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Because it is now so easy to carry out acoustic analysis of recorded speech, many 

studies of intonational phonology are now based on instrumental data of one sort or 

another.  In order to make sense of such data, and in order to design or select 

appropriate materials for instrumental study, it is important to have a basic 

understanding of the phonetics of fundamental frequency (F0) and speech timing.  

Providing an elementary introduction to these phenomena is the sole goal of this 

appendix, which should not be taken as a thorough review of the literature.  For more 

detail on many of the topics treated here the reader is referred to the papers in Sudhoff 

et al. (2006). 

 

Boldface numbers in square brackets (e.g. [5.2.1]) refer to sections of the published 

book.   
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I. Phonetics of F0 

 

Certain features of speech F0 can be seen in instrumental data regardless of whether 

pitch is used lexically or post-lexically [1.1.1].  They appear to result from facts about 

speech production rather than language structure.  They need to be taken into account 

by anyone undertaking instrumental analysis of spoken data.   

 

 

1. Declination 

 

The realisation of any given F0 event – pitch accent, lexical tone, etc. – is affected by 

its position in the phrase.  Specifically, other things being equal, there is a universal 

tendency for F0 to become lower throughout a phrase.  This phenomenon is known as 

declination.  It is presumably related to the tendency of singers to “go flat” during 

unaccompanied performance.   

 

There is evidence (e.g. Pierrehumbert 1979, Terken 1991, Yuen 2007) that listeners 

expect declination and compensate for it in speech perception (i.e. for two F0 peaks to 

sound equally high the later one has to be slightly lower acoustically). However, there 

is no clear understanding of the mechanisms that cause declination, despite a great 

deal of interest and research in the 1960s and 1970s (e.g. Lieberman 1967, Maeda 

1976, Cooper and Sorensen 1981).  A likely contributor to the effect is the lowering 

of subglottal pressure as air is expended during speech, but there may be others. 

 

The most important reason it is so difficult to arrive at an understanding of the 

mechanisms is the innocent-sounding phrase “other things being equal”. Especially in 

languages without lexical tone, it is difficult to say that two F0 peaks are linguistically 



equal and represent the same underlying target. Much of the research in the 1970s 

ignored the possibility that some of the overall lowering of F0 during phrases and 

utterances might actually be intentional and/or linguistically significant.  It now seems 

clear that many languages have phonological or quasi-phonological processes (such as 

downstep [2.4]) that cause otherwise identical pitch events to be realised at a lower F0 

when they occur later in a phrase or utterance.  Once these processes are taken into 

account, the amount of true (i.e. unintentional, biomechanically determined) 

declination appears much less than was assumed in the research of the 1970s.  

 

 

2.  Microprosody 

 

The idealised course of fundamental frequency – the manifestation of the speaker’s 

intonational intentions (or, in a tone language, the manifestation of the sequence of 

tones) – is not only subject to declination, but is also locally distorted or perturbed by 

a variety of effects related to the segmental string.  These “microprosodic” effects 

[1.3.2] give rise to difficulties in interpreting visual representations of F0, which are 

discussed further in section III.3 below.   

 

There are three main types of microprosodic effects:  

 

• obstruent perturbations: F0 is often unstable during and immediately before 

and after obstruents.  It tends to fall during the transition into an obstruent; it 

tends to rise during the transition out of a voiced obstruent (and/or to be lower 

than it would be otherwise for some or all of the following vowel) and to fall 

during the transition out of a voiceless obstruent (and/or to be higher than it 

would be otherwise for some or all of the following vowel).  Where vigorous 

voicing is maintained during an obstruent (which it often is not in English), the 

F0 is generally lowered relative to the surrounding sonorants. 

 

• voiceless gaps: You can’t have F0 without voicing, so voiceless segments 

result in interruptions to the F0 contour.   In a sense these represent an extreme 

kind of obstruent perturbation, with voicing considered as a matter of degree: 

voicing often becomes irregular or disappears altogether during “voiced” 

obstruents in some languages, and conversely, some voicing may persist into 

the beginning of a “voiceless” obstruent. The F0 on either side of a voiceless 

gap often suggests that F0 follows the course that it would have taken if the 

voiceless segments had been voiced, though this observation needs to be 

qualified by the facts about obstruent perturbations in the strict sense just 

introduced above. 

