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1 Introduction and motivation

This paper has three aims. First, to illustrate a particularmodel-theoretic technique for obtaining results
about formalized theories of syntax. Second, to show how large-scale informal grammatical description
can be drawn somewhat closer to formal syntactic theory. Andthird, to demonstrate a way of obtaining
an expressive power result by a rather unexpected route, achieving a (conditional) result on generative
capacity in a way that entirely avoids reference to generative grammars.

The topic is the expressive power of the syntactic theory implicit in The Cambridge Grammar of
the English Language(Huddleston et al. 2002), which we refer to henceforth asCGEL. CGEL is an
informal survey of the syntax and morphology of contemporary Standard English on a consistent basis
of assumptions and terminology. It focuses on description rather than general linguistic theory, yet says
enough to permit inferences to be drawn concerning many aspects of the grammatical framework it
assumes. We undertake here the exercise of formalizing somecentral aspects of that tacitly assumed
framework, with a view to determining its expressive power.

The analyses ofCGELare not, of course, assumed here to be definitive. They may well be mistaken,
or may need elaboration or abandonment in some cases. But ourwork is at a fairly high level of gener-
ality, and should apply to modified variants of theCGELframework just as well as to the one presented
in CGEL itself.

2 CGEL and the structures it tacitly assumes

Table 1 gives a list of the 16 major grammatical categories employed inCGEL. None are particularly
controversial — though note thatDP (Determinative Phrase) is the category of phrases likehardly any,
not that of phrases likehardly any banks, which would be anNP (Noun Phrase) forCGEL, as for the
traditional grammars that preceded it, and generative grammars before 1987.

Table 2 shows the twenty grammatical functionsCGELemploys. Four of the most common of those
are illustrated in Figure fig.egstruc. Note that nearly all are special cases of others: everyIndObj is an
Object, everyObject is aComplement, everyAttributive is aModifier, everyModifier is anAdjunct,
and allComplements andAdjuncts areDependents. The fundamental distinction is betweenHead
andDependent.

In Figure 1 we provide an example of aCGELanalysis, represented in a rather cluttered diagram-
matic form that we shall use only temporarily. The names nextto the lines are names of whatCGEL
calls grammatical functions.

The labels on the lines in sanserif font likeHead, Det (for ‘Determiner of’), Comp (for ‘Complement
of’), and so on, correspond to grammatical functions. The labels in boldface at line junctions are cate-
gories.

∗This work was supported by the Radcliffe Institute for Advanced Study at Harvard University. We are grateful to Alexander
Koller for noticing an error in an earlier version.

1



LABEL EXPLANATION EXAMPLE

Adj adjective insincere
AdjP adjective phrase quite obviously insincere
Adv adverb obviously
AdvP adverb phrase quite obviously
Clause clause every word of the statement seemed

quite obviously insincere
Crd coordinator and
D determinative every
DP determinative phrase almost every
N noun claim
Nom nominal group word of the statement
NP full noun phrase every word of the statement
P preposition of
PP preposition phrase of his and her friends
Sbr subordinator that
V verb seemed
VP verb phrase seemed quite obviously insincere

Table 1: Grammatical category labels employed inThe Cambridge Grammar

Notice (for it will be a point of central importance in what follows) that although most of the structure
in Figure 1 is treelike, theDet of the NP andHead of the Nom are fused in the subject noun phrase
constituentsome of her friends.

We now consider how to formalize structures like the one in Figure fig.egstruc. Like just about
any imaginable kind of syntactic representation,CGEL’s syntactic representations can be formalized as
graphs (that is, sets of nodes with a relation defining links between certain pairs of them), decorated with
a certain vocabulary of symbols. Mostly those graphs are very much like trees.CGEL’s structures are
in fact not always constituent-structure trees in the defined sense familiar from mathematical linguistics,
and Figure 1 is not.

We set aside one difference that is not illustrated in Figure1. Some of the representations inCGEL’s
chapter 15 show parenthetical constituents as loosely connected into trees by a formally unexplicated
relation diagrammed as a dotted line indicating the ‘Supplement’ relation, intended to signal that they
are not fully part of the tree-like structure. As Chris Potts(2005, chapter 6) notes, this in effect intro-
duces a third dimension (in the sense of a third kind of possible adjacency) into syntactic structures.
Potts questions the need for any such divergent syntax for supplements. His book provides a convinc-
ing alternative in semantic terms, and supports it very convincingly. Potts assumes parentheticals are
integrated into trees in the same way as any other phrases, differing crucially in two main ways: their in-
tonational phonology and their semantic interpretation. We therefore ignore the issue of the implications
of CGEL’s dotted-line diagrams, and concentrate on two much clearer and more substantive differences
which are illustrated in Figure 1.

The first difference concerns the decorations: in an ordinary tree it is only the points or nodes that
are labelled, with category labels likeNP andV. But in CGEL there are (tacitly, but see page 25) also
edge labels, corresponding to grammatical relations likeSubject, Object, Head, Complement, and
Adjunct.1

1To forestall a distracting terminological problem, note that the terms ‘grammatical relation’ and ‘grammatical function’
are both used in the literature for relations like ‘is the subject of’. But not all grammatical relations are functions inthe
mathematical sense. From a ‘bottom-up’ perspective, a relation like ‘is Object of’ is a function, since there can be only one
node that a given node isObject of; but the from a ‘top-down’ perspective it may not be. The matter will depend on whether any
VP node can immediately dominate more than one object — andCGELassumes the answer is yes. The relationCoordinate in
CGELis a clear case of a relation whose inverse is not a function: every node that is the root node of a coordination has two or
more immediate constituents that bear theCoordinate relation to it, so although ‘is a coordinate of’ (bottom-up)is a function,
‘has as one of its coordinates’ (top-down) is not. In this paper, for convenience, we have chosen to represent all grammatical
relations in ‘top-down’ mode: we want to be able to use the functional notationf(x) = y in a way that accords with the
relational notationR(x, y), and it would be confusing to switch the order of the arguments. Thus under our formalization
CGEL’s ‘grammatical functions’ are not always functions on the domain in the mathematical sense. This may be confusing,

