
Animal Pattern-Learning Experiments: Some Mathematical Background∗

Geoffrey K. Pullum and James Rogers
Radcliffe Institute for Advanced Study, Harvard University

Putnam House, 10 Garden Street, Cambridge MA 02138

1 Introduction

A number of recent studies on the learning of invented
patterns in symbol sequences by animals such as cotton-
top tamarins (Hauser, Chomsky & Fitch 2002:1578; Fitch
& Hauser 2004; Hauser 2005; O’Donnell, Hauser & Fitch
2005), songbirds (Gentner 2005), and undergraduates (Fitch
& Hauser 2004; Perruchet & Rey, in press) have shown in-
terest in the contrast between two classes of sets of strings:
the finite-state and the context-free. The claim of Fitch &
Hauser (2004) is that tamarins can learn characteristic finite-
state string patterns but not those that are context-free, while
humans can learn both. Perruchet & Rey dispute the latter
claim about humans; Gentner suggests that starlings show
signs of being able to learn distinctively context-free patterns
of recursion (self-embedding); and so on.

Showing that a mechanism can learn some stringset in a
certain class does not, of course, show that it can learn every
stringset in that class (unless that stringset is complete for
that class in the technical sense of computational complex-
ity theory). But it is possible to provide evidence that the
learnability boundary for some learning mechanism (the line
between the stringsets it can and cannot learn) may fall be-
tween two hierarchically related stringset classes. One could
do this by utilizing a pair of stringsets: one in the stronger
(larger) class which cannot be learned (showing that not all
stringsets in the stronger class are learnable) and one in the
weaker (smaller) class which can be learned (showing that at
least one stringset in the weaker class is learnable).

But one would want to find a pair of stringsets that were
relatively close to each other with respect to the hierarchy.
One would not, for instance, choose a finite stringset and
a strictly context-sensitive stringset if the aim was to find
evidence that some mechanism could learn context-free but
not context-sensitive stringsets.

∗This is the draft of January 25, 2006. It is being circulated to a few
interested scholars in relevant fields, but has not at present submitted for
publication. Please contact the authors — gpullum@radcliffe.edu and
jrogers@radcliffe.edu — before citing or quoting this paper. Com-
ments will be welcomed. Our work has been partially supported by
the Radcliffe Institute for Advanced Study at Harvard University. We
are grateful to Marc Hauser, Gary Marcus, Andrew Nevins, and Tim
O’Donnell for relevant conversations and correspondence. Special thanks
to Jean Davidson, Gerald Gazdar, Andràs Kornai, Barbara Scholz, Stu-
art Shieber, Dmitri Tymoczko, and Tom Wasow, who read earlier drafts,
made substantive contributions, spotted errors, and supplied critical
comments. They deserve credit for many improvements but bear no
responsibility for any shortcomings.

In at least some of these studies, the boundary be-
tween finite-state and context-free stringsets is explored using
stringsets that are not good exemplars of the former class.
This appears to be a result of the mistaken assumption that
the finite-state stringsets are at the lowest level of the relevant
hierarchy, hence the smallest class of stringsets that needs to
be considered. But the finite-state stringsets are by no means
the smallest relevant stringset class. There are infinite hierar-
chies of interesting classes with general mathematical charac-
terizations and operational characteristics that are potentially
interesting from a cognitive perspective, each containing in-
finitely many infinite stringsets, and each a proper subset of
the finite-state class. Some of these classes are learnable in
the specific formal sense defined by Gold (1967).

Moreover, in some of the cited studies the experiments are
apparently designed to distinguish the ability to learn strictly
local relationships from the ability to learn unbounded or
‘long-distance’ dependencies. But this distinction does not
correspond to the distinction between the finite-state and
context-free stringsets. First, strict locality characterizes only
a very weak subclass of the finite-state stringsets. Second,
finite-state stringsets can exhibit clearly unbounded depen-
dencies.

That these points are not better known may be due to the
fact that so few mathematical studies were done on proper
subclasses of the finite-state stringsets in the early years of
formal language theory. The situation changed radically dur-
ing the 1960s, though (as noted by McNaughton & Papert
1971:xiii). The stringset classes that are proper subclasses
of the finite-state are now fairly well understood. An under-
standing of their properties would appear to be highly rele-
vant to the work on animal learning of regularities, and thus
perhaps to broader studies of animal precursors of the human
ability to recognize grammaticality over indefinitely large sets
of expressions.

Our goal in this paper is to provide an introduction to some
interesting proper subclasses of the finite-state class, with par-
ticular attention to their possible relevance to the problem
of characterizing the capabilities of language-learning mecha-
nisms. We survey a sequence of these classes, strictly increas-
ing in language-theoretic complexity, discuss the character-
istics of the classes both in terms of their formal properties
and in terms of the kinds of cognitive capabilities they corre-
spond to, and suggest contrasting patterns which could serve
to distinguish the adjacent classes in language learning exper-
iments.

1

We also note that the sense in which ‘recursion’ may be
thought of as distinguishing finite-state from context-free
stringsets is much more subtle than seems to be normally
assumed.

2 Preliminary overview

We begin with a brief and somewhat psychology-oriented
overview, in the hope that the reader will find it useful to
have a non-mathematical, intuitive introduction to the classes
of stringsets we are concerned with, stating up front what
we take to be the key features that might have psychological
relevance. The main classes of stringsets we deal with are
these (we proceed from weaker to stronger classes):

— The strictly local (SL) stringsets are described solely
in terms of adjacency relations — which fixed substrings
are allowed to be immediately next to which other fixed
substrings. (For each number k, there is a class of strictly
local stringsets in which the maximum length of the men-
tioned substrings is k symbols.) In terms of psychology,
these stringsets have a clear connection with the capacity
to associate immediately adjacent stimuli — not neces-
sarily to recall whether a certain stimulus was present
at all, but to recognize a pair of stimuli when they are
presented together in sequence.

— The locally testable (LT) stringsets include all the
strictly local ones together with those that can be de-
fined out of them through the set-theoretic operations of
union (the union of two sets contains every string that
is either in the first or in the second), intersection (the
intersection of two sets contains every string that is both
in the first and in the second), and complement (the
complement of a set over some vocabulary contains ev-
ery string over the same vocabulary that is not in that
set). In terms of psychology, this turns out to correspond
to the capacity to verify that a certain stimulus contains
some perceptible element at some point. (This is not
nearly so easy to see, but it will become clearer as we
proceed.)

— The star-free (SF) stringsets include all the locally
testable stringsets together with all those that can be
defined from them by means of four operations: union,
intersection, complement, and concatenation. (The op-
eration of concatenation on two stringsets LA and LB

forms the set LALB of all strings that have a first part
from LA and a second part from LB .) The corresponding
psychological ability is the capacity to recognize that a
certain stimulus occurred at least n times for some fixed
number n — counting only up to some constant limit and
thereafter losing track.

— The finite-state (FS) stringsets include all the star-free
stringsets plus those that can be defined out of them
through the operation of repeating substrings arbitrarily
many times (the operation that forms from a set A the

set of all strings consisting of zero or more concatenated
elements of A is referred to here as asteration). The psy-
chological ability that is added when we move from the
star-free to the finite-state is essentially the ability to do
modular arithmetic: to recognize that a certain stimulus
occurred exactly n times in excess of some multiple of a
modulus m (as in the way clocks count hours) — that is,
to be able to count up to a set threshold and then re-set
the counter and start again.