 

• intrinsic F0:  Other things being equal, high vowels (e.g. [i u]) have higher F0 

than low vowels (e.g. [a]). If you say to Lima and a llama using the same 

intonation pattern and being careful not to raise or lower your voice between 

the two, the F0 peak on Lima will be objectively higher than that on llama 

even though they sound exactly the same.  As with declination, however, it is 

not always easy to determine whether other things really are equal.  

 

There is reasonably good agreement on the phonetic details of microprosody, and (as 

with declination) there is clear perceptual evidence that speakers normalise or 



compensate for microprosodic effects (e.g. Silverman 1986).  However, the causes of 

microprosodic effects are considerably less well understood, though they appear to be 

traceable in some way to universal acoustic and/or biomechanical factors (e.g. 

Whalen & Levitt 1995).  Thus obstruent perturbations are caused in part by irregular 

phonation as the voicing is suspended for the duration of an obstruent, or (in the case 

of voiced obstruents) by changes in airflow and glottis position as the speaker 

maintains phonation during partial or complete supraglottal closure.  Intrinsic F0 

appears likely to be due partly to influences of tongue position and/or jaw angle on 

the position of the larynx.  However, it is also increasingly clear that the magnitude of 

microprosodic effects may vary from language to language, possibly for functional 

reasons (e.g. intrinsic F0 effects are reduced in Mambila, a language with four level 

tones (Connell 2000); segmental perturbations are quite large in Korean, a language 

with a three-way distinction of stop voicing/tenseness (Silva 2006)). 

 

 

3. Alignment of F0 and segmental features 
 

It is useful to distinguish between association (an abstract relation between two 

roughly simultaneous phonological events) and alignment (the actual temporal 

coordination of measurable phonetic landmarks) [5.1.1].  For example, pitch accents 

and lexical tones tend to belong with a specific syllable: this abstract phonological 

belonging is association.  Recent instrumental research has made clear that such 

association can be manifested phonetically in a variety of subtly different ways, and 

that the precise temporal alignment of the phonetic properties of two associated 

phonological events may be affected by many factors.  This appears to be true of both 

lexical and intonational pitch features. 

 

Three basic types of findings appear well established: 

 

• segmental anchoring: F0 movements such as rises and falls generally do not 

have a fixed slope or duration.  Rather, identifiable points in the F0 contour 

(such as the beginning and end of an F0 movement) are anchored to 

identifiable landmarks in the segmental string (such as the beginning and end 

of the stressed syllable) [5.1.2].  The slope and duration of the F0 movement 

are therefore determined by the temporal interval between the segmental 

landmarks (Arvaniti, Ladd & Mennen 1998).   

 

• phonological conditioning: The segmental landmarks to which F0 points are 

anchored can be characterised in the first instance in phonetic terms (e.g. “on 

average 15 ms. before the end of the accented vowel”), but the conditioning 

factors involved in segmental anchoring often refer to phonological features 

and abstractions such as vowel length, syllable structure, mora, etc.  (Ladd, 

Mennen & Schepman 2000; Ishihara 2003; Prieto & Torreira 2007).  The 

details also differ from language to language (Atterer & Ladd 2004) or even 

between varieties of the same language (Arvaniti & Garding 2007). 

 

• time pressure: Notwithstanding the preceding points, there is also a 

considerable effect of phonetic time pressure on the slope, duration, and extent 

of F0 movements [5.1.3].  For example, an accentual rise that would normally 

end at the beginning of the vowel following the accented syllable obviously 



cannot do so if the accented syllable is the last syllable in the utterance.  The 

best-established causes of such effects are closely adjacent F0 movements 

(e.g. cases of stress clash) and closely adjacent word-, phrase-, and utterance-

boundaries (Silverman & Pierrehumbert 1990; Prieto, van Santen & 

Hirschberg 1995). There are unclear or contradictory findings about the effects 

of speech rate and overall pitch range.  

 

It appears that listeners are very sensitive to such fine alignment effects (Rietveld & 

Gussenhoven 1995).  This is consistent with the fact that alignment can be used as the 

basis of linguistic contrasts, as in the Swedish lexical accent distinction (Bruce 1977) 

[1.3.3], or the difference between questions and statements in Neapolitan Italian 

(D’Imperio 2001). 

 

 

 

II.  Phonetics of duration and rhythm 

 

Details of timing in speech are still far from well understood.  At a first 

approximation, timing may be thought of in terms of individual segmental durations.  