2



RELATION ABBREVIATION REMARKS

Adjunct Adjnc special case ofDependent
Attributive Attrib special case ofModifier
Complement Comp special case ofDependent
Coordinate Co function of elements in a coordination
Dependent Dep equivalent to ‘non-Head’
Determiner Det special case ofDependent
DirObj Od special case ofObject
Head H equivalent to ‘non-Dependent’
IndObj Oi special case ofObject
Marker Mkr function of Subordinators and Coordinators
Modifier Mod special case ofAdjunct
Nucleus Nuc special case ofHead
Object Obj special case of (Internal)Complement
PredComp PC special case ofComplement
Predicate Pred special case ofHead (head of Clause)
Predicator Pred special case ofHead (head of VP)
Postnucleus Postnuc special case ofDependent
Prenucleus Prenuc special case ofDependent
Subject Subj also ExternalComplement
Supplement Supp special case ofAdjunct

Table 2: Grammatical relations (or functions) inThe Cambridge Grammar

The second difference is that a single constituent may bear two different grammatical relations si-
multaneously; that is, it may be at the ends of two different edges with distinct edge labels. This situation
is referred to inCGELasfunction fusion.

Our methods of formalization in this paper will be model-theoretic rather employing the tools of
generative grammar, which originate in proof theory (see Pullum and Scholz 2005 for further discussion
of the distinction). We will formalize syntactic structures of natural language expressions asrelational
structures in the model theorist’s sense.

A relational structure is just a set with certain relations defined on it. An undecorated graph can be
formalized as a particularly simple relational structure that has just one binary relation holding between
those pairs of elements that are directly connected by an edge. We will follow most linguists in calling
the elements in a graphnodes. Unordered trees are a special case of graphs, and linguistscall the
fundamental edge relation in treesdominance.

Linguists most commonly work withordered trees. An ordered tree has an additional binary relation
defined on the set of nodes: in addition to dominance there is arelation ofprecedence.

The decorating of the nodes with labels can be represented interms of relations whose arity is 1. For
example, a three-node tree with anA immediately dominating aB followed by aC can be identified
with a relational structure (or more pedantically, an equivalence class consisting of all and only the
relational structures isomorphic to the tree in the obviousway) in which there are three nodesn1, n2, n3

and a total of five relations:

— a unary relation corresponding to being labelledA and containing justn1;
— another unary relation corresponding to being labelledB and containing justn2;
— a third one corresponding to being labelledC and containing justn3;
— a binary relation of proper domination relatingn1 to n2 andn1 to n3; and
— a binary relation of immediate precedence (being immediately to the left of) that relatesn2 to n3.

To represent such structures in symbols (which will be necessary later in order to prove things about
them), we are taking an ordered tree labelled from the label inventoryΣ to be a relational structure
T = 〈T, ⊳1, <1, ⊳2, <2, Pσ〉σ∈Σ, where

but it is a purely terminological matter, so we will ignore it, and talk about particular grammatical relations and grammatical
functions interchangeably. Use of the latter term will never be intended to signal the property of being functional — i.e., to
entail(∀x, y)[(Ri(x, y)) → ((∀z)[Ri(x, z) → z = y])].
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Figure 1: ACGELanalysis

— T is the domain (the set of nodes),
— ⊳1 is the immediate precedence relation (the relation ‘immediately before’),
— <1 is the irreflexive transitive closure of⊳1 (hence the relation ‘somewhere before’),
— ⊳2 is the immediate dominance relation (‘parent of’),
— <2 is its irreflexive transitive closure (‘properly dominates’), and
— Pσ for eachσ in the setΣ is a unary relation picking out the set of nodes labelledσ.

Every tree has to be such a structure, but of course it also hasto satisfy all the usual tree axioms: there
must be a single root (a node dominating every node); there must be no tangling of branches (precedence
must be inherited down dominance chains); the union of<2 with its inverse must be disjoint from the
union of<1 with its inverse; and the union of<2 and<1 with their inverses together with the identity
relation must exhaust the domain.

We can also represent edge labels and function fusion in terms of relational structures. All that is
involved is adding a set of edge labels. To make our proposal fully precise, we will model aCGEL
structure as a septuple

D = 〈D,Ef , Nc,;,
+
;, ⊳,≤〉f∈F,c∈C

the seven elements of which are as follows:

D is a finite domain (the set of nodes);
Ef is a set of subsets ofD×D (one for eachf ∈ F ) such that〈x, y〉 ∈ Ef iff there is anf -edge from

x to y (the set of labeled edge-sets: the Subject edges, the Head edges, and so on);
Nc is a set of subsets ofD (one for eachc ∈ C) such thatx ∈ Nc iff x bears labelc (this defines the

labeling of the nodes);
; is the union of all theEf , wheref ∈ F (this is the relation determined by the entire set of edges,

independent of their edge-labels);
+
; is a subset ofD×D, the transitive closure of; (this is the relation ‘is connected to by a sequence

of one or more directed edges’, which holds between a node andsome other node that is ultimately
reachable from it);

⊳ is a subset ofD×D that totally orders the elements ofD that are maximal with respect to
+
; (this

is the ‘immediately followed by’ relation on words in an expression);
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≤ is a subset ofD×D, the transitive closure of≤ (this is the ‘somewhere earlier than’ or ‘precedes’
relation on the words in an expression).

