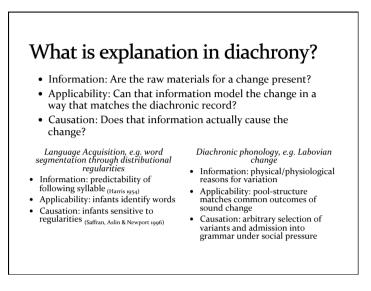


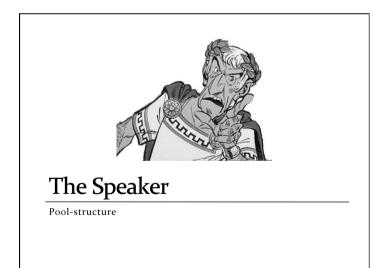
Kanjan Sen, University of Sheffield ranjan.sen@sheffield.ac.uk Second Edinburgh Symposium on Historical Phonology 3-4 December 2015

A century on


- Ferdinand de Saussure (1916)
- Explain synchrony through diachrony
- Blevins (2004): recurrent sound patterns ← changes
- Explain diachrony?
 - Speaking
 - Listening
 - Mingling
 - Synchronic structure?Universals and biases?

Theoretical explanation

- An erroneous position: synchronic linguistics, as it is a science, must predict the range of phenomena we see and the range we don't see
 - E.g. Theory A is good because it explains why X does(n't) happen
 - It also predicts that Y should happen, but Y doesn't
 - That's fine because Y just can't be recovered from the input
- Input isn't arbitrary: has come about over time = diachronic explanation
 - If we invoke diachronic explanation for Y, then if it equally applicable for X, why not just use it there too (duplication problem)?
 - A good general approach: do as much as possible with as little


Theoretical explanation

- But if duplicated or other synchronic constraints empirically motivated, they should not be denied purely for theoretical parsimony
 - 'Diachronic explanation enjoys no epistemological priority over synchronic explanation: any attempt to justify such priority by appeal to Ockham's razor must fail... compelling only when one compares two empirically equivalent theories; ... substantively different theories are hardly ever empirically equivalent' (Berm-O 2015)
- What does a theory of diachronic phonology look like?
- Diachrony informs synchrony; synchrony informs diachrony
- Amphichronic programme

Phonetics \rightarrow Phonology / ?___?

- Phonologization (Hyman 1977)
 - Automatic patterns in articulation/perception give rise to controlled patterns
- Innovation problem: origin of new variant?
- Constraints problem: which patterns and conditions? (Weinreich et al. 1968)
- Actuation problem: why here? why now?
- Regularity problem: sound-based or item-based?
- Implementation problem: one for all and all for one?
- Arena problem: who? infants or adults?

Speaker

- The focus of traditional, neogrammarian sound change typology
 - Articulatory reduction, simplification, variability
 - Residue (e.g. metathesis) have 'psychological' origin
- One extreme: All sound change involves articulatory reduction (Mowrey & Pagliuca 1995)
 - Magnitude of gestures reduced
 - Timing of gestures compressed or overlapped
 - But articulatory strengthening and perceptual effects?
- Other extreme: Speaker only contributes to 'pool of synchronic variation' (Ohala 1989)

Speaker: structured variation

(Garrett & Johnson 2013)

- Crucially, 'pool-structure' has very distinctive properties due to channel biases with inherent directionality
- Aerodynamic voicing constraint (Ohala 1983)
 - Constraint against voicing in stops and fricatives, short VOT in e.g. /ti/
 - Diachronic repairs: devoicing, glides from fricatives
- Gestural mechanics: magnitude, timing, location
 - Overlap: back gestures more likely to hide front gestures
 - Debuccalization, deletion: *hand grenade*, insertion: *Thompson*
 - Complex: Latin /gn/ > [ŋn] but not /gm/ > [ŋm] (Sen 2011, 2015)
 Blend: more constricted gesture of single articulator usually
 - shows greater acoustic change: quantal theory (Stevens 1989)
 C not V in velar fronting: keep vs. cop (TB)

