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11

Inessential features and expressive

power of descriptive metalanguages

Geoffrey K. Pullum and Hans-Jörg Tiede

11.1 Introduction

It is natural enough for linguists to think that the features they posit in

descriptions of natural languages are genuine, not spurious – that they reflect

aspects of the subject matter rather than aspects of the machinery invoked in

devising the description or the linguistic theory.

Having seen features like case, gender, number, person, and tense used

repeatedly in describing hundreds of languages, linguists tend to feel that such

features have some inherent connection with the way human languages work,

rather thanwith the way human linguists work. And anyone who has attempted

to describe English syntax would probably feel that features like aux (distin-

guishing the verbs that can be clause-initial in closed interrogative independent

clauses) or wh (distinguishing the relative and interrogative pronouns from

other pronouns) also draw real rather than artefactual distinctions.

But linguists do not always feel this way about all of the rich array of

features posited in current or past work on syntax. Few feel the same way

about devices such as the doom feature, used by Postal (1970) to mark noun

phrases targeted for erasure later in the derivation, or the ‘[�f]’ annotations
that have often been used to draw ad hoc distinctions among constituents

with differing behaviours.

What is the basis of the feeling that we can tell a spurious feature from a

genuine one? Generalized Phrase Structure Grammar (GPSG) and Head-

driven Phrase Structure Grammar (HPSG), for example, posit features such

as slash, marking constituents containing ‘gaps’; bar, indicating the ‘bar level’

of phrasal constituents; subcat, coding the subcategorization of lexical heads

according to the complements they select; and so on. These do not necessarily

strike linguists as having the same kind of status as more traditional features.
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Why (to put it rather flippantly) does one feel so confident that the Cam-

bridge Textbooks in Linguistics devoted to particular features – Corbett (1991)

on Gender, Blake (1994) on Case, Corbett (2000) on Number, and so on – will

never be joined by future books in the series called Slash, or Bar, or Doom?

Linguists are so used to focusing on microproblems and ignoring irrelevant

surrounding complexities that they seldom try to pull together even a partial

list of the syntactic or morphosyntactic features that they are likely to need to

recognize in, say, an analysis of Standard English. But we can get a rough idea

by reviewing the (non-semantic) feature distinctions implicitly or explicitly

appealed to by a comprehensive grammar of the language such as Huddleston

et al. (2002) (henceforth CGEL). Some of these are shown in Table 11.1. (Here

and from now on we give feature names in small caps.)

The terminology for features in Table 11.1 is either traditional (as with case or

gender), or fairly transparent (phrasal, inflectable), or used in works such

as Gazdar et al. (1985) (pform, vform), or adapted from the informal presen-

tation in CGEL (clausetype, hollow). Examples of constituents that would

bear particular values for the features are given in parentheses in the right-hand

column. None of these features seems likely to be dispensable in any fully

explicit grammar of English. But are they all genuine properties of natural

language constituents, or are some of them just artefacts of choices made in

theory construction? This is the question we ultimately address in this chapter.

For our purposes, we can ignore the fact that Table 11.1 takes features to be

n-ary, for various n � 2. It should be obvious to any formally sophisticated

linguist that issues about the arity of features are extremely unlikely to be

interpretable as having empirical implications. Given any description using a

feature with x values (for x � 3), an exactly equivalent description could be

achieved using x unary (privative) features, or a set of n-ary features for any

choice of n (provided 2 � n � x), possibly with some feature co-occurrence

restrictions. (To be exact, the minimum number of n-ary features needed to

keep x distinct subcategories apart is the smallest integer equal to or greater

than logn(x).)

Take clausetype, whichwe can take to have the values Declar (declarative),

Imper (imperative), ClosInt (closed interrogative), OpenInt (open interroga-

tive), and Exclam (exclamative). We could recode it in terms of binary

features, possibly in a way that had some kind of intuitive semantic rationale:

[�interrog] to separate interrogatives from the rest, with [�open] (limited

to [þinterrog] clauses) subclassifying question-expressing clauses as having
open or closed answer sets; [�assertive] to separate the proposition-expres-
sing declaratives and exclamatives from the imperatives; and [�emotive]
(limited to [þassertive]) to separate exclamatives off from declaratives.
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And there would of course bemany other ways to do it, some involving only three

features (since three binary features that cross-classify fully yield 23¼ 8 definable

subsets of constituents).