We require that such a structure isrooted with respect to
+
; (that is,D |= (∃x)(∀y)[x

+
; y]), so

there is a node from which every other is reachable, and also that it is acyclic with respect to
+
; (that is,

D |= (∀x, y)[¬(x
+
; y ∧ y

+
; x)]), so by following the; arrows you never come back to a node you

have visited before.
From now on, as a convenience of exposition, when we talk about a structureD we will always

assume we can refer to its domain asD, to its set of labeled edges asEf , to its reachability relation as
+
;, and so on. This saves much tedium: we can say ‘inEf ’ instead of ‘in the edge setED

f that is the
relevant one for the structureD’.

To make mention of anf -flavoured edge from nodex to nodey in a structure, we’ll use prefix
syntax, writing ‘Ef (x, y)’; and similarly, when talking about a nodex labeledZ we’ll write ‘ Z(x)’. But

we will generally use infix syntax for the binary relations;,
+
;, ⊳, and≤; for example, we’ll write

‘x
+
; y’ when talking about there being a chain of edges leading fromx to y.

3 Faithful interpretation of logical theories

We turn now to the development of a descriptive metalanguagefor talking about trees andCGEL-
structures, and the central technique we want to illustrate, which is calledfaithful interpretation . We’ll
begin with a consideration of how to describe trees. Following Rogers (1994, 1998, 2003), we’ll be using
monadic second-order logic(henceforthMSO) interpreted on relational structures with tree properties.

MSO is a variant of the predicate calculus in which, in addition to the ordinary (first-order) variables
ranging over individuals, there are variables ranging oversets of individuals.2

In the usual logician’s parlance, a logicaltheory is simply a set of formulae that is closed under
logical consequence. TheMSO theory of trees is the set of all and only the MSO sentences satisfied by
any tree structure whatever.

We will call an MSO languagesuitable for a structureD if the language has monadic predicate
symbols for all the symbols labelling the nodes inD, and binary predicate symbols for the relevant
binary relations onD, and so on.

A set T of trees isdefinable in the MSO theory of trees (orMSO-definable) iff there is a set of
axioms (closed formulae) in the MSO language suitable forT which is satisfied by all and only those
trees in the set.

(In linguistics we are almost always concerned with a propersubset of tree structures, the finite
ones, since linguists have almost no dealings with infinite trees. But those who think that insisting on
the finiteness of syntactic structures is important, we notethat the MSO theory of finite trees is MSO-
definable within the MSO theory of all trees, because notionslike ‘the domain is finite’ are expressible
in MSO — though not in first-order logic.)

A faithful interpretation of one logical theory into another is, in informal terms, a mapping from
the first set of statements to the other that preserves the keyaspects of meaning.

To be more precise, supposeL1 is a logical language suitable for some class of structuresD1 andL2

is a language suitable for another class of structures,D2. A faithful interpretation of anL1 theory into
anL2 theory is a uniform mapping of the domain of each structure inD1 to a subset of the domain of a
structure inD2 in such a way that whenD1 ∈ D1 is mapped toD2 ∈ D2,

(i) the range of the mapping is a non-emptyL2-definable subset ofD2;
(ii) each of the predicates of the signature ofL1 is definable on that domain inL2; and

(iii) the mapping and the defined predicates are such that satisfiability of formulae inL1 is preserved
in L2.

2Remarkably little use is made of quantification over sets in most linguistic description, we have found. The reason for
fixing officially on MSO rather than first-order logic has to dowith a remarkable equivalence result, that of Doner 1970, which
we refer to later on.
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Satisfiability is simply the property of having a model. A formula is satisfiable iff there is a structure
D that makes the formula true when evaluated inD. (Notice that it is possible for it to be unknown
whether or not there is such aD.)

To explain the foregoing more intuitively, the idea is to setup a mapping fromCGELstructures to
trees in such a way that (i) the nodes of theCGELstructure are mapped to nodes in the tree in a way
definable in the metalanguage used for talking about trees; (ii) for any predicate in the metalanguage for
theCGELstructures, the metalanguage for trees can define the set of nodes that predicate applies to; and
(iii) when a formula of the metalanguage for theCGELstructures is satisfiable, the translation of that
formula into the metalanguage for talking about trees is satisfiable too.

4 Embedding theories ofCGEL structures into theories of trees

The definitions of the domain and predicates ofD1 (theCGELstructures) inL2 (the language of trees)
provide a syntactic translation of formulae inL1 into formulae ofL2. Quantification is relativized to the
range of the mapping, and each predicate symbol inL1 is replaced with its definition inL2. Since the
interpretation preserves satisfiability, a sentence ofL1 will be in the first theory iff its translation intoL2

is in the second. In this way decidability of the first theory can be reduced to decidability in the second.
Translating theories into theories (providing a faithful interpretation of the MSO theory of classes

of CGELstructures into the MSO theory of rooted, directed, orderedtrees) thus permits us to establish
the decidability of theories based onCGELstructures. But we can go further than that: we can actually
interpret theories ofCGELstructures in trees via an interpretation that preserves the linear order of the
maximal points (the frontiers, or terminal strings) ofCGELstructures, so that we preserve exactly the
set of strings that a grammar describes.