Speaker: from the mouth to the mind

- Motor planning (Garrett & Johnson 2013)
 - Speech errors through coactivation or inhibition of similar units: phonetically, structurally, temporally
 - Anticipations, perseverations, exchanges, deletions, insertions, tongue twister patterns
 - Like diachronic C (sibilant) harmony usually anticipatory
 - Like nonlocal liquid metathesis structural position
- Motor entrenchment (see Wedel 2007)
 - Practised routines form attractors which bias future motor execution in relation to similarity
 - Sound change: categorical change not widespread gradience
 - Speech error: substitute less frequent for similar more frequent
 - But what are units of these routines (if any)?
- Imitation
 - Similarity at level of community, but associated with social significance

Speaker control: H&H (Lindblom 1990)

- Speakers exert a degree of control
- 'Hypo-' to 'hyperspeech' continuum
 - Ambition of speakers to achieve articulatory targets
 - Social status, register, audience (e.g. listener needs)
- Variation intra- and inter-speaker of phon/lex units
- Successful hypospeech can be root of sound change
 - Minimization of articulatory effort: undershoot
 - Cross-linguistic variation: Italian vs English vowel reduction
- Prosodic conditioning: unstressed syllables

Speaker control: enhancement

- Counter-balanced by maximization of perceptual clarity?
- Requiring 'phonetic knowledge' (Kingston & Diehl 1994)
 Wilson (2006): artificial learning generalizing /e/palatalisation to /i/-palatalisation, but not vice versa
- But also structural knowledge of what is important (contrasts)?
- We know speakers exaggerate automatic phonetic effects and/or existing structural patterns
- Coarticulation not mechanical and universal, but cognitive
- Resulting in vowel harmony, tonogenesis
- Contrast maintenance: nasalisation instead of devoicing as a result of aerodynamic voicing constraint?
- Conversely: non-implementation of physiologically and/or perceptually difficult contrasts?

Speaker: lexical effects

- Hypospeech
 - 'Changes that affect high-frequency words first are a result of the automation of production, the normal overlap and reduction of articulatory gestures that comes with fluency' Bybee (2002: 287)
- Hyperspeech
 - Low contextual predictability: harder to access
 - High neighbourhood density: harder lexical retrieval
 - Low-frequency words: low resting activation
 How do these predict hyperspeech?
- Active speaker control or passive listener-cumspeaker effect (e.g. exemplar memory)?

Frequency Implementation Hypothesis

(Phillips 2001: 123-4; 2006: 181; 2015)

- A. If no analysis beyond the phonetic form of the word is required, then the most frequent words change first
- Including physiologically based assimilations and reductions
- Evidence for exemplar theory?
- Can be very very fast spread in simulation, e.g. Wedel 2007's 'snowballing' effect can produce neogrammarian change but with initial catalysts
- B. Sound changes which require analysis (syntactic, morphological, phonological) affect the least frequent words first
 - Part of speech, morphological constituency
 - = analogical change 'when memory fails' (Hooper 1976)?
 - Per Phillips, type B includes syllable/phonotactic structure

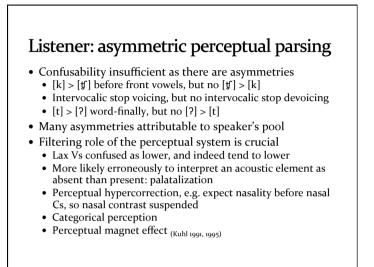
There's structure, then there's structure

- Two discernable types of structural effect? (Sen 2015: 6-7)
- Structure \rightarrow phonetics \rightarrow change
 - = type A: indirect influence of structure
 - Latin assimilations, vowel reduction, inverse CL
- Structure \rightarrow phonetics
 - = type B: direct influence = analogy
 - Latin vocalic epenthesis in /kl/: analogy of morphemeinitial to syllable-initial: affects lower-frequency
 - Honeybone (2013): categorical frequency effects, requiring categorical, non-exemplar-based account

Speaker summary: pool-structure

- Information
 - Structured variation through aerodynamic and articulatory constraints
 - Similarity/difference effects in speech production planning
 - Contextually constrained (H&H)
 - Possible access to 'phonetic (and structural) knowledge'
 - Lexical information affects realization
- Applicability
 - Pool-structure can model practically all attested changes if we
 permit 'phonetic knowledge
 - Some directionalality: B variants of A, but not A variants of B
 - Motor entrenchment predicts categorical effects
- Causation
 - We can record variation and change-in-progress
 - Selection from structured pool apparently arbitrary