— The context-free (CF) stringsets are a well-known
proper superset of the finite-state stringsets that allow
for what can be computationally modeled by operations
on an unbounded-depth pushdown stack memory. (Un-
like finite-state automata, pushdown automata do not
have a fixed finite bound on the amount of working mem-
ory needed for computations.) Context-free stringsets
have sufficient expressive power to cover such operations
as integer addition in unary notation (for instance, the
set of all strings like ‘1+1=11’, ‘1+11=111’, ‘11+1=111’,
‘11+11=1111’, and all others where the third block of 1
symbols is as long as the first two joined together, can
be described with a context-free grammar.)

Fleshing out these intuitive characterizations so that their
potential cognitive implications can be seen more clearly is the
purpose of the following sections, in which we offer a catalogue
of formal language theory results pertaining to the stringset
classes that fall below the finite-state in the hierarchy. We
attempt to minimize notational technicalities, and we keep the
overall structure modular enough that the reader will be able
to skip technical details of one subsection without rendering
the next unintelligible. But we do make use of a number of
standard notations from elementary logic and formal language
theory. We write:

— ‘iff’ for ‘if and only if’;
— {w | φ(w)} for the set of all strings w such that the

condition φ(w) holds;
— #a(w) for the number of as in the string w;
— ε for the unique ‘empty’ string of zero length;
— ab for the string consisting of a followed by b;
— an for a string of n successive as;
— (ab)n for n successive ab sequences;
— {a, b}∗ for the asteration of {a, b}— the set of all strings

consisting of those symbols (any length, ≥ 0), and
— {a, b}+ for the positive asteration of {a, b} (all strings

with length ≥ 1).

For the asteration of a singleton set we often omit set brackets;
so we may write a∗ for {a}∗ or (ab)+ for {ab}+.

Other notations will be explained as we come to use them.
Notice that although we maintain a terminological distinc-
tion between stringsets, classes of stringsets, and hierarchies
of classes, this is purely for expository purposes. Mathemati-
cally, all of our classes and hierarchies are just sets (hierarchies
being ordered by proper inclusion).

2

3 Strictly Local

We begin with a highly limited class of stringsets, one that
really is limited to purely local dependencies in strings (as
the finite-state stringsets are not): the strictly local (SL)
stringsets. These are defined by reference to dependencies
that are purely local in the sense that the only thing men-
tioned in describing them is the composition of their strings
in terms of fixed-length substrings. They provide a formal
reconstruction of a notion that will be familiar to anyone who
knows the history of 20th-century psychology: the strict as-
sociationism that takes learning to be simply a matter of be-
coming sensitized to which sensorily perceptible phenomena
occur in temporal proximity to which others — a process of
coming to associate two stimuli if they regularly occur adja-
cently. An animal that could learn to recognize patterns in
symbol strings only if they were definable in SL terms could
indeed be said to be limited to strictly local dependencies,
in a sense that can be made quite precise (we return to the
implications of this point in section 8).

Hauser, Chomsky & Fitch (2002:1577) may be alluding to
the SL class when they say:

At the lowest level of the hierarchy are rule systems
that are limited to local dependencies, a subcate-
gory of so-called “finite-state grammars.” Despite
their attractive simplicity, such rule systems are in-
adequate to capture any human language.

The SL stringsets are, indeed, a very limited proper subset of
the finite-state stringsets.

3.1 Definition

A strictly local stringset over a vocabulary Σ is a subset of Σ∗

that is fully describable by means of a finite list Γ of strings
not longer than some upper length limit k. In order to belong
to the stringset that Γ describes (the stringset that we denote
by L(Γ)), a string in Σ∗ must consist wholly of substrings in
Γ. The sequences appearing in Γ (and the substrings against
which they are matched) are often called factors (since formal
language theorists write a · b or ab to denote a followed by b,
and a3 for three as concatenated together, the same notation
used in algebra for multiplication). By definition, every k-
length substring of every string in L(Γ) is a member of Γ.

Permitting reference to beginnings and ends of strings in
Γ can be accomplished in various ways, but here we will add
two pseudo-symbols (intuitively, end-markers) to the symbol
set: o for the beginning and n for the end. Hence Γ will
actually be a set of strings over Σ∪{o,n}, with o occurring
only initially and n occurring only finally. A string ow means
that a string in the stringset being defined may begin with w;
and zn means that a string may end with z. There is no other
determinant of grammaticality for a stringset that is strictly
k-local other than that every substring of length k must be
on the list of factors.

We can distinguish more finely among the stringsets in SL.
There are actually infinitely many distinct stringset classes

making up SL, because for each limit k on factor length there
is a different class of stringsets — the class of strictly k-local
stringsets for that choice of k, denoted by SLk. A description
of an SLk stringset is simply a finite set of factors each no
more than k symbols in length. The class SL is the infinite
union of all the SLk classes.1

The strings in the description for an SLk stringset divide
into four types:

(1) σ1 · · ·σk (a string of k symbols)
oσ1 · · ·σk−1 (the left end-marker plus a string of

k − 1 symbols)
σ1 · · ·σk−1n (a string of k − 1 symbols plus the

right end-marker)
oσ1 · · ·σi︸ ︷︷ ︸

i≤k−2

n (a string of not more than k−2 sym-
bols flanked by the two end-markers)

Letting Fk(w) denote the set of k-factors occurring in the
string w, the stringset licensed by an SLk description Γ is:

(2) {w | Fk(own) ⊆ Γ}

Setting k = 1 gives a degenerate case where we cannot de-
fine a grammaticality distinction at all. If both endmarkers
are included in Γ, all strings over the symbols mentioned in
Γ are defined as grammatical (so over that vocabulary every-
thing is grammatical); if either endmarker is missing we get
the empty stringset ∅ (i.e., nothing is grammatical); and there
are no other possibilities.

The smallest non-degenerate case is where k = 2, giving the
strictly 2-local stringsets, SL2. These could be called the
bigram stringsets, since their descriptions are simply sets
of bigrams — two-symbol factors that are stipulated to be
permissible subsequences of strings.

3.2 Abstract characterization

The following theorem provides a characterization of the class
SL in terms of a property of strings:

(3) Definition: Suffix Substitution Closure
A stringset L is strictly local (SL) iff there exists some
k ≥ 1 such that for all x ∈ Σk−1 and v, w, y, z ∈ Σ∗,
the following holds:

w · x · y ∈ L and v · x · z ∈ L implies w · x · z ∈ L.

That is, the SL stringsets are exactly those for which, beyond
a certain factor length, what can precede a factor is entirely
independent of what can follow it.

That is, in SL stringsets there is a length beyond which
the description is unable to impose conditions on both what
precedes a factor x (of the necessary length, k − 1 symbols
long for a stringset in SLk) and what follows it; so it allows
anything that can precede v to co-occur with anything that
can follow.

1Strictly speaking we didn’t define infinite unions. But we don’t really
need to appeal to them, because we could just say SL = {L | ∃k ≥ 2[L ∈
SLk]}.

3

Thus all you have to do to prove a stringset is not SLk is
to find two strings wxy and vxz (x being k− 1 symbols long)
that are in the set, where wxz does not belong. The following
facts suffice to show that the set E of strings of words that
are grammatical in English cannot be SL2:

(4) a. I absented myself.
b. You absented yourself.
c. *I absented yourself.