A more sophisticated model will need to take the temporal coordination of various 

aspects of the signal into account (e.g. the alignment of pitch peaks with segmental 

events, just discussed).  Either way, it is certain that even subtle disruptions of normal 

duration patterns are often extremely conspicuous perceptually, and that durational 

differences of a few tens of milliseconds can make the difference between one percept 

and another. 

 

 

1. Segment duration  

 

The duration of phonetic segments is known to be affected by a large number of 

factors.  These include: 

 

• supposedly universal intrinsic effects, such as: low vowels are generally 

longer than high vowels; fricatives are generally longer than other obstruents; 

taps are necessarily short; vowels before voiced consonants are generally 

longer than before voiceless consonants. 

 

• language-specific intrinsic effects, e.g. the vowel of bat is much longer in 

American English than in Southern British English; the vowel of bean is much 

shorter in Scottish English than in other varieties. 

 

• language-specific phonological distinctions: e.g. long and short vowels in 

German, Hungarian, Finnish, and many others; long and short consonants in 

Italian, Finnish, Japanese, and many others. 

 

• effects of prosodic structure: e.g. in many languages segments are longer 

before prosodic boundaries (ends of phrases) than elsewhere; in many 

languages stressed vowels are markedly longer than unstressed vowels (e.g. 

English or Italian but not Finnish or Hungarian); and see further on rhythm 

below. 



 

• and, of course, speech rate or tempo: the faster you talk, the shorter the 

segments – but the effects are not at all uniform, because vowels can be 

stretched and squeezed more easily than consonants. 

 

It is also known that these factors interact in complex ways.  To take a simple 

example, the syllable durations in permit [noun] and permit [verb] are quite different: 

in the noun, the first syllable is stressed, but the second syllable is word-final, and the 

two syllables are roughly equal in duration; in the verb, the second syllable is both 

stressed and word-final, so it tends to be markedly longer than the first. 

 

 

2. Rhythm  

 

Rhythm is an overall temporal structure in a sequence of physical events.  In the 

simplest case, it involves the occurrence of some repeated event at a regular interval.  

Crucially, it also seems to involve an alternation of some sort (e.g. between the 

occurrence of the repeated event and the silence or non-event in between 

occurrences).  Music and poetry are often characterised by regular rhythms in which 

alternation between stronger and weaker events is important. 

 

Rhythm in speech has long been assumed to involve the occurrence of some element 

of phonological structure at regular intervals of time.  According to a long-standing 

way of looking at speech rhythm, some languages are supposed to be “syllable-timed” 

(i.e. having the syllables occur at regular intervals) while other languages are 

supposed to be “stress-timed” (i.e. having the stresses occur at regular intervals).   

English is the paradigm example of a stress-timed language.   

 

There certainly is some tendency for the major prominences of an English utterance to 

be evenly spaced, as you can see if you compare Tom thought Sue took milk with 

Tommy thought that Susie took milk or Tom thought that Sue took the milk.  The 

syllables Tom, thought, Sue (Su-), took, and milk occur at roughly the same intervals 

in all three versions of the sentence, i.e. regardless of the number or location of the 

unstressed syllables. The question is whether this arises from some overall rhythmic 

plan, or just happens because of the combined effect of a number of independent but 

interacting duration effects (specifically, vowel reduction in unstressed syllables, plus 

a tendency to lengthen a stressed syllable immediately followed by another stressed 

syllable). 

 

If there is an overall rhythmic plan, it would make sense to expect various 

compensation mechanisms to maintain a strict rhythm (e.g. in a syllable-timed 

language, if one syllable is particularly long for intrinsic reasons, an adjacent syllable 

should be shortened to maintain the rhythm; in a stress-timed language a stressed 

syllable followed by two unstressed syllables should be shorter than one followed by 

only one; etc.). However, virtually all experimental attempts to demonstrate the 

existence of such compensation mechanisms in English and a number of other 

languages have failed.   