Listener: the co-ordination problem


- Perceptual cues to identify intended sounds
- Normalization to correct for predictable variation
- Ohala (passim): sound change originates when a listener misperceives or misparses the acoustic signal produced by the speaker...
- ...arriving at a representation which differs in some respect from that intended
- All some any sound change attributable to this?
- Representational or computational change?
- Lexical representation replaced or new rule?

Hypo- and hypercorrection (Ohala 1993)

- Hypocorrection
 - Speaker's contextual effects interpreted as phonologically intended, e.g. assimilations: Lat. <u>atnos</u> > <u>annus</u> 'year'
 - Close correspondence to articulatory effects identified (gestures)
- Hypercorrection
 - Speaker's phonologically intended effect interpreted as contextual, e.g. dissimilations: 'whose sword'
 - Lat. **mīllia* > *mīlia* 'thousands' (/ll/ specified palatalized)
- Confusion of acoustically similar sounds
 - Weak perceptual cues for contrast
 - E.g. neutralization of obstruent voice when unreleased
- But what causes asymmetries in any of these?
- Hypo-/hypercorrection and confusability are mirror-images

Listener: CCC model (Blevins 2004)

- CHANGE: signal misheard outright: weak perceptual cues to phonological form
 - Speaker (crucially) says [anpa] (so not hypocorrection of coarticulation)
 - Listener perceives as [ampa] and interprets it as /ampa/
 - Context-free place of articulation shifts like $|\theta| > |f|$
- CHANCE: intrinsically ambiguous signal: phonological form misinterpreted
 - Hypocorrection: Speaker [anmpa] for /anpa/ > Listener /ampa/
 Hypercorrection: whose sword dissimilations, etc.
- CHOICE: different variant (from many of different frequencies: H&H) selected as best reflection of phonological form
- Pool-structure
- Selection might be arbitrary/socially conditioned
- Only CHANGE is intrinsically asymmetric due to apparent biases in perception, but other types appear to show asymmetries too

Misperception? (Scheer 2014)

- If pool-structure provides variation in a way that explains frequency of sound changes
- And socially-based, arbitrary selection of variant as source of sound change is documented (Labov 2010)
- Why do we need misperception, the middle-man?
 Misperception-induced change is only a logical
- possibility that is based on speculation'
- 'Nobody has ever documented or measured an actual misperception as the source of language change'
- Information and applicability, but causation is lacking
- What would provide evidence in favour?

(1) Perceptual biases shape sound change: asymmetries

- But whether these are absolutely necessary is debated (Garrett & Johnson 2013)
- Velar palatalization [k] > [t] (Guion 1998)
 - But is there always intermediate [c] diachronically, which is affricated by the speaker as an enhancement?
- Unconditioned $[\theta] > [f]$
 - Intermediate θ^w + enhancement?
- Obstruent + [w] > labial obstruent shifts
 Articulatory fortition of [w]?
- Alternative explanations depend upon the degree of phonetic and structural knowledge the speaker employs; perceptual parsing bias seems best solution

(2) Link misperception with sociolinguistic patterns (Yu 2013)

- WHO MISPERCEIVES? Why does whole community change?
- Variability in cognitive processing style is an important contributing factor to variation in (mis)perception
- Women with low AQ (Autism-Spectrum Quotient) and imbalanced brain types (empathizing-systematizing) less likely to engage in perceptual compensation → hypocorrection
- Cognitive processing style shown to correlate with individual differences in social traits: may influence how an individual interacts with other members of his/her social network
- Individuals who are most likely to introduce new variants in a speech community...
- ...might also be the same individuals who are most likely to be imitated by the rest of the speech community due to their personality traits and other social characteristics

Ouestions for Yu (2013)

- Failure to compensate for coarticulation leads to hypocorrection
- Excessive compensation leads If so, infants might to hypercorrection
- Who does this? High AQ individuals?
- How are these changes spread through community?
- Are hypercorrections the result of other principles, e.g. simplicity: why should speaker articulate imperceptible elements?
- Are causes of AQ EQ SQ innate in the individual so present from birth?
- misperceive in Li
- Relevant infants then carry on this grammar into adulthood and play relevant social roles
- The arena problem: so do infants participate in sound change?