Let w = I, x = absented, y = myself, v = You, z = yourself.
Since (4a) and (4b) show that wxy and vxz are in E, wxz
should be too if the set is SL2; but (4c) indicates that it is
not. Therefore E is not SL2.

3.3 Canonical example of non-membership

The hallmark configuration that guarantees a stringset will
not be SL is for there to be some required factor that must
occur in strings arbitrarily far from the ends. For example,
the set denoted a∗(ba∗)+ is a very simple finite-state stringset
containing all and only those strings over {a, b} that contain
at least one b, but it has no SLk description for any k. The
apparently simple notion ‘contains a b’ is not expressible.

Given that every English transitive clause contains a verb,
and given that both subject and object noun phrases may be
arbitrarily long, and the verb must lie between them, we now
know that the set of English clauses, conceived as a stringset,
is not SLk for any k. To see this, take a transitive verb V and
a noun phrase N , where N is at least k − 1 words long and
can function either as the subject of or as the direct object of
V . Since N can start a clause with V as its verb, and it can
end such a clause, an SLk description will wrongly permit a
transitive clause to consist of just N on its own. (In this case,
w = ε, x = N , y = V ·N , v = N · V and z = ε.) But a noun
phrase on its own is not a transitive clause. Hence the set of
transitive clauses in English is not SL.

3.4 Hierarchies

There are infinitely many strictly k-local classes of stringsets:
the bigram stringsets (SL2), the trigram stringsets (SL3), and
so on. Each is properly included in the next one up: SL2 (
SL3 (· · ·SLk (SLk+1 (· · ·. The class SL is the infinite
union of all of them: SL = SL2 ∪ SL3 ∪ SL4 · · ·.

The relation between the SL stringsets and the finite ones
is slightly subtle. The class Fin of finite stringsets is a proper
subset of SL, but not of SLk for any k. Nonetheless, for any
given finite stringset L you can find some k such that L is
strictly k-local. That is, both the following are true:

(5) a. There is no length limit k such that Fin is a subset
of SLk.

b. For every stringset L in Fin there is a length limit
k such that L is in SLk.

A corollary of this is that for every k we can find finite sets
of strings with no strictly k-local description. For example,

{abc, cba} is a two-member finite set that has no bigram de-
scription and thus is not in SL2.

4 Locally Testable

We turn now to a class of strictly more complex stringsets, the
locally testable or LT stringsets. They are straightforwardly
definable from the SL class.

4.1 Definition

The locally testable (LT) class of stringsets is the closure of
the strictly local class under the boolean operations. That is,
every SL stringset is in the class LT, and so is every stringset
that can be formed by taking the union of two stringsets in LT,
the intersection of two stringsets in LT, or the complement of
a stringsets in LT. We can use this as our basic definition:

(6) Definition: Locally Testable
The class of locally testable (LT) stringsets is the
smallest class that (i) contains every SL stringset, and
(ii) is closed under the operations of union of two sets
in the class, intersection of two sets in the class, and
complement of a set in the class.

Again we have an infinite hierarchy of stringset classes: for
each k, the class LTk is the closure of SLk under the boolean
operations. The class LT is the union of all the LTk (that is,
LT =

⋃
k[LTk]).

4.2 Example

An example of an LT stringset that is not SL is a+(ba+)+, a
minor variation on the example of Section 3.3. This is the set
of strings in {a, b}+ in which in which at least one b occurs,
and b always occurs alone, preceded and followed by at least
one a. This set is LT (in fact LT2), because it is the intersec-
tion of three SL2 sets: (i) the set of strings in {a, b}+ which
both start and end with a; (ii) the set in which bb does not
occur (an SL2 description can simply permit all pairs of as
and bs except for bb); and (iii) the set in which ab does occur
(SL2 in virtue of being the complement of the set in which ab
does not occur). But it is not SLk for any k, since a ·ak−1 ·bak

and akb · ak−1 · a are both in the set but a · ak−1 · a is not.

4.3 Abstract characterization

The following statement provides an abstract characterization
of the LT class.

(7) Definition: Local Test Invariance
A stringset L ⊆ Σ∗ is LT iff there exists some k > 0
such that for all strings w, v ∈ Σ∗

(Fk(own) = Fk(ovn)) ⇒ (w ∈ L⇔ v ∈ L).

This says that a stringset is LT iff there is a number k such
that membership of a string in the set is determined solely by

4

which k-factors occur in the string. Any two strings that share
the same set of k-factors will either both be members of the
set or both be non-members. Notice that every LT stringset
must be LTk for some finite number k, and the definition
asserts the existence of that k.

4.4 Canonical example of non-membership

It is impossible to ensure in an LT stringset that some factor
occurs at least n times for some n > 1, while allowing each
instance to occur arbitrarily far apart and arbitrarily far from
the ends of the string. So this stringset (the set of all strings
over {a, b} in which a occurs at least twice) is not LT:

(8) {w ∈ {a, b}∗ | #a(w) ≥ 2}

Likewise, the variants with #a(w) = 2 or #a(w) < 2 are not
LT.

It is also impossible to require two factors to occur in some
particular order if the two may occur arbitrarily far apart and
arbitrarily far from the ends of the string. So this stringset is
not LT:

(9) {u ab v baw | u, v, w ∈ {a, b, c}∗}

4.5 Hierarchies

Again we have an infinite hierarchy of stringset classes making
up the entire class LT:

LT2 (LT3 (· · ·LTk (LTk+1 (· · ·

And again, the relationship to the finite stringsets is not sim-
ple: it is true that L ∈ Fin ⇒ L ∈ LTk for some k, so
Fin (LT. However, there is no k such that Fin ⊆ LTk. Thus
for every integer k ≥ 2, there are finite stringsets that are not
LTk.

The relations between the SL and LT hierarchies are as
follows. For every k, SLk is a proper subset of LTk; but for
no k is SLk+1 a subset of LTk.2 On the other hand, there is
no k such that LTk a subset of SLk+1. In fact it is not even
the case that LT2 ⊆ SL, so for no k is LTk a subclass of SL.3

5 Star-Free

We now define an important proper superset of all of the
classes mentioned so far: the star-free (SF) stringsets.4

We first define the class SF inductively:
2To see this, note that for any k there is an SLk+1 description for

{a, b}∗ − ({a, b}∗{a}k+1{a, b}∗) — the set of all strings over {a, b} with
no string of k + 1 adjacent occurrences of a; but this stringset will not
be in LTk, because the k-length factors of oakbakn are identical with
the k-length factors of oak+1bak+1n.

3This can be seen from the fact that Lab = {a, b}∗{ab}{a, b}∗, the set
of all strings over {a, b} in which ab occurs, is LT2 (it’s the complement
of the set of strings in which ab does not occur). But it cannot be SL,
for this reason: for any choice of k, the string bkabbk cannot belong to
an SLk set unless bk also belongs, so for all k we have a counterexample
to the claim that Lab is SLk; and that means Lab is not SL at all.

4At least two other infinite hierarchies of stringsets are left undis-
cussed here, though it would be appropriate to include them in a fuller

(10) Definition: Star-Free Stringsets (SF). The class of
star-free stringsets over a vocabulary Σ is the smallest
class of stringsets that (i) includes the empty set ∅, the
singleton set {ε} containing the empty string, and for
each symbol a in Σ the singleton set {a}, and (ii) is
closed under boolean operations and concatenation.