 

Nevertheless, the notion of language-specific rhythmic types lives on anyway, 

because in some sense it is not completely wrong. For example, even though there is 



no clear evidence for actual temporal compensation mechanisms, English speech 

rhythm does seem to involve alternations between stressed and unstressed (or more 

stressed and less stressed) that may be more abstract than actual temporal intervals but 

still have the effect of keeping stresses more evenly spaced than we might expect 

otherwise.  For example, the Rhythm Rule (e.g. Liberman & Prince 1977) [7.2.2] 

tends to shift the stress on prenuclear words to a prominent syllable earlier in the 

word: 

 

  citation form:  thirTEEN, submaRINE, interNAtional 

  in context: THIRteen PEOPle, SUBmarine WARfare, INternational AIRport 

 

Also, as just noted, the fact that English normally reduces vowels in lexically 

unstressed syllables is going to help make the stresses appear to be more regular in 

time than they actually are.  So “stress-timing” and “syllable-timing” are better 

thought of as involving clusters of durational properties (e.g. if a language normally 

reduces vowels in unstressed syllables it is more likely to sound “stress-timed”) (cf. 

Dauer 1983).  This point of view seems to underlie recent attempts at quantifying the 

rhythmic characteristics of different languages (e.g. Ramus et al. 1999; Low et al. 

2000; White & Mattys 2007), in the sense that they take many interacting durational 

parameters into account.  In practice, though, these works have tended to select just 

two parameters as the basis of their metrics, so that rhythmic typology can be plotted 

in a two-dimensional space. This makes it very easy for people to continue to think in 

terms of stress-timing and syllable-timing as rhythmic types, the only modification of 

the traditional idea being that these notions become the endpoints of a continuum 

rather than fundamentally distinct classes. 

 

In a few well-studied languages there is slightly stronger evidence that a unit such as 

the syllable or the mora plays a role in controlling actual durations.  The duration of 

test utterances in Japanese is a straightforward linear function of the number of moras 

they contain (Port, Dalby, & O’Dell 1987).   But even here the evidence for temporal 

compensation (e.g. squeezing one mora to make up for an adjacent long one) is pretty 

limited (Beckman 1982, Warner & Arai 2001, Ota et al. 2003).  This question will 

definitely continue to motivate research for some time to come. 

 

 

 

III. Methodological implications 

 

1. Interpreting visual displays of F0 

 

Obstruent perturbations and voiceless gaps: The existence of microprosodic effects 

on F0 means that visual displays of extracted F0 require some experience to interpret 

appropriately.  This can be seen from a detailed comparison of Figures 1-3, which 

show F0 traces and waveforms of three ordinary short English yes-no questions 

spoken with what is intended to be the same intonation pattern.  (To see how similar 

they are, listen to the sound files by clicking on the captions.) 

 

The most obvious difference is that in Fig. 1 the contour is continuous, whereas in 2 

and 3 there are many interruptions, due to voiceless gaps and obstruent perturbations.  

As listeners we are scarcely aware of these interruptions, but on the screen they are 



very conspicuous, especially because the F0 in the immediate vicinity of the 

interruptions tends to jump around a lot. Such effects can be seen clearly across the /s/ 

at the beginning of the third syllable of Atkinson’s in Fig. 3: the extracted F0 before 

the interruption for the /s/ is much lower than that after the interruption, even though 

perceptually and linguistically there is only a smooth fall from the peak on the first 

syllable to the low turning point at the beginning of the third. The dip in F0 

accompanying the /zð/ sequence in is that in Fig. 2, and the apparent discontinuity in 

F0 around the release of the initial consonant in Jessica’s in Fig. 2, are similar.  Even 

an alveolar tap (as in Betty in Fig. 3) often causes a brief local dip in F0; a glottal stop 

(at the end of that in Fig. 2) often causes a much greater local dip, although in some 

languages glottal stops may be associated with higher F0.  

 

 

�

Figure 1: Are you Larry Willeman?  

 

 
Figure 2: Is that one of Jessica’s?   

 

 
Figure 3: Is this Betty Atkinson’s? 
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The visual consequence of these effects is often that the F0 contour on a vowel 

flanked by obstruents (like the second syllable of Jessica’s in Fig. 2) looks like an 

abrupt fall on the visual display. The fact that the F0 falls abruptly on such a syllable 

does not mean that it has a pitch accent! Beginners tend to over-interpret what they 

see on the screen. In case of a conflict between what you see on the screen and what 

you hear, it is better to trust your ears. 