The definitions we have given allow aCGELstructure to be mapped to any MSO-definable subset of
the domain of some tree, but we will focus our attention on translations in which the mapping from the
domain of theCGELstructure to the domain of the tree is abijection (a one-to-one correspondence). In
that case we can take the mapping to be identity, and build thetrees on exactly the same set of nodes as
theCGELstructure. This makes the range of the mapping trivially MSO-definable, so we easily attain
compliance with condition (i) above.

The strategy we use is to build aspanning treeof the graph corresponding to the edges of theCGEL
structure (all of the edges that make up the; relation). This will be a tree that, intuitively does not
contradict theCGELstructure in its properties, or lose any of its crucial information. More precisely,
we define the notion of a directed spanning tree thus:

Definition 1 (Directed Spanning Tree) A directed, unordered, unlabeled tree is adirected spanning
treeof a CGEL structure iff the domains are the same and the ‘parent-of’ relation in the tree is included
in the ‘immediately reachable’ relation in the CGEL structure. (That is,T = 〈T, ⊳2, <2〉 is a directed

spanning tree ofD = 〈D,Ef , Nc,;,
+
;, ⊳,≤〉f∈F,c∈C iff (i) T = D and (ii) ⊳2 ⊆ ;.)

Since we have preserved the domain of theCGELstructure, there is nothing to be done with regard
to translation of the node labels — we can simply allow the interpretation of category-label predicates
in the trees (Clause, NP, and so on) to be the very same sets of nodes that interpret those symbols in the
CGELstructures. We simply build the spanning tree on the nodes oftheCGELstructure.

The remaining work that must be done, then, is to translate the edge relations. The translation ofEf

(an edge labelled with the functionf ) has three components, which we will represent as a conjunction
of formulae using three defined predicates:

— ϕO
f picks out the points which may have anf out-edge;

— ϕI
f picks out the points which may have anf in-edge; and

— ϕE
f (x, y) identifies all and only those pairs drawn from those sets thatactually are joined by an

f -edge.
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SoϕO
f is the property shared by all those nodes from which anf edge is permitted to depart, andϕI

f is

the property shared by all those nodes at which anf edge is permitted to arrive, andϕE
f (x, y) means

thaty is anf of x.
WhereverϕE

f (x, y) holds,ϕO
f (x) andϕI

f (y) also hold. Thus the source end and destination end of
eachf -edge are tagged as permitted to be in those locations. Each formulaEf (x, y) in a theory ofCGEL
structures is translated to:

ϕO
f (x) ∧ ϕI

f (y) ∧ ϕE
f (x, y)

(“x is allowed to be the source of an outgoingf -edge andy is allowed to be the destination of an
incomingf -edge and there is anf -edge fromx to y”)

(In practice, either or both ofϕO andϕI may be trivial; that is, all points may be permitted to be out-
edges or in-edges for any edge label. But there is provision for restricting such things as the categories
that can bear particular grammatical relations.)

Definition 2 (Reachability preservation) A directed spanning tree of a CGEL structurepreserves reach-
ability iff reachability (between a pair of nodes in the CGEL structure) implies proper domination (be-
tween those nodes in the spanning tree).

More formally, we say that a directed spanning treeT = 〈T, ⊳2, <2〉 preserves reachabilitywith

respect to a CGEL structureD = 〈D,Ef , Nc,;,
+
;, ⊳,≤〉f∈F,c∈C (where of courseD = T ) iff (∀a, b ∈

T )[(a
+
; b) ⇒ (a <2 b)].

So if you can get froma to b in the CGEL structure by following edges in the direction of the arrow
(away from the root), thena properly dominatesb in any spanning tree that preserves reachability.

Notice, sinceT is a spanning tree ofD it will be the case that for alla, b ∈ D (= T ) we have

(a <2 b) ⇒ (a
+
; b). (This follows because the⊳2 edges ofT are a subset of the; edges ofD.)

Hence the implication is actually an equivalence.

a

d

b e

a

b

d e

Preserves
reachability

Does not preserve
reachability

Figure 2: Two directed ordered acyclic graphs each having two spanning trees

Now, everyCGELstructure has at least one directed spanning tree, but sincethe tree is directed and
⊳2 may be a proper subset of; it may be the case that no directed spanning tree for a givenCGEL
structure preserves reachability (see Figure 2.)

If reachability can be preserved, then the translation of the edge relations can bedirection-preserving:
if the edge (in theCGELstructure) goes froma to b, then in the spanning tree the image ofa will domi-
nate that ofb. Hence, the set of pairs that satisfyϕE

f (x, y) will be a subset of the set interpreting<2: the
only place we need to look to find the nodes at the end of edges leading froma is in the subtree rooted
ata in the tree.
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5 Property I: branch ordering

Things now begin to move fairly swiftly. In what follows we will give proofs in sketch form at best, and
sometimes not at all. We begin by considering the implications of an arbitrary structureD having the
following property (that is, the property of satisfying thestatement that for convenience of reference we
will call Property I):

Property I : (∀x, y, z)[(x
+
; z ∧ y

+
; z) → (x ≈ y ∨ x

+
; y ∨ y

+
; x)]

Property I requires that for any three points inD, if the third can be reached from either of the first two,
then either the first two are identical or one can be reached from the other. In essence, ‘branches’ ofD

(sets of nodes falling between two given nodes with respect to
+
;) are totally ordered. Our first theorem

is this:

Theorem 1 A CGEL structureD = 〈D,Ef , Nc,;,
+
;, ⊳,≤〉f∈F,c∈C has a directed spanning tree that

preserves reachability iff it has Property I.