(The reader already familiar with finite-state stringsets will
notice how similar this is to the definition of that class. How-
ever, it lacks the mention of closure under the ‘∗’ operation
— hence the name ‘star-free’ — and it includes closure under
complement in the definition.)

There is a straightforward relation between SF and LT.
Closing LT under concatenation and the boolean operations
yields a class of stringsets known under the name k-locally
testable with order (LTOk), and the infinite union of these
for all k is the class LTO. So we have this definition:

(11) Definition: Locally Testable with Order (LTO). The
class of LTO stringsets is the smallest class that con-
tains all the LT stringsets and all those that can be
formed from LTO stringsets by means of the union, in-
tersection, complement, and concatenation operations.

McNaughton & Papert (1971) prove that this gives us exactly
the same class as the previous definition, i.e., that LTO = SF.

5.1 Example

An example of an SF stringset that is not LT is a+ba+. This
is the set of strings in {a, b}+ in which exactly one b occurs.
It is SF since it is the concatenation of the set of strings in
{a, b}+ in which the only b is the final symbol (an SL2 set
licensed by the pairs {oa, aa, ab, bn}) and the set of strings
in which only a occurs (similarly an SL2 set). It is not LTk

for any k since the strings akbak and akbakbak share the same
set of k-factors but the first is a member of the stringset while
the second is not.

By similar analyses, each of the canonical non-LT stringsets
given in Section 4.4 can be shown to be SF.

survey of this material. One has been called the ‘dot-depth hierarchy’.
We start with a base class of stringsets like SL or the even more primitive
‘definite event’ stringsets (in which grammatically is determined entirely
by the content of the last k symbols for some fixed k), and we form the
class of stringsets obtainable by concatenating any two of them, and then
we close under boolean operations. This gives us dot-depth 1. Then we
repeat with the dot-depth 1 stringsets as the base, to obtain the dot-
depth 2 class. An infinite strict hierarchy of stringset classes is obtained.
Another way to go is to generalize the LT capability for recognizing that
a substring x occurs at least once, and replace 1 by a constant k. That
is, we allow for recognizing of a string w that a substring x occurs at
least j times, for j ≤ k. This yields a class of stringsets that are called
‘locally threshold testable’ in Straubing (1994:47) and ‘generalized lo-
cally testable’ in Thomas (1982:372). For each k ≥ 1 there is a class of
k-locally threshold testable (or generalized k-locally testable) stringsets.
Again the hierarchy is strict, and the infinite union of its members for all
k makes up the locally threshold testable (or generalized locally testable)
class that we could call LTT. An interesting model-theoretic characteri-
zation is given by Straubing (1994:46–50) and Thomas (1982:372–373):
LTT is exactly characterized by first-order logic, interpreted on string
models, if there is only one relation symbol and it is interpreted as ‘is
immediately followed by’. All these classes are proper subclasses of the
better-known star-free class to which we turn in this section.

5

5.2 Abstract characterization

It is possible to characterize the same class in a different and
more abstract way, in terms of a direct condition on what
strings they contain and exclude.

(12) Definition: Non-Counting Stringsets. A stringset L
over a vocabulary Σ is non-counting5 iff there exists
some n > 0 such that for all strings u, v, w ∈ Σ∗ and
for all i ≥ 1, the presence of uvnw in L implies that
uvn+iw is also in L.

In other words, in a stringset that is non-counting there is
a threshold length beyond which repeated substrings cannot
be counted: wherever there are n consecutive occurrences of
any substring v, it would also be grammatical to have n + 1
consecutive occurrences of v.

Schützenberger (1965) proves that the non-counting
stringsets are exactly the star-free stringsets. So that yields
a third distinct characterization of the SF class.

5.3 Canonical example of non-membership

A representative example of a kind of stringset that is not in
SF is that of the stringsets in which some factor must occur
an even number of times. Thus the following stringset is not
SF:

(13) {w | w ∈ {a, b}∗ | #b(w) is even}

Notice that there is no number so large that beyond that
number of b tokens divisibility by 2 ceases to matter. However
many occurrences of b may occur in a string in this set, the
same string with one extra b will not be in the set. To define
the set you have to be able to count modulo 2. But in SL
stringsets you can’t count modulo n for any n > 1.

5.4 Model-theoretic characterization

One other distinction of the star-free stringsets that is partic-
ularly important in our view, though we touch on it only very
lightly here. There is a particularly simple way of characteriz-
ing these stringsets using the model-theoretic techniques used
to provide semantics for logical languages.

Strings can be equated with relational structures of the
sort familiar in model theory. A relational structure is a set
of elements D known as the domain together with a set R of
relations onD. Thus a graph is a relational structure: D is the
set of nodes, and there is one relation in R, the relation that
holds between two nodes if they are immediately connected by
a edge in the graph. A string of symbols can be seen as a finite
graph in which the edge relation strictly orders the domain
and a set of unary relations (i.e., properties, one for each
distinct symbol) partition it. Call these string structures.

5The term used in McNaughton & Papert (1971) is ‘counter-free’. We
avoid this term simply because its initials are unfortunately the initials
of the phrase ‘context-free’, which we use frequently below. The term
‘aperiodic’ may also be encountered in the literature.

Consider the string abab. It corresponds to a string struc-
ture with D = {n1, n2, n3, n4} and R = {≺, Pa, Pb}, where ≺
(binary) is immediate precedence (we assume n1 ≺ n2, n2 ≺
n3, and n3 ≺ n4), Pa picks out the as (so it has the extension
{n1, n3}), and Pb picks out the bs (its extension is {n2, n4}).
Various first-order formulae will be true in this structure; for
example, the closed formula ∀x∃y[Pa(x) ⇒ (x ≺ y ∧ Pb(y))]
says that every a immediately precedes an occurrence of b,
and the structure just described satisfies this condition.

For any first-order sentence, there will be some set of finite
string structures that satisfy it. The following remarkable
result about first-order logic on string models was proved in
McNaughton & Papert (1971) (for more modern approaches
to proving the result, see Straubing 1994, Ebbinghaus & Flum
1999, and Libkin 2004):

(14) A stringset is star-free iff it corresponds to the set of
all the finite string structures satisfying some closed
formula of first-order logic.

Thus the star-free stringsets can be characterized exactly by
first-order logic descriptions interpreted on string structures.
And we can put that another way: having the ability to learn
arbitrary star-free stringsets from presented examples would
be tantamount to being able to learn any arbitrary property
of strings that is definable in the first-order predicate calculus.
This would be a truly remarkable ability to attribute to any
animal.

Yet so far we are only talking about the star-free stringsets.
The finite-state stringsets are a superset with a still richer
structure. We now turn to them.

6 Finite-state

The asteration operation permits the definition of a proper
superset of the star-free stringsets, and of all the other classes
just discussed, the finite-state or regular stringsets, first
defined by Kleene (1956) under the name ‘regular events’ (he
was thinking of events in neural nets). These have a large
array of distinct characterizations that have been of enormous
importance in theoretical computer science and continue to be
important in computational linguistics. They are much better
known than the former stringset classes, so we will just very
briefly summarize.

6.1 Definition

The class under discussion can be characterized directly by
means of an inductive definition, using singleton stringsets as
the basis:

(15) Definition: Regular stringsets
The class of regular stringsets over a vocabulary Σ is the
smallest class of stringsets that (i) includes the empty
set, the singleton set containing the empty string, and
for each symbol in Σ the singleton set containing only
that symbol, and (ii) is closed under union, concatena-
tion, and asteration.