 

F0 extraction errors: A second important fact to keep in mind about visual displays 

of F0 is that F0 extraction is based on mathematical algorithms applied to the digitised 

acoustic signal, not on human pattern recognition. These algorithms can occasionally 

be fooled and give spurious or meaningless F0 values.  This often happens when the 

energy in the signal is very low, as at the beginning and end of phonation (which can 

be seen clearly at both ends of the contour in Fig. 1), or during weakly voiced 

obstruents (which can be seen during the [b] of Betty in Fig. 3).  In general, it is safe 

to ignore outlying F0 values where voicing is weak; if it is essential to record a value 

for such stretches of speech, it is best to calculate F0 directly by measuring the 

duration of periods in the waveform. 

 

The most important type of F0 extraction problem is that of octave errors, in which 

the extracted F0 value is exactly twice or exactly half what it should be (i.e. a musical 

octave above or below its true value). When they occur, octave errors often span 

many analysis frames, so that the F0 value plotted by the program is an octave too 

high or too low for as much as half a second or more.  A good example of an octave 

error is seen in Fig. 4: by doubling the low extracted F0 values at the very end of the 

syllable -mit we arrive at values that are continuous with the end of the steep rising 

pitch contour.  Fig. 5 shows exactly the same utterance analysed by a different 

program with a different F0 extraction algorithm, which did not make the octave error 

and shows continuously rising F0 at the end of the contour. Any abrupt change in 

extracted F0 such as the one at time 0.44 in Fig. 4�should be scrutinised carefully. If 

you can obtain values that are continuous with the preceding and/or following context 

by simply doubling or halving the extracted values on either side of the abrupt 

change, you should normally assume that an octave error has occurred. As with 

obstruent perturbations, it is important to trust your ears: if you don’t hear a pitch 

jump of an octave, it almost certainly isn’t there. 

 

 
Figure 4: permit? 
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Figure 5: permit? 
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Octave errors can sometimes happen for no apparent reason, but they are often 

associated with slightly irregular phonation.  In the case shown in Fig. 4, for example, 

there are two likely reasons for the irregularity of the phonation near the end of the 

vowel of -mit: first, syllable-final voiceless stops in English are often accompanied or 

preceded by some sort of glottal constriction, and second, at the end of any utterance 

the airflow is likely to decrease rapidly.  Either of these could have induced the octave 

jump in the F0 extraction algorithm.  In fact, it may not always be appropriate to 

consider octave jumps in extracted F0 as “errors”, because they may be triggered by 

stretches of irregular phonation that are perceived as changes of voice quality (e.g. 

creaky voice) rather than as changes of pitch. This relation between pitch and voice 

quality represents a potentially fruitful area for research, but is well beyond the scope 

of this introduction.  

 

Vertical and horizontal scale:  Finally, because examining visual displays of F0 

contours involves subjective human pattern recognition skills, it’s useful to employ 

tricks to make it easier to use those skills.  Most importantly, be sure there’s a good 

balance between the horizontal (time) and vertical (F0 level) scales in the display. The 

contour from a male speaker’s voice may look featurelessly monotonous if the 

vertical scale on the display goes from 0 Hz to 600 Hz, but will exhibit clear local 

accent peaks if the vertical scale is expanded so that it only shows values between 50 

and 250 Hz.  Similarly, pitch movements that look like clear local accent peaks in a 

display of, say, two seconds of speech may be hard to see if you zoom in on 200 ms. 

of a single accented syllable.  Optimise the display for what you are trying to see. 

 

In doing so, however, always keep in mind that there is a trivial explanation for some 

octave errors: some signal processing packages force all extracted F0 values to lie 

within the range specified by the user in analysis or display parameters.  For example, 

in Praat, if you have set parameters for a male speaker and then analyse female speech 

without changing them, F0 values may be reported at half their true value if the true 

value is too high for the display window.  For example, this was the first thing I 

considered as the explanation for the octave error in Fig. 4 – though it turns out not to 

be the explanation in this particular case.  
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2. Controlling for microprosodic and durational effects 

 

The existence of multiple interacting effects on segment duration and of phonetic 

factors that disrupt the idealised path of F0 means that considerable care and even 

ingenuity must be exercised in designing any corpus of materials to be used as a 

source of instrumental data. 

 

Any study involving duration measurements must either use a very large sample in 

which the multiple interacting effects will cancel each other out, or must carefully 

control potential sources of variation in segment duration.  To investigate the effect of 

stress on syllable duration, for example, it is essential to compare segmentally similar 

stressed and unstressed syllables in prosodically similar contexts.  Similarly, the 

methodological significance of intrinsic F0 is that if you want to study F0 scaling 

instrumentally, you need to control vowel quality.  Don’t try to compare 

measurements of mid tones and high tones if all the mid tones occur on [i] and all the 

high tones occur on [o].  It’s essential to compare like with like.  