Acquisition

- Paul (1886: 34; tr. Weinreich et al. 1968: 108): 'the processes of learning language are of supreme importance for the explanation of changes'
- Aitchison (2003: 739) 'babies do not initiate changes'
- How might L1 be relevant?
- Child as speaker
- Child as listener (-cum-speaker)
- Child as organiser

Child as speaker (Foulkes & Vihman 2015)

- Typical child patterns rare in sound changes Consonant harmony
- Typical sound changes mismatch with child patterns CV-interactions, e.g. palatalizations
- Conflicting repairs for (too) long words and C-clusters
- Child vocal tract not scaled-down adult tract
- Contrast not as important, but information recall is a problem 'We interpret peaks [in error types at a certain age] as an indication that the children were experimenting with articulatory strategies at certain points in their development, eventually dispensing with phonetic forms that are not sufficiently good matches to adult usage'
- What about when they are sufficiently good?
- Prediction: as contrast-sensitivity increases, child patterns which are problematic will be lost, but unproblematic ones may be retained

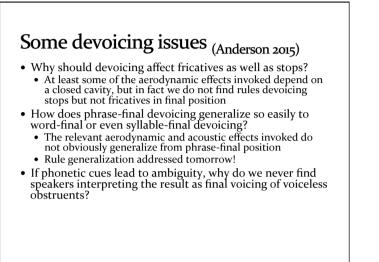
Child as speaker: palatalization

- Vocal tract: palatal contact when articulating dentals/ alveolars more likely for young child than for adults
- Ages 2;4-4;2: Palatalization 4th most common error for later talkers, 6th most common error for typical developers: *that is beans* [daçıçbi¹ç]
- Ages 2;0-4;0: Initial /t/: most frequent error is [f], usually before close(-mid) V
 - 'indeed predicted as a conditioned sound change'
- Unlike 'peaking' errors which fall away, palatalization error remains relatively stable across the age range (errors in 4-5% from 2;6)
- WHY? Sufficiently good match? Despite origin in immature vocal tract

Child as speaker: coarticulation

- Little re: infants on the purported common articulatory roots of change: coarticulation and reduction
- Infant variation in [anpa] [ampa] [ampa] for /anpa/?
- [k^wu^ː] for /kwu^ː/ or [tfi] for /ti/ (YES!)?
- More on perception than production, but 'child as organiser':
- Word: Goodell & Studdert-Kennedy (1990)
- Intersyllabic coarticulation of tongue height at 19-27 months
- Syllable: Repp (1986)
 Strong intrasyllabic coarticulation at 4;8 (more than adults, Nittrouer et al. 1989)

An acquisition hypothesis


- Structure of pool of variation might originate in infancy
 - Perceptually intolerable variants filtered out
 - Tolerable variants surviving
- Imperceptible reanalyses might originate in infancy
 - Adult intended /kwul/, infant perceived /kwul/; all say [kwul]
 - Infant misperceivers just like adult ones with low ASQ $_{(Yu 2013)}$
 - This change only becomes apparent if e.g. u-fronting occurs, so variant representations which might have been present from infancy surface: [kwu] vs. [ku]
 - Or if it is an 'input restructuring' reanalysis, e.g. phrase-level output analysed as phrase-level input (see tomorrow)
- Acceleration of existing changes may rely on infants
 Exemplar theory (e.g. Wedel 2007) predicts that a variant can serve as a catalyst for more substantive category change particularly during language acquisition