Proof (sketch): To show that Property I implies thatD has a directed spanning tree that preserves reachability, by
construction, given aCGELstructure

D = 〈D, Ef , Nc, ;,
+
;, ⊳,≤〉f∈F,c∈C

let T D denote the structure〈D, ⊳2
D, <2

D, Nc〉c∈C defined by the following conditions:

⊳2
D = {〈a, b〉 | a ; b and(∀c ∈ D)[a

+
; c → ¬(c

+
; b)] }

and<2
D is the transitive closure of the⊳2

D relation. That is, there is a ‘parent of’ edge between each point a and

all points which are minimal (with respect to
+
;) among those reachable froma in D. In effect this discards all

edges ofD for which there is a (directed) path (using any of the edge types) containing two or more edges between
the same pair of points. This preserves reachability, because an edge will be dropped only if there is such a path.

The fact that reachability is preserved, along with the factthat theCGELstructure is acyclic, transitive, and
rooted, implies that<2

D is asymmetric and transitive, and thatT D has a unique minimum with respect to the<2

relation. It is straightforward to show that Property I alsoensures that each point other than the root has a unique
predecessor with respect to<2

D.
For the other direction we use contraposition. IfD fails to exhibit Property I then no subgraph that covers the

vertices ofD can be a tree.�

All the function-fusion analyses given inCGELappear to yield structures that satisfy Property I. In fact
they appear to satisfy the following statement, which is much stronger:

Property I +: (∀x, y, z)[(x
+
; z ∧ y

+
; z) → (x ≈ y ∨ x ⊳2 y ∨ y ⊳2 x)]

This requires reachability betweenx andy in a single step: function fusion at a nodez involves branches
which connect either to a single parent node or to a pair of nodes in which one is child of the other (see
Payne et al. 2007:566–584).

Even in the form using Property I, the construction in the proof of Theorem 1 is fully constrained in
the sense that, for any nodea, if a smaller set of children were selected there would be some point that is
reachable froma in D but not dominated bya in T D (since the children ofa in the construction are all

minimal with respect to
+
; among those reachable froma) and if a larger set of children were selected

⊳2
D would either not be a subset of

+
; or there would be somea 6= c andb for which 〈a, b〉, 〈c, b〉 ∈

⊳2
D. We therefore have this corollary:

Corollary 1 If D exhibits Property I then there is auniquedirected spanning tree ofD which preserves
reachability.
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6 Property II: reachability/precedence exhaustiveness

Thus far we have not said anything about our spanning trees being left-to-right ordered. We now add
left-to-right order, and then define a notion of compatibility between trees andCGEL structures that
respects both reachability and order.

Definition 3 (Directed ordered spanning tree) A directed, ordered, unlabeled tree
is a directed ordered spanning tree of a CGEL structureD iff 〈T, ⊳2, <2〉 is a directed spanning tree of
D.

Definition 4 (Compatible directed ordered spanning tree)A directed ordered spanning tree
T = 〈T, ⊳1, <1, ⊳2, <2〉

of a CGEL structureD is compatible withD iff it preserves reachability and itpreserves order:

(∀a, b)[a ≤ b ⇔ a <1 b anda, b are both leaves ofT ]

≤

x

w
′

wz

y

≤

Figure 3: A directed ordered acyclic graph with tangling

Let Leaf(x) be explicitly defined as(∀y)[¬(x ; y)]; that is, it means thatx is a leaf node: from
x you cannot reach anything, becausex is not at the source end of any edge. Letx

∗
; y be explicitly

defined asx
+
; y ∨ x ≈ y, i.e., as reachability in zero or more steps. And let≺+

G
be a relation extending

≤ to (a subset of) non-maximal points inD in the following way:

x ≺+

G
y is explicitly defined as meaning

(∀w, z)[¬(x
∗
; y) ∧ ¬(y

∗
; x) ∧ ( (x

∗
; w ∧ Leaf(w) ∧ y

∗
; z ∧ Leaf(z)) → (w ≤ z) ) ]

Thusx ≺+

G
y means that there are now andz such that (i) you can’t reachy from x in zero or more

steps, and (ii) you can’t reachx from y in zero or more steps, and (iii) if fromx you can reach the leaf
w and fromy you can reach the leafz thenw precedesz.

Note that≺+

G
is asymmetric and transitive and that every structureD will satisfy (∀x, y)[(x ≺+

G

y ∨ y ≺+

G
x) → ¬(x

+
; y)]. Let Property II be this property of an arbitrary structureD:

Property II: (∀x, y)[x ≈ y ∨ x
+
; y ∨ y

+
; x ∨ x ≺+

G
y ∨ y ≺+

G
x]

Property II requires that, for any two distinct points inD, either one can be reached from the other or

one precedes the other. That means that
+
; and≺+

G
together totally orderD, in the same sense that

<2 and<1 totally order a tree. Since≺+

G
is defined only for nodes that do not interleave the maximal

nodes reachable from them, the property, in essence, requires that the edges ofD do not “tangle” with
respect to the ordering of its maximal nodes (as in Figure 3).This ensures that an analogue of the usual
no-tangling property in trees will hold, leading to our nexttheorem:

Theorem 2 A CGEL structureD = 〈D,Ef , Nc,;,
+
;, ⊳,≤〉f∈F,c∈C has a compatible directed ordered

spanning tree iff it satisfies Property I and Property II.

The proof is a routine application of the definitions, and we omit it.
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7 Property III: function segregation

Properties I and II suffice to guarantee that aCGELstructure can be reduced to a directed spanning tree
in a way that respects the orderings imposed by the edges and the ordering of its maximal points. But the
edge set of the spanning tree is, in general, a proper subset of the edges of theCGELtree and not even a
homogeneous subset with respect to to the edge labels. We face the question of whether it is possible to
encode the edges of theCGELstructure in the spanning tree.