6

6.2 Automaton characterization

Now consider the (apparently) quite distinct notion of a
finite-state automaton — the most powerful possible com-
puting device that is finite in every respect including the total
amount of working memory used in computations, and thus
in a sense a model for any physical computing device we can
build in a finite universe.

(16) Definition: Finite-State Automaton.
A finite-state automaton (FSA) is a system of five com-
ponents:

— a finite set Q of states,

— a finite set Σ of symbols,

— a function T from Q× Σ to Q,

— a distinguished start state q0 ∈ Q, and

— a distinguished set of final states F ⊆ Q.

The intuition here is that the automaton corresponds to a
machine that starts in state q0 reading a string of symbols
from Σ on a tape or other ordered digital medium, changing
state as dictated by the function T (if the value of T (qi, σk)
is qj , then reading σk while in state qi makes the machine
switch to state qj). A sequence of states that the machine
goes through while reading a string is called a run, and if it
ends with a state that belongs to F , it is a successful run.
The stringset recognized by an FSA A is A = 〈Q,Σ, T, q0, F 〉
— that is, the set of all and only those strings σ1 . . . σn over
Σ on which A has a successful run.

We call a stringset finite-state (FS) iff there is an FSA
which recognizes it. Kleene (1956) connected the notion of
recognizability by FSA to the class of regular stringsets de-
fined above:

(17) Theorem (Kleene)
The finite-state stringsets (those recognizable by finite-
state automata) are exactly the regular stringsets.

6.3 Example

An example of a finite state stringset that is not SF is (aa)∗.
This is the set of all even length strings containing just a.
That is, it is simply the asteration of the result of concate-
nating two copies of the singleton stringset {a}. To see that
it is not SF, note that, for any n, either the string aana or
aanaa is in the stringset but, in both cases, the result of iter-
ating the a one additional time is not. Similarly, example 13
of Section 5.3 is regular.

6.4 Abstract characterization

There is a more abstract algebraic characterization of the
same class. We start with the notion of Nerode Equivalence,
which is an equivalence relation involving sharing of continu-
ation strings:

(18) Definition: Nerode Equivalence
A string w is Nerode equivalent to u with respect to
a stringset L ⊆ Σ∗, and we write w ≡L u, iff for all
strings v ∈ Σ∗, wv ∈ L⇔ uv ∈ L.

Intuitively, two strings are Nerode equivalent with respect to
L iff they have exactly the same set of possible continuations
in L — any continuation to one of them that would make a
string in L would also work for the other, and any continua-
tion string that would make one of them ungrammatical in L
would do the same to the other. We now define the Nerode
equivalence class of a string w with respect to a stringset
L as the set of all strings u that are Nerode-equivalent to it
(with respect to L):

(19) Definition: Nerode Equivalence Class
The Nerode equivalence class of w with respect to L is
[w]L

def= {u ∈ Σ∗ | w ≡L u}.

So the Nerode equivalence class with respect to L for a string
contains all and only the strings that are Nerode equivalent
to it with respect to L.

Now we can state an additional characterization of the FS
stringsets in terms of how many Nerode equivalence classes
there are (this characterization derives from the results re-
ported in Myhill 1957 and Nerode 1958):

(20) Myhill–Nerode Theorem
A stringset L ⊆ Σ∗ is finite-state iff ≡L partitions Σ∗

into finitely many Nerode equivalence classes.

This says that a stringset over Σ is FS iff its Nerode equiva-
lence relation breaks up the entire universe of strings over Σ
into just a finite number of Nerode equivalence classes. That
will mean that you can make a finite list of the kinds of con-
tinuation string and say for each whether they will lead to
grammaticality or ungrammaticality in L. For example, let
Σ = {a, b} and L = a∗b∗. Then there are just Nerode equiv-
alence classes: (i) strings in a∗ (these can be continued with
with any string in a∗b∗ to yield a string in L); (ii) strings in
a∗b+ (these can be continued with with any string in b∗ to
yield a string in L); and (iii) all other strings (any contin-
uations of these always lead to strings not in L). Since the
number of Nerode classes is finite, L is FS.

6.5 Grammar characterization

Another characterization of the FS stringsets can be given
in terms of a rewriting system or generative grammar. A
rewriting system consists of a finite set N of nonterminals
(categories), a finite set Σ of terminals (symbols or words that
appear in strings), a designated start symbol S that belongs
to N , and a finite set of rules. The regular grammars
are those rewriting systems in which the rules are all of the
following two forms (where X,Y ∈ N , σ ∈ Σ, and ‘→’ means
‘can be rewritten as’):

(21) a. X → σY b. X → σ

7

When a grammar has rules only of the forms shown in (21),
the set of all and only those sequences of symbols in Σ that
can be obtained by starting with S and rewriting according to
rules chosen at random will always be FS, and every stringset
can be described by some grammar of this form. (In fact
such a grammar can be constructed directly from an FSA in
such a way that it will generate the stringset that the FSA
recognizes. It is not too hard to see the similarity between
rules and automaton instructions: a rule ‘X → σY ’ means
that reading σ while in state X makes the machine switch to
state Y .)

Grammars of this sort can also be called finite-state
grammars, and for convenience when quoting Hauser et al.
below, we’ll follow them in using this term, and also the ab-
breviation FSG. The following are two examples of rewriting
rule sets for FSGs:

(22) a. S → aA, A→ aS, A→ a

b. S → aA, S → bS, S → b, A→ aS,A→ bA,A→ a

The grammar with the rules in (22a) generates all and only
the even-length strings of repetitions of a. The rules in (22b)
generate all and only the strings over {a, b} with an even
number of a occurrences. Those stringsets are thus shown to
be FS.6

6.6 Canonical example of non-membership

The classic case of a configuration that identifies a stringset
as not being FS is that of a dependency between a certain
number n of symbol occurrences that need to be matched
by exactly n occurrences of another symbol elsewhere in the
string. The simplest such case is {anbn | n ≥ 0}, for which the
syntactic requirement is simply that there be n occurrences
of a followed by exactly the same number of bs. The Nerode
equivalence relation for this stringset yields infinitely many
equivalence classes (in fact every string of the form aibj is
in its own unique equivalence class: if aibjw is in the set for
some i, j ≥ 0 and so is aibju, then w = u), so by the Myhill–
Nerode theorem it cannot be FS. Other examples of non-FS
stringsets include the set of palindromes over a given vocab-
ulary or alphabet (the strings that read the same forwards as
they do backwards), and the set of non-palindromes.

6.7 Model-theoretic characterization

As with the star-free stringsets, the FS stringsets have a log-
ical characterization that we will state without detailed dis-
cussion. It makes reference to weak monadic second-order
logic (wMSO), which is like first-order predicate calculus ex-
cept that there are additional variables for quantifying over

6 We are now in a position to provide something that we did not
provide in section (3) because we had not introduced grammars: we can
give a simple grammar characterization for the SL2 class. A regular
grammar generates an SL2 stringset iff the relation ‘is followed by in
some rule’ on the symbol set is a function — that is, if for any given
terminal there is at most one nonterminal that can follow it in the right
hand side of a rule.

finite sets of elements of the domain. Büchi (1960) proved the
following theorem:

(23) A stringset is finite-state iff it corresponds to the set
of all the finite string structures satisfying some closed
formula of weak monadic second-order logic.

