 
have higher prior probability.

• Why are we dividing the bias by the number of  regular and irregular languages in this 
function?  Check you understand how these numbers are calculated.

• How does this function differ from the prior from the Kirby, Dowman & Griffiths (2007) 
paper? (Hint: consider the case of more than two variables.)

The function likelihood takes a language and a list of data and works out the likelihood of the 
data given the language - this is essentially the same function as in the two-grammar model, but 
modified to account for the fact that each utterance consists of a meaning and a form.

# classifies a language as either regular (all variables expressed with the
# same variant) or irregular (multiple variants used)
def regular(language):
    regular = True
    first_variant = language[0]
    for variant in language:
        if variant != first_variant:
            regular = False
    return regular

# Gives the prior bias for a particular language. Note that this must sum to
# 1 for all languages, so there is some normalisation in here 
def prior(language):
    if regular(language):
        number_of_regular_languages = variants
        return bias / number_of_regular_languages 
    else:
        number_of_irregular_languages = pow(variants, variables) - variants
        return (1 - bias) / number_of_irregular_languages

# Calculates P(data | language)
def likelihood(data, language):
    total = 1.
    for utterance in data:
        variable = utterance[0]
        variant = utterance[1]
        if variant == language[variable]:
            total = total * (1. - noise)
        else:
            total = total * (noise / (variants - 1))
    return total



Learning

Bayesian learners calculate the posterior probability of every possible language based on some data, 
then select a language (‘learn’) based on those posterior probabilities.  all_languages  
enumerates all possible languages using a cute recursive method (don’t  worry  too much if you can’t 
figure out how it  works!), select_language implements hypothesis selection - this is 
essentially the same function as in bayes1.py, so I have eliminated wta and 
roulette_wheel here to save space.

The simulation

There are two main functions to actually carry out the relevant simulation runs. The first is 
pop_learn, creates a new population of a specified size who learn a language from data produced 
by an adult population.   It calls on the teachers global parameter to decide whether these 
learners should earn from a single individual in the adult population, or whether it learns each 
utterance from a randomly-selected member of the adult population (i.e. learns from multiple 
teachers).

• How is the difference between single and multiple teachers implemented?  In the 
multiple-teacher version, is each data item guaranteed to be produced by a separate 
teacher?

# Returns a list of all possible languages for expressing n variables
def all_languages(n):
    if n == 0:
        return [[]]
    else:
        result = []
        smaller_langs = all_languages(n - 1)
        for l in smaller_langs:
            for v in range(variants):
                result.append(l + [v])
        return result

# Picks a language give the posterior probabilities of all languages
# This will either be the maximum a posteriori language ('map')
# or a language sampled from the posterior
def select_language(data):    
    list_of_all_languages = all_languages(variables)
    list_of_posteriors = []
    for language in list_of_all_languages:
        this_language_posterior = likelihood(data,language) * prior(language) 
        list_of_posteriors.append(this_language_posterior)
    if learning == 'map':
        map_language_index = wta(list_of_posteriors)
        map_language = list_of_all_languages[map_language_index]
        return map_language
    if learning == 'sample':
        sampled_language_index = roulette_wheel(list_of_posteriors)
        sampled_language = list_of_all_languages[sampled_language_index]
        return sampled_language



initial_population is a subsidiary function which generates a population of a specified size 
of individuals speaking randomly-selected languages.   

The second main function is simulation, which is the top-level function which actually runs 
simulations.  This function calls on the method parameter, to run either chain simulations (where 
a population consists of a series of generations, where the entire population is replaced at each 
generation) and replacement simulation (where a single individual is replaced at each 
‘generation’).  It returns a list  of two things: the final population, and a (plottable) list of the 
proportion of generations which used regular languages.  

>>> x = [1, 2, 3, 4]
>>> 3 in x
True
>>> 5 in x
False
>>> 0 not in x
True
>>> 2 in x[2:]
False

    return new_population
# Returns a list of n randomly languages
def initial_population(n):
    population = []
    possible_languages = all_languages(variables)
    for agent in range(n):
        language=random.choice(possible_languages)
        population.append(language)
    return population

# Generates a new population, consisting of a specified number_of_learners,
# who learn from data generated by the adult population
def pop_learn(adult_population,bottleneck,number_of_learners):
    new_population = []
    for n in range(number_of_learners):
        if teachers == 'single':
            potential_teachers = [random.choice(adult_population)]
        if teachers == 'multiple':
            potential_teachers = adult_population
        data = []
        for n in range(bottleneck):
            teacher = random.choice(potential_teachers)
            utterance = produce(teacher)
            data.append(utterance)
        learner_grammar = select_language(data)
        new_population.append(learner_grammar)

# Returns a list of two elements: final population, and accumulated
# data, which is expressed in temrs of proportion of the population using
# a regular language
def simulation(generations, bottleneck, report_every):
    population = initial_population(population_size)
    data_accumulator=[]
    for i in range(1,generations+1):
        if method == 'chain': # Replace whole population
            population = pop_learn(population, bottleneck, population_size)
        if method == 'replacement': #Replace one individual at a time
            population = population[1:] 
            new_agent = pop_learn(population, bottleneck, 1)[0]
            population.append(new_agent)
        if (i % report_every == 0):
            regular_language_count = 0
            for agent in population:
                if regular(agent):
                    regular_language_count += 1
            data_accumulator.append(regular_language_count / float(population_size))
    return [population,data_accumulator]



Questions

Note: As for bayes1.py, running the simulations takes some time, particularly if you run large 
populations for large numbers of generations. In general, you probably want to keep the bottleneck 
values between 1 and 10, in which case you should get representative results within 100 to 500 
generations (for chain populations).  Larger populations (e.g. 1000 individuals) generally give you 
cleaner results (have a think about why this is).

1. Using the default parameters (single teacher, chain method), check that you can replicate the 
standard results for sampling and MAP learners: convergence to the prior for samplers, 
exaggeration of the prior for MAP.  Also verify that the annoying odd vs. even bottleneck result 
for map learners goes away now we have dropped the two-grammar model.

2. What happens if you switch from single teachers to multiple teachers?  Does the sampler result 
change?  Does the MAP result change?  How does the bottleneck effect these results?  Is this 
what you expected?

3. Finally, what happens if you switch from the chain method to the replacement method?  Don’t 
forget that each ‘generation’ in a replacement simulation just replaces a single individual, so 
you’ll have to run the simulations for lots more generations to get  equivalent results to those you 
got under the chain method.