 

The existence of obstruent perturbations and voiceless gaps means that the best 

samples of speech for making instrumental measurements of pitch are stretches 

containing only sonorants, where voicing is uninterrupted and F0 extraction is likely 

to be reliable.  Obviously, however, there are countervailing issues of naturalness: 

speakers may tire of repeating sentences about Anna and Manny or about Warren, 

Ryan, and Allen, or your focus of interest may be on a class of words where 

obstruents are inevitable (for example, in Greek the “wh-words” – who, why, where, 

etc. – all contain voiceless stops).  In any experiment on phonetic detail there is an 

inherent conflict between naturalness and experimental control; different investigators 

have different preferences, and different methods may suit different situations, 

different languages, and different research questions.  However, it is worth noting in 

this connection that a control study by Lickley et al. (2005) showed that fine 

differences of detail in F0/segment alignment in Dutch were conditioned by stress in 

the same way in short sentences read aloud and in quasi-spontaneous (non-scripted) 

task-oriented dialogue, suggesting that read speech based on controlled experimental 

materials is not intrinsically invalid or misleading about phonetic detail. 

 

 

3. Quantifying F0/segment alignment 

 

The fact that F0/segment alignment exhibits clear phonetic regularities (cf. section I.3 

above) raises the question of how best to describe alignment quantitatively.  It seems 

fair to say that there is no clear agreement on this point.  There are at least two distinct 

issues: how to define significant points in the F0 contour, and how to characterise 

their coordination with the segmental string. 

 

Much published work on alignment deals with the alignment of F0 peaks – local 

maxima in the F0 contour.  Ignoring the problem of spurious F0 values (discussed in 

the next section), F0 peaks are generally easy to identify objectively from a visual 

display.  The only important issue here involves high accents or tones that are realised 

as relatively stable high-level stretches (sometimes called “plateaux”), where it is not 

clear whether to take the beginning, the middle, or the end of the plateau as the 

location of the peak; work by Knight & Nolan (2006) suggests that the end may most 



faithfully reflect our perception, but this is an area where further research is needed.  

When we are interested in F0 in locations other than peaks, however, the criteria for 

choosing a single F0 point as the representative value are much less clear.  In 

particular, there is considerable discussion in the literature on how best to locate 

“elbows” – points in the contour where level F0 begins to rise or fall, or where rising 

or falling F0 begins to level off.  A recent study by Del Giudice et al. (2007) suggests 

that various algorithmic methods (line-fitting, modelling, etc.) give results that are 

comparable to locating the elbow subjectively by eye.  It seems likely that further 

research will eventually lead to the development of standard criteria. 

 

As for the coordination of F0 points with the segmental string, there are two basic 

approaches.  One characterises the location of the F0 point relative to a single 

segmentally identifiable point, such as the offset of a stressed vowel (e.g. Arvaniti, 

Ladd & Mennen 1998); the other locates the F0 point relative to a segmentally 

identifiable span, such as the rhyme of a stressed syllable (e.g. Silverman & 

Pierrehumbert 1990).  In the first case the alignment is expressed as a difference (e.g. 

20 ms before the vowel offset, 15 ms after the vowel offset. etc.); in the second it is 

expressed as a proportion (e.g. the interval between the beginning of the rhyme and 

the F0 point is 0.65 of the duration of the rhyme as a whole – or alternatively, the F0 

point is aligned 65% of the way through the rhyme).  Both these methods have 

drawbacks.  The point-based method is strictly empirical and is not based on any 

theoretical insight about what controls alignment other than the basic notion of 

segmental anchoring.  Moreover, if we wish to compare different potential influences 

on alignment, it will not do to choose a segmental reference point that is too close to 

the F0 point, because random variation may mask systematic effects if the alignment 

values are very small (this problem is discussed at greater length by Atterer & Ladd 

2004).  The span-based method may have the opposite problem of locking us in 

prematurely to a theoretical assumption about the relevant segmentally-definable span 

(for further discussion see Schepman et al. 2006).  Once again, it seems likely that the 

best way of quantitatively describing F0/segment alignment will emerge from further 

research. 
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