Again, then, what this means is that being able to learn arbi-
trary FS stringsets from presented examples would be tanta-
mount to being able to induce any arbitrary property of strings
that can be defined in weak monadic second-order logic. This
seems to us extraordinarily unlikely for any species of animal.

7 Identification in the limit

There is one obvious, very specific sense in which it is certainly
impossible to have a general capacity to learn FS stringsets:
the class FS is not ‘identifiable in the limit from text’ in the
technical sense of Gold (1967).

Identifying a stringset in this context is trivial: to identify
a stringset is simply to output a description for it. So every
r.e. stringset can be identified instantly by an algorithm: if
G is a grammar that generates L, an algorithm which simply
outputs G is an algorithm that identifies L. Matters only
become non-trivial when we talk about classes of stringsets,
and the question posed is whether some procedure can detect
for any stringset in the class which stringset it is, and identify
it by (for example) naming a generative grammar for it.

A class L of stringsets is identifiable in the limit from text
iff there exists a single mechanical procedure meeting this
condition: When presented with an infinite sequence of strings
from an arbitrary target stringset L in L— that is, a sequence
that contains each string in L at some point (possibly with
repetitions) — produces a sequence of ‘guesses’ at the correct
description for L (one after each presented string), guaranteed
to converge after a finite amount of time on a correct guess
— a fully accurate description of L — and never diverge from
it after that, no matter what further strings are presented.

Gold’s proof that the FS class is not identifiable depends on
an elementary fact about the class: it is superfinite, which
means it contains every finite stringset over Σ plus some infi-
nite ones as well. His theorem to the effect that no superfinite
class is identifiable in the limit from text implies that the SF,
LT, and SL classes aren’t identifiable either. Notice, though,
that his proof does not go through for the SLk or LTk class
given some fixed k, because each such class excludes some
finite stringsets.

In fact it is easy to see that for any k, there is an algorithm
that can be guaranteed to eventually identify from text the
correct description for any SLk stringset. The procedure is
just to keep recording k-length factors and adding them to the
current guess at what the right description is. For example,
if the SL3 identification algorithm were presented with the
string abba, it would add to its currently guessed description
the factors oab, abb, bba, and ban, and guess that the result
is correct. The set of factors will simply grow until all the
right factors are in the description, and if the algorithm is

8

presented with a text in Gold’s special sense then eventually
the set of factors will be the correct one, and from then on it
will not undergo any further changes (because it will already
contain every 3-length factor of every string in the set). For
more detail on this see Garćıa & Vidal (1990).

The LTk class turns out also to be learnable from positive
data for any fixed k, although the matter is more complex;
see Garćıa and Ruiz (2004).

No animal is going to learn patterns by identifying
stringsets in the manner suggested by Gold’s paper, which
involves a brute force procedure of working methodically
through an enumeration of an entire (typically infinite) class
of grammars, ruling them out one after another until the right
one is found. His method was never intended to emulate a
learning process; it is a tool for showing that in principle suc-
cessful learning processes for the class do exist (or that they
don’t). But for any experimenter on pattern learning by ani-
mals it is worth keeping in mind what we know about this area
so far. For every fixed k, the entire class of stringsets with
SLk descriptions is identifiable, so we know that in that sense
we are in the realm of stringsets for which inductive learning
is possible in principle. The same is true for LTk. But for the
classes SL, LT, SF, FS, and classes higher in the hierarchy,
learning in the sense of identification in the limit from text —
roughly, effective induction on the basis of a finite sequence
of exemplars — is impossible in principle.

8 Iteration, recursion, and infinitude

There is a misconception found in the literature to the effect
that the finite-state stringsets allow for only local relation-
ships and cannot accommodate long-distance dependencies
between symbols. In Fitch & Hauser (2004) we read:

The weakest class in [the Chomsky] hierarchy are
finite state grammars (FSGs), which can be fully
specified by transition probabilities between a finite
number of ”states” (e.g., corresponding to words or
calls). . . . In addition to concatenating items like
an FSG, a PSG can embed strings within other
strings, thus creating complex hierarchical struc-
tures (“phrase structures”), and long-distance de-
pendencies.

Set aside the fact that standard FSGs do not depend on or
keep track of probabilities; that is just a matter of replacing
probabilities (real values between 0 and 1) with possibilities
(0 or 1). However, it is not true that the states in an FSA or
the nonterminals in an FSG correspond to words or symbols
in a string. An automaton may be able to move to any of a
number of different states on reading a certain symbol, and
may have many different symbols that it can read while in
a given state.7 It is also not really true that FSGs do not

7If an FSG meets the condition mentioned in footnote 6, however,
then in a sense the states do correspond to terminals — for a given ter-
minal there is only one state that can be next. This is another indication
that although Fitch & Hauser talk about FSGs, they may tacitly have
SL stringsets in mind.

just “concatenate items”; crucially, they can iterate on se-
quences. In consequence, complex strings can be embedded
within other strings, and complex unbounded dependencies
may hold.

For example, Pullum & Gazdar (1982) point out that a
finite-state grammar can easily describe an infinite subset of
English in which fronted wh-phrases agree with verbs arbi-
trarily far away from them, as seen in the contrast between
such pairs as these:

(24) Which girls do they think that you think that he thinks
(. . .) were responsible?

Which girl do they think that you think that he thinks
(. . .) was responsible?

The finite-state stringsets are in fact a very rich and di-
verse class. Imagine setting an animal (or indeed, a human
being) the task of learning the pattern shared by the following
strings:

(25) lo me la
lu me lu
lo ki ki la
lu me ki ki lu
lo me ki me ki la
lu me me ki ki lu
lo me ki me me ki me la
lu me me ki me ki me lu
lo ki me me ki me ki me ki me la
lu me ki ki me me ki me ki me lu
lo me ki me me me ki me ki me ki me la
lu me me ki me me me ki me me ki me ki me lu
· · ·

Here is the intended solution: these strings are all of the form
lo · · · la or lu · · · lu where ‘· · ·’ is a sequence of arbitrary length
(n.b., an unbounded dependency) composed of ki and/or me
in which the count of (not necessarily adjacent) tokens of ki
is exactly divisible by 2. It seems highly unlikely that any
animal would be able to learn this pattern. But the infinite
stringset it characterizes is finite-state: if we let

R = ({me}∗ · {ki} · {me}∗ · {ki} · {me}∗)∗

then the stringset in question is the union of {lo} · R · {la}
and {lu} ·R · {lu}, which is easily seen to meet the definition
of regular stringsets in (15).

The most important contrast studied in recent animal
experimentation on stringset learning, particularly with re-
spect to cotton-top tamarins, has been the contrast be-
tween stringsets isomorphic to (ab)+ (containing strings like
abababab) and stringsets isomorphic to {anbn|n ≥ 1} (con-
taining strings like aaaabbbb). The former has been taken to
be typical of the FS stringsets, and the latter of those that
are CF. But as we have seen, the finite-state stringsets are a
nowhere near the bottom of the hierarchy of stringset classes.
And (ab)+ is in all of the classes we have discussed, all the way
down to SL2. (A bigram set that defines it is {oa, ab, ba, bn}.)

9

So it can hardly be thought a representative member of the
class of finite-state stringsets. There is no reason to think,
simply on the basis that an animal has been shown to be ca-
pable of recognizing a pattern like (ab)+, that it is capable
of learning anything beyond strictly 2-local sets, a very lim-
ited class of stringsets indeed. Far from being an established
lower bound, the finite-state stringsets might be far and away
beyond the animal’s learning capacity.