It is quite clear that the answer is yes. The approach we adopthere can be conceptualized as sliding
the edge labels down the lines onto the nodes that the edges connect to. The structure for a noun phrase
with Determiner–Head fusion could be conceptualized as having a single Determinative node at the
head of two distinct edges, as in Figure (4a).

a.

D
et

H
ead

NP

D
this

b.

D

et – Head

NP

D
this

c. NP

Det–Head:
D

this

d. NP

Det–Head:

D

this

Figure 4: Four ways to represent the structure of theDet–Head noun phrasethis

But the two function names might just as well be associated with the same edge, and we could slide
the double function label down onto the end near the node label, as shown in Figure 4 (b).

Indeed, sliding it off the arrow head and putting it right above or immediately before the category
label of the node, separated by a colon, yields the usual notation used in the diagrams inCGELitself, as
in Figure 4 (c).

And this makes it clear that no issue of expressive power is going to arise as a result out of the edge
labels, since the description could be re-implemented in a way that took objects like the contents of the
box in Figure 4 (d) to be simply categories.

If we just cross-multiplied the 16 categories and 20 functions listed in Table 1 and Table 2 it would
yield no more than 320 combined function + category pairs, which is not unmanageable.

However, such cross-multiplication is merely a way to convince oneself that no problem of principle
arises here. It is not howCGELconceives of the analysis, and it is not necessary.

MSO is powerful enough to encode the fact that〈a, b〉 belongs toEf in a given structure by adding
two sets of new monadic second-order predicates to our metalanguage:Of andIf . We assert thata is
in the set assigned toOf (meaning ‘there is anf edge that is an out-edge froma’) and b is in the set
assigned toIf (‘there is anf edge that is an in-edge tob’).

These new predicates do not need to be incorporated as extensions to the node label alphabet: they
are not primitive to the theory modeled by theCGELstructures, and they can be regarded as a distin-
guished set of monadic second-order variables which will ultimately be bound with a global existential
quantifier.

So Ef (x, y) (in the vocabulary suitable for theCGEL structure) will be translated asOf (x) ∧
ϕf (x, y) ∧ If (y) in the tree-description language, whereϕf (x, y) picks out the structural relationships
which can hold in the spanning tree between points that are related byEf in CGEL.

The definition ofϕf is specific to the theory expressed by the set ofCGEL structures. For this
approach to work, it must be possible to define this in a way that captures every possible relationship
between the two ends of anf edge but which is also unambiguous in picking out the actual members of
the sets assigned toIf andOf that are related byEf in theCGELstructure.

Note that, ifa andb are related by anf edge in theCGELstructure then in any compatible ordered
directed spanning tree it will be the case thata properly dominatesb, since compatible spanning trees
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preserve reachability. So theIf node associated with a givena that is the source of anf edge will always
be in the subtree dominated bya.

One condition that is sufficient to guarantee that such aϕf can be uniformly defined is the property
of CGELstructures we shall call Property III:

Property III : (∀x, y, z, q)[(Ef (x, y) ∧ Ef (z, q) ∧ x
+
; z) → ¬(z

+
; y) ]

Here’s what this means. Suppose there is an edge labelledf from x to y, and anotherf edge fromz to
some arbitrary nodeq. If you can get fromx to z along some path down the edges, then you can’t get
from z to y. Thus there is a sense in which thef edges do not overlap: you never find a path between
two nodes related by anf edge that includes a node at the source end of some differentf edge. So if
there’s anf edge fromx to y, thenx the onlyOf node that occurs on any path betweenx andy.

Now suppose a nodea that is the source of anf edge dominates two distinct nodesb andc that are
destinations off edges. For concreteness, assume thatb is the node related toa by anf edge. Then the
member ofOf corresponding toc (call it d) must fall betweena andc with respect to proper domination.
Otherwisea is reachable fromd andc is reachable froma, and that would violate Property III.

This thef -destination node corresponding to a givenf -source nodea will always be thatf -destination
node in the subtree rooted ata for which nof -source node intervenes. ThusEf (x, y) will translate to
this:

Of (x) ∧ (x <2 y ∧ (∀z)[(x <2 z ∧ z <2 y) → ¬Of (z)) ∧ If (y)

The foregoing is enough to establish our main result, presented as Theorem 3:

Theorem 3 If an MSO-definable setD of CGEL structures satisfies Properties I, II, and III, then there
is a faithful interpretation of the theory ofD into the MSO theory of trees.

We omit the proof, which is straightforward.

8 Function fusion in English grammar

We have not shown so far that the three properties, in particular Property III, will always be satisfied
by CGEL-style analyses. To this extent we are offering only a conjecture about theCGELdescriptive
framework, not a mathematical result. We have not even givena rigorous survey of all the relevant
cases of structures proposed inCGEL itself. However, we have inspected what appear to be the only
relevant analyses, and Property III seems entirely plausible. We provide a brief survey of the relevant
constructions (see Huddleston et al. 2005, 98–100 for a convenient informal summary of the facts, and
Payne et al. 2007, 566–584 for a detailed theoretical discussion).

Fused functions are found as alternative constructions toNPs andPPs, and involve single-word
realisation of what would otherwise have been linearly adjacentHead andDependent constituents.