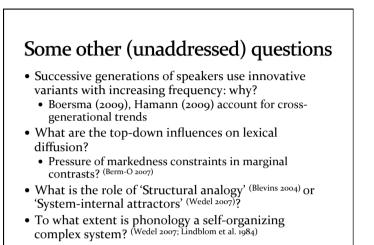
Child as listener

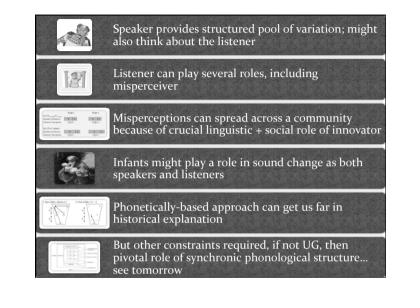
- Sufficiently good match suggests child perception relevant
- Perceptual parsing biases present from infancy
- Do children commonly perceive /ampa/ for /anpa/ or / k^wu:/ for /kwu:/ or /ʧi/ for /ti/?
- Common denominator: little (if any) perceptual distance between forms
 - 'Perceptually tolerable articulatory simplification' (Hura et al 1992)
- Is $/\theta / > /f/$ (e.g. Vihman 1982) also a relic of an immature vocal tract, maintained through perceptual tolerability?
- 'Good match' could also be when perceptibly different variant already exists in adult language
- Hence older children participate in/accelerate ongoing changes, e.g. glottaling and pre-aspiration in Newcastle

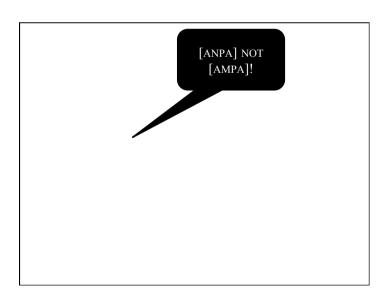
How far can articulation and perception alone take us?

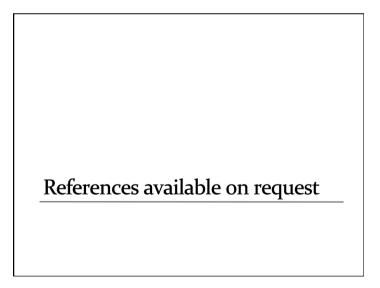
- Almost all natural and (rarity of) unnatural, including 'crazy' rules (Bach & Harms 1972) accounted for well
 - Natural processes could be 'telescoped' or 'inverted' through reanalysis to produce unnatural results
 - Uncommon results might also come about through typologically uncommon phonetic implementation
 - E.g. Latin vowel reduction, inverse compensatory lengthening, degemination of V:CC, CV:CV > CVC
 - All due to longer Vs in closed syllables than open in archaic Latin (Sen 2012)
- Absolute prohibitions fail to explain unnatural results
- But there are challenges to reductionism...

Universal Grammar


- Synchronic patterns which should be diachronically accessible in fact categorically unattested? 'Straitjacket effects' (de Lacy 2006)
- Position (1) 'Prophylactic' UG: blocks phonetically driven sound change resulting in synchronically unacceptable pattern from occurring
 - Not widely held
- Position (2) 'Triggering UG': Sound change occurs, but repair strategies automatically triggered
 De Lacy & Kingston (2006)
- Position (3) 'Blind spot UG': Sound change occurs, but pattern not interpreted as being due to a synchronic process
 Kiparsky (2006)
- Common theme: all-or-nothing, but also gradient analytic biases possible (Moreton 2007; 2008)


Unclear if UG constraints required


- Lezgian: does final obstruent voicing exist?
 - Yes (Yu 2004)
 - No (Kiparsky 2006)
 - Yes (Anderson 2015)
- Does [k g] epenthesis (not [t d]) exist?
 - No (De Lacy & Kingston 2013)
 - Yes (Anderson 2015): standard Halh Mongolian, [g] inserted to break up vowel sequences
- Diachronically accessible through several changes? Phonetically sound?
- What are full range of predicted accessible changes? Must be pretty big


But if they are... (Anderson 2015)

- No reproductive advantage, but
- Sound pattern regularity could profitably be incorporated into the Language Faculty as a bias in the learning algorithm
- Facilitating rapid and efficient learning of languages
- 'This is an instance of the Baldwin Effect in evolution (Weber & Depew 2003), arguably essential if we are to believe that the Language Faculty has much specific content'
- Many aspects of UG closely match phenomena which have historical explanation
 - Teasing the two apart will not be easy