Similarly, the CF stringsets, as a class, may be far and
away beyond the learning capacity of human beings. The
class of CF stringsets includes such stringsets over {a, b, c}
as the following (and of course infinitely many others, some
much more complicated):

(26) {w1 · · ·wk | ∀i ≤ k ∃n ≥ 0[(wi = anbn) ∨ (wi = bncn)]}
(all and only those strings made up of consecutive substrings

each composed either of zero or more as followed by an equal

number of bs or of zero or more bs followed by an equal

number of cs)

(27) {cw1c · · · cwkc | ∀i ≤ k[#a(wi) = #b(wi)]}
(all and only those strings composed of an arbitrary number

of c-separated substrings over {a, b} each having a number

of a occurrences equal to the number of b occurrences)

(28) {xcy | x ∈ {a, b}∗ ∧ y ∈ {a, b}∗ ∧ x 6= y}
(all and only those strings in which nonidentical initial and

final substrings over {a, b} are separated by a single c)

Whether humans could be said to be capable of learning pat-
terns of arbitrary CF types such as these has not been inves-
tigated.

Fitch & Hauser (2004) do report success in teaching college
students to recognize the pattern {anbn | n ≥ 1}. Perruchet
& Rey (in press) are skeptical, and claim to have shown that
humans do not in fact learn the pattern involved (as opposed
to spotting which of a very small finite set of strings are the
ones the investigator is concerned with). This seems plausible
to us, in light of the well-known fact that humans find pro-
cessing such patterns is almost impossible for n ≥ 3. Consider
this string, of anbn form:

(29) People people people left left left.

Few English speakers see this as grammatical before the trick
has been explained to them. The trick is to see that left can
mean either “departed” or “‘abandoned”, and people people
left can mean people whom people abandoned. The sentence
in (29) is standardly regarded as grammatical, but mainly
for theoretical reasons. For example, it corresponds to the
perfectly acceptable passive People [who were] left by people
[who were] left by people left, with the fully understandable
meaning “People who were abandoned by people who were
abandoned by people departed.” The standard view is that
expressions like (29) exemplify a structural regularity that the
grammar of English has to permit but that the parsing capa-
bilities of human beings cannot cope with. (A very interesting
non-standard view is provided by Kornai 1985, who regards
it as completely obvious that strings of the form Peoplen leftn

where n ≥ 4 are not grammatical, and provides arguments
that the stringset of English is SF but not LT.)

The stringsets on which Fitch and Hauser (2004) actually
tested both their animals and their human subjects were fi-
nite (and very small) sets — sets with the homomorphic im-
ages {abab, ababab} and {aabb, aaabbb}. There is no language-
theoretic complexity difference here: an SL7 description suf-
fices in each case. It is only the infinite extensions to (ab)+

and {anbn|n ≥ 1}, respectively, that separate them in com-
plexity terms; and they turn out to be separated very widely
indeed.

Hauser, Chomsky & Fitch (2002) appear to hold that the
generalization to infinite extensions is the fundamental hall-
mark of the unique capacity for language differentiating hu-
mans from all other animals. The key notion is “recursion”.
They give nothing detailed about what this means, but on on
p. 1571 they say this about the human faculty of language in
the narrow sense (“FLN”):

All approaches agree that a core property of FLN is
recursion, attributed to narrow syntax in the concep-
tion just outlined. FLN takes a finite set of elements
and yields a potentially infinite array of discrete ex-
pressions.

This suggests that recursion is nothing more than whatever
permits the generation of infinite stringsets on finite vocabu-
laries. They go on to say:

Natural languages go beyond purely local structure
by including a capacity for recursive embedding of
phrases within phrases, which can lead to statisti-
cal regularities that are separated by an arbitrary
number of words or phrases. Such long-distance, hi-
erarchical relationships are found in all natural lan-
guages for which, at a minimum, a “phrase-structure
grammar” is necessary. It is a foundational observa-
tion of modern generative linguistics that, to capture
a natural language, a grammar must include such
capabilities . . .

This suggests that recursion is whatever distinguishes the
non-FS CF stringsets from the FS.

What seems to us to be the standard interpretation of the
term ‘recursion’ in formal language theory is that it refers to
the rewriting of a string φ1Aφ2 so that at a later (not neces-
sarily immediately following) stage it looks like φ1ψ1Aψ2φ2,
where ψ1 and ψ2 are not both empty and A is a nonterminal
that yields terminals in at least some derivations of this sort
and so do at least some of the nonterminals in either ψ1 or
ψ2. In other words, an A constituent is allowed to be properly
contained in another, longer, A constituent.

The property of exhibiting recursion in this sense distin-
guishes grammars that generate infinite stringsets from those
that generate only finite stringsets. As such, it cannot be
characteristic of the distinction between mechanisms that
can learn only FS stringsets and those that can learn CF
stringsets. Both of the regular grammars in (22) are recursive

10

in this sense. Indeed, the same is true for every grammar for
a non-finite SL stringset.

The notion of recursion that actually distinguishes regular
from CF stringsets is the property called ‘self-embedding’ in
Chomsky (1959). Self-embedding involves derivations that go
from φ1Aφ2 (not necessarily directly) to φ1ψ1Aψ2φ2, where
neither ψ1 nor ψ2 is empty and A yields terminals in at least
some derivations of this sort and so do at least some of the
nonterminals in both ψ1 and ψ2. Self-embedding could be said
to set up potentially unbounded dependencies: a grammar
with the rules S → aSb and S → ab produces derivations like

S aSb aaSbb aaaSbbb aaaabbbb

in which for each j ≥ 1 it could be said that the presence of a
b at a position j symbols to the right of the middle of a string
in the set depends on there being an a at a position j symbols
to the left of the middle, with no upper bound on j, and thus
no upper bound on the distance between the two.

But the presence of self-embedding in a grammar is not in
itself a sufficient condition to yield a non-finite-state stringset.
Consider a CF grammar containing (at least) these rules:

(30) a. S → ABC
b. A→ a
c. B → bBb
d. B → bB
e. B → b
f. C → c

Such a grammar has the self-embedding property. It not only
embeds phrases within phrases, it embeds phrases labeled B
within larger phrases labeled B, with material both to the left
and to the right (notice rule c), and non-trivially so, since all
nonterminals yield terminal strings. Certainly this grammar
can be said to allow for configurations that are “separated by
an arbitrary number of words or phrases”: every well-formed
string must begin with a that is followed by a final c, with in-
definitely many bs between (an unbounded dependency). Yet
(as the reader can determine by a little experimentation with
bigrams) the stringset generated by this grammar (the con-
catenation of {a}, {b}+, and {c}) is not just finite-state but
in fact SL2. We do not offer this as an important or surprising
fact; we are merely underlining the point that notions like ‘re-
cursion’, ‘embedding’, and ‘unbounded dependency’ need to
be much more carefully defined than they have been in some
of the recent literature.

The condition on CF grammars that guarantees that a
stringset will not be finite-state is that if all the CF grammars
for some stringset have the self-embedding property, then the
stringset is not FS. This turns out to be a particularly difficult
condition to work with. It is true that often one can prove
of a stringset either that it is FS (and hence does not require
self-embedding) or that it is CF (and hence does require it);
but there is no algorithm for determining whether arbitrary
CF grammars generate FS stringsets or not. That is, whether
a given CF stringset has a non-self-embedding grammar is not
algorithmically decidable.