In all the cases we are aware of, actual counterpart constructions exist in which theHead and
Dependent constituents are separate. Thus alongsideNPs like everyone(where a single word is both
Determiner andHead) there are counterparts likeevery person; alongsideNPs like the French(where
French is bothModifier andHead) there are counterparts likeThe French people; and so on. In the
counterpart construction we have a nodenx of some categoryX with a child nodena realising some
functionFa, and either a child or a grandchildnb realising some different functionFa. In all cases the
nodesna andnb are linearly adjacent, and (a substantive observation not reflected in the formal account
above) in all cases eitherFa or Fb is the functionHead.

Payne et al. (2007) identifies some further generalisations. Let us temporarily refer to the node
realising theHead function asnh (from what we have said it follows that eithernh ≈ na or nh ≈ nb),
and to the node realising theHead function asnd (sonh 6≈ nd). The category ofnh is always in the same
projection class as that ofnx (in the sense that X-bar theory seeks to formalise: in theCGELsystem the
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N projection class is{N, Nom, NP}, theV projection class is{V, VP, Clause}, theP projection class
is {P, PP}, and so on). Moreover,nd always has a categoryY distinct fromX.

Now, the difference in the function-fusion construction issimply that a single node realises bothFa

andFb, sonh ≈ nd ≈ na ≈ nb.
Some examples will make this clearer.

8.1 PlainDet–Head fusion

CGELusesDet–Head fusion in the structure ofNPs like this, that, many, several, everyone, nobody,
something, none, etc., as seen represented in various ways in Figure 4, wherea single Determinative
functions asDeterminer of the wholeNP and Head of its Nominal (non-branchingNominal con-
stituents are omitted from diagrams inCGEL). So we have anNP nodenx with aD child node realising
both theDeterminer andHead functions.

8.2 Partitive Det–Head fusion

Partitive examples like the one illustrated in Figure 1 are aslight variant of this, where the Determinative
is Determiner of the wholeNP andHead of a branchingNominal that also contains theof-headed
Complement PP that accompanies it. A nodenx of categoryNP has aDeterminer child na of category
D, and aHead child of categoryNom, and thatNom has a childnb realising theHead function, and
na ≈ nb.

8.3 PlainModifier –Head fusion

CGEL also positsModifier–Head fusion under almost exactly parallel circumstances asDet–Head
fusion, in the structure of certain definiteNPs that have a modifying attributive Adjective but no Noun
to serve asHead: the first (≡ “the one that is first”),the youngest of them(“the youngest child from
among their five children”),the absurd(“that which is absurd”),the rich (“rich people considered as a
class”),the French(“the people of the French nation considered as a class”), etc.

8.4 Partitive Modifier –Head fusion

Modifier–Head fusion also has a partitive variant, where anof-PP is associated with the modifier-head,
as inthe youngest of them, which is diagrammed in Figure 5.

NP

Det

D

the

Head

Nom

M
od

ifi
er

Adj
youngest

H
ead

Nom

Head Comp

PP

of them

Figure 5: The structure of theNP the youngest of them
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8.5 Det–Head and Mod–Head fusion with DPs and PPs

Entirely parallel to the foregoing cases are certain further cases ofDeterminer–Head andModifier–
Head fusion posited in Payne et al. (2007). Again these are found at the beginning ofNPs, but the
constituents with fused functions belong not to lexical categories likeD or Adj but to phrasal categories:
DPs (which are notNPs!) in phrases likeat least onceand more than once(see p. 590), andPPs
(see p. 589, n. 31). Otherwise they introduce nothing new. (One attested example with aDP in fused
Modifier–Head function is shown in Payne et al.’s diagram (24).)

8.6 Head–Prenucleus fusion in fused relatives

WhatCGELcalls fused relativesareNPs such aswhat she wrote, in which the wordwhat is both the
pronoun lexicalHead of (the headNominal of) theNP and thePrenucleus in the relative clause that
functions asModifier of thatNominal. The structure ofwhat she wrote(as seen inCGEL, p. 1073) is
shown in Figure 6.

NP

H
ead

Nom

H
ea

d

NP

H
ead

N[pro ]

what

M
odifier

Clause[rel]

Prenucleus
Nucleus

Clause

Subject

NP

H
ead

N[pro]

she

Head

VP

Hea
d

V

wrote

Object

(GAP)

Figure 6: The structure of theNP what she wrote

For all of these cases, the structures posited inCGELsatisfy Properties I – III.
In particular, if anyone could find evidence that aCGEL-style analysis of some aspect of English

syntax would be best formulated in terms that involve a structure incompatible with Property III, that
would be an interesting discovery. We should point out, however, that Property III as given is not
crucially necessary: it could be weakened in a number of wayswithout losing the result that the theory
of CGELstructures can be faithfully interpreted in the MSO theory of trees. For instance, if thef edges
can be refined into some arbitrary finite number of subtypes such that each of the subtypes satisfies
Property III, then a similar strategy could be implemented with the subtypes.

The assumptions we have made to obtain the correspondence betweenCGELstructures and trees are
thus not at all restrictive. We require only that there be finitely many (sub)types of edge such that the set
of paths for any given (sub)type of edge in theCGELstructure — the paths picking out all and only the
pairs of points that are related by that (sub)type of edge — can be defined using MSO on trees. These
can be quite subtle definitions, possibly depending on the labels of the nodes and the edges that occur
along the paths, and they may be inductively defined (as subsets of the tree). Similar remarks obtain
concerning the description of unbounded dependencies.
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9 Logical and language-theoretic consequences

The foregoing survey of function fusion constructions suggests that Property 3 can be assumed to hold
in the kind ofCGELstructures we are interested in, at least when considering the description of English.
Theorem 3 depends on that assumption.