Merely pointing out that recursion “yields a potentially in-
finite array” or allows configurations to be “separated by an
arbitrary number of words or phrases” is not enough to delin-
eate a difference between animal pattern-learning capacities
and human linguistic abilities. Many of the distinctions that
these experiments appear to be designed to illuminate, turn
out, in fact, to be characteristic of distinctions between classes
at the very bottom end of this range. We hope that this brief
survey may inspire some research exploring some of the terri-
tory between SL and the finite-state stringsets.

9 Some criterial contrasts

We close with a short list of crucial cases of stringsets that
distinguish between classes mentioned above, together with
an indication of the cognitive ability to which they intuitively
correspond.

Strictly Local vs. Locally Testable

— While (ab)+ is strictly local, a+(ba+)+ is locally testable
but not strictly local.

— Criterial test pair: an SLk description cannot distinguish
between all cases of akbak and a2k+1, but an LTk descrip-
tion can. That is, acceptance cannot require the presence
of a b unless it occurs within the first or last k stimuli.

— Psychological correlate: ability to recognize that every
a is immediately followed by a b versus ability to detect
that at least one b was present somewhere.

Locally Testable vs. Star-Free

— While a+(ba+)+ is locally testable, a+ba+ is star-free but
not locally testable.

— Criterial test pair: an LTk description cannot distinguish
between all cases of akba2k+1 and akbakbak (it cannot
guarantee that there will only one b), but an SF descrip-
tion can.

— Psychological correlate: ability to recognize whether a b
is present versus ability to recognize whether b occurred
just once, or at most k times for some k > 1.

Star-Free vs. Finite-State

— While the set {a, b}∗ of all strings consisting of a and
b is star-free (despite the star we use for convenience in
denoting it here!), the set

{w | w ∈ {a, b}∗ ∧#b(w) ∼= 0 mod 2}

(which contains all and only the strings consisting of a
and b that have an even number of b occurrences) is finite-
state but not star-free.

— Criterial test pair: a star-free description cannot dis-
tinguish between all cases of (akb)2j+1ak and (akb)2jak;
a finite-state description (e.g., a finite-state automaton)
can.

11

— Psychological correlate: ability to recognize whether b oc-
curred at least k times versus ability to recognize whether
b occurred a number of times that is divisible by some
number n (i.e., to count up to some threshold n and then
reset the counter).

Finite-State vs. Context-Free

— While the set {aibj | i + j ∼= 0 mod 2} of all strings
consisting of an even total of a and b occurrences is finite-
state, the set {aibj | i = j} of all strings consisting of an
equal number of a and b occurrences is CF but not FS.

— Criterial test pair: a FS description cannot distinguish
between all cases of ai−kbi+k and aibi (for all i and for
all k); but a CF description can.

— Psychological correlate: ability to do modulo arithmetic
versus ability to match brackets, or to do arbitrary inte-
ger addition in unary.

Each of these contrasts indicates a point at which some
relevant distinction between cognitive capacities might be lo-
cated, and thus suggests the topic for a potentially rewarding
experiment.

References

Büchi, J. Richard. 1960. Weak second-order arithmetic and
finite automata. Zeitschrift für Mathematische Logik und
Grundlagen der Mathematik 6: 66–92.

Chomsky, Noam. 1959. On certain formal properties of gram-
mars. Information and Control 2: 137–167.

Chomsky, Noam and Marcel-Paul Schützenberger. 1963. The
algebraic theory of context-free languages. In P. Braffort
and D. Hirschberg (eds.), Computer Programming and
Formal Systems, 118–161. Amsterdam: North-Holland.

Ebbinghaus, Heinz-Dieter and Jörg Flum. 1999. Finite Model
Theory. Berlin: Springer.

Fitch, W. Tecumseh and Hauser, Marc D. 2004. Computa-
tional constraints on syntactic processing in a nonhuman
primate. Science 303, 5656 (16 January 2004), 377–380.

Gentner, Timothy Q. 2005. Recursive syntactic pattern learn-
ing in songbirds. Presented at the Society for Language
Development’s Annual Society Symposium on Prerequi-
sites to Language in Animal Cognition, Boston University,
3 November 2005.

Garćıa, Pedro and Enrique Vidal. 1990. Inference of k-
testable languages in the strict sense and applications to
syntactic pattern recognition. IEEE Transactions on Pa-
tern Analysis and Machine Intelligence 12 (9): 920–925.

Garćıa, Pedro and José Ruiz. 2004. Learning k-testable and
k-piecewise testable languages from positive data. Gram-
mars 7: 125–140

Gold, Mark. 1967. Language identification in the limit. In-
formation and Control 10: 447–474.

Hauser, Marc D. 2005. The evolution of the language faculty:
semantics, syntax, and interfaces. Presented at the Soci-
ety for Language Development’s Annual Society Sympo-
sium on Prerequisites to Language in Animal Cognition,
Boston University, 3 November 2005.

Hauser, Marc D., Noam Chomsky, and W. Tecumseh Fitch.
2002. The faculty of language: What is it, who has it,
and how did it evolve? Science 298, 5598 (22 November
2002): 1569–1579.

Kleene, Stephen C. 1956. Representation of events in in nerve
nets and finite automata. In Claude E. Shannon and J.
McCarthy (eds.), Automata Studies, 3–42. Princeton, NJ:
Princeton University Press.

Kornai, Andràs. 1985. Natural languages and the Chom-
sky hierarchy. Proceedings of the 2nd European Confer-
ence of the Association for Computational Linguistics,
ed. by Margaret King, 1–7. Facsimile reproduction at
http://acl.ldc.upenn.edu/E/E85/E85-1001.pdf.

Kozen, Dexter. 1997. Automata and Computability. Berlin:
Springer.

Libkin, Leonid. 2004. Elements of Finite Model Theory.
Berlin: Springer.

McNaughton, Robert and Seymour Papert. 1971. Counter-
Free Automata. Research Monograph No. 65. Cambridge,
MA: MIT Press.

Myhill, John. 1957. Finite automata and the representation
of events. WADD TR-60-165, 112–137. Wright Patterson
Air Force Base, Dayton, OH.

Nerode, Anil. 1958. Linear automaton transformations. Pro-
ceedings of the American Mathematical Society 9: 541–
544.

O’Donnell, Timothy J., Marc D. Hauser and W. Tecumseh
Fitch. 2005. Using mathematical models of language ex-
perimentally. TRENDS in Cognitive Sciences 9.6: 284–
289.

Perruchet, Pierre and Arnaud Rey. In press. Does the mas-
tery of center-embedded linguistic structures distinguish
humans from nonhuman primates? To appear in Psycho-
nomic Bulletin and Review.

Pullum, Geoffrey K. and Gerald Gazdar. 1982. Natural lan-
guages and context-free languages. Linguistics and Phi-
losophy 4: 471–504.

Schützenberger, M.-P. 1965. On finite monoids having only
trivial subgroups. Information and Control 8: 190–194.

Straubing, Howard. 1994. Finite Automata, Formal Logic,
and Circuit Complexity. Boston: Birkhäuser.

Thomas, Wolfgang. 1982. Classifying regular events in sym-
bolic logic. Journal of Computer and System Sciences 25:
360–376.

12