If the theorems proved here do indeed hold for all analyses ofEnglish constructions, we immediately
get a number of interesting ancillary results about the set of all finite structures corresponding to English
expressions, i.e., what would be called ‘the language’ in formal language theory terms. First, as a
consequence of well-known facts about MSO on trees, we have this corollary:

Corollary 2 If an MSO-definable setD of CGEL structures satisfies Properties I, II, and III, then the
MSO theory ofD is decidable.

This means that the set of consequences of the axioms is a recursive set — whether a given formulaϕ is
in it can be decided by an algorithm. This immediately (in fact trivially) gives us another corollary:

Corollary 3 If an MSO-definable setD of CGEL structures satisfies Properties I, II, and III, then satis-
fiability for the MSO theory ofD is decidable.

This means that for a given MSO grammar statementϕ it is possible to determine mechanically, by
an algorithm, whether or not any structure could be well formed according toϕ. It follows because
theoremhood and satisfiability are logically related:ϕ is a theorem iff¬ϕ is not satisfiable, andϕ is
satisfiable iff¬ϕ is not a theorem. Since for anyϕ we can find out in finite time whetherϕ (or¬ϕ) is in
the theory ofD, we can also find out whetherϕ (or ¬ϕ) is satisfiable.

Next, in virtue of theorem due to John Doner 1970, we have a result linking the logic-based descrip-
tion of structures to a particular kind of automaton:

Corollary 4 If an MSO-definable setD of CGEL structures satisfies Properties I, II, and III, it is recog-
nizable by a a bottom-up finite-state tree automaton.

And that, by a well-known theorem of Thatcher 1967, gives us one further result:

Corollary 5 If an MSO-definable setD of CGEL structures satisfies Properties I, II, and III, then the
string yield ofD is context-free.

We have thus proved that if Properties I – III hold of legitimate CGELanalyses for English, the set
of grammatical strings entailed by a grammar stated in the form of a set of MSO-expressed constraints
on CGEL structures will be a CFL. And we have obtained this result without reference to any of the
usual mathematical linguistic notions: context-free grammars, pumping lemmas, pushdown automata,
or generative grammars of any sort.

10 Conclusion and summary

We have shown that it is straightforward to represent the structures assumed in Huddleston et al. 2002
as relational structures, and that under fairly mild and plausible conditions MSO theories interpreted
on such structures can be faithfully reinterpreted on tree models in a way that preserves all significant
syntactic consequences, specifically, the claims made about constituency, node labeling, and word order.

Since a set of finite tree models definable by an MSO theory is always accepted by some bottom-up
finite-state tree automaton (Doner 1970), and the string yield of such a set of trees is a CFL (Thatcher
1967), our conjecture would imply, under the conservative assumption that all of the statements infor-
mally made in that work are expressible in MSO, that the comprehensive description of English inCGEL
supports a positive answer to a question first raised by Chomsky in 1956: whether the set of all grammat-
ical strings of English words is a CFL. (The reason that we call it a conservative assumption that MSO
will suffice to state any grammatical generalization of the sort found inCGELshould be clear to anyone
who spends a little time reflecting on how various statementsof that sort can be stated precisely. MSO
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is really a very rich and flexible language for talking about trees. But we do not, of course, substantiate
the claim here; it stands as a conjecture.)

A positive answer to the question of whether English is CF would agree with the answer given in
Gazdar 1981 and Gazdar et al. 1985. It would also be in tacit agreement with the claim that parsers of the
sort characterized by Marcus (1980) can analyze English — though this was not known until the result
by Nozohoor-Farshi (1986, 1987), which showed that Marcus’s parsers for transformational grammars
could only recognize CFLs.

Even more surprisingly, it is in tacit agreement with nearlyall of the GB literature of the 1980s,
though this was not known until Rogers 1998 pointed out that all of the content of GB theory seemed to
be expressible in the form of MSO constraints on trees.

Various bases for thinking English cannot be a CFL have been presented in the literature of the last
fifty years. It was once thought that unbounded dependencieswere sufficient to raise doubts, but Gazdar
(1981) showed very clearly that this was not likely to be a stumbling block, at least for English (it seems
that some Scandinavian languages may be a different matter).

There has not been any convincing argumentation regarding the CFLs as too small a class to allow
for the description of English. Pullum and Gazdar 1982 demonstrated the failure of all the best known
arguments. Pullum 1985b; 1985a dispatched two others. Alexis Manaster-Ramer came up with what at
first appeared to be a convincing argument based on the apparent phrasal reduplication in the construc-
tion illustrated byCold War or no Cold War(though he did not offer any detailed discussion), but Pullum
and Rawlins 2007 have recently shown that on closer examination the argument is not at all convincing.

There is thus good reason for linguists to continue to take aninterest in the wealth of syntactic
theories that (whether by accident or design) endorse the claim, because while it is compatible with
interesting and plausible descriptions of the system of unbounded dependencies in English and the co-
ordination possibilities of the language, it also meshes inwell-understood ways with a very large body
of work in computational linguistics concerning context-free parsing.

There do seem to be some human languages that, considered as stringsets, do not correspond to
CFLs (Shieber 1985). But it should be kept in mind that it follows from Theorem 13 of Rogers 2003
that non-context-free stringsets describable by tree adjoining grammars (TAGs) can be described using
MSO constraints on the ‘3-dimensional’ tree-like structures described there. There is thus no problem
of principle about providing MTS descriptions of at least some kinds of non-CFL stringsets using MSO
on tree-like models. The question is just when and for what such descriptions will be needed. What we
have just seen is that such additional power will apparentlynot be needed for anything that is expressible
in terms of the theory we can take to be implicit inCGEL.
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