Ruminations on which set of features to use, and whether they should be

binary, were common in the era of generative phonology. Halle (1957: 67)

treats the proposition that all phonetic features are binary as a scientific

hypothesis, and seeks to support it on the grounds that (i) it does not impair

coverage, (ii) it permits some simplifications, and (iii) it permits an ‘evalua-

tion procedure’ to be devised. But it is logically impossible for reducing n-ary

features to binary ones to impair coverage of any set of facts; and it is

notoriously difficult to bring claims about descriptive simplicity or evaluation

metrics to bear on comparison of theories couched in different theoretical

TABLE 11.1 Some features used in English syntax

Feature name Value range (with examples)

adj-func Normal, AttribOnly, NeverAttrib, PostPosOnly
aux þ (may), � (make)
auxinit þ (May I go), � (I may go)
case Nom (I), Acc (me), DepGen (my), IndGen (mine)
category Noun, Verb, Adj, Adv, P, D, Sbr, Cdr, Intj
clausestruc Main, Content, Relative, Comparative, Verbless, . . .
clausetype Declar, Imper, ClosInt, OpenInt, Exclam
count þ (cup), � (crockery)
definite þ (the), � (some)
ever þ (whoever), � (who)
finiteness þ (that it go), � (for it to go)
det-head þ (this), � (the)
gender Masc (he), Fem (she), Neut (it)
grade Plain, Compar, Superl
hollow þ (to look at _____), � (to look at it)
human þ (who), � (which)
inflectable þ (big), � (enormous)
negative þ (no), � (all)
nform Ordinary, Pron, Dummy-it, Dummy-there
number Sing (woman), Plur (women)
numtype Cardinal (two), Ordinal (second)
person 1st (we), 2nd (you), 3rd (they)
pform By, To, Of, On, . . .
phrasal þ (see it), � (see)
proper þ (Microsoft), � (microscope)
vform Pret, 3sgPres, Pres, Plain, Psp, Ger
wh þ (who), � (he)
wh-type Wh-Interrogative, Wh-Relative
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metalanguages. It seems quite implausible that anything factual could be

discovered about languages that would settle a question about whether

there exists a syntactic feature having more than two values.

We note in passing a point about cross-linguistic identification of features

(discussed in Section 2.3.2 of Corbett, this volume, as ‘the correspondence

problem’). Since features are structurally defined – it is the system of contrasts

between values that defines them, not their names – they are most unlikely to

be cross-linguistically identifiable, except in the rather loose and approximate

semantically based way discussed in CGEL, pp. 31–33. For example, we cannot

determine that some particular feature in a formal grammar of French is to be

equated with some particular feature in a formal grammar of German. Even if

they have the same arity, we do not have a formally precise way of determin-

ing which one to equate with which using formal criteria. And they may not

have the same arity even when they are intuitively similar in semantic terms.

Thus, we have no grounds for formally equating the notion of ‘feminine’

gender in French with what we call ‘feminine’ in German: in French the

feature we call gender is binary (le � la) and in German it is ternary (der �
die � das). At a detailed level, meaning fails to clarify anything: the French

translation of ‘the table’ is la table, the same gender as la personne ‘the person’

and la jeune fille ‘the girl’; but the German translation of ‘the table’ is der

Tisch, a different value from die Person ‘the person’, and different again from

das Mädchen ‘the girl’. So is it der, die, or das that corresponds to French la,

and why, exactly?

The best we can do is to say that the class of French nouns co-occurring

with the la form of the French definite article includes a large number of the

core nouns denoting female humans (as well as thousands of other referents),

and the same is true of the class of German nouns co-occurring with the die

form of the definite article, and in that sense there is a common-sense

semantic rationale for calling both the French la class and the German die

class ‘feminine nouns’ (see Huddleston et al. 2002: 31–33, for some related

remarks).

But there is no hope of rigorous necessary and sufficient conditions being

given for calling some feature value the ‘feminine’ value for an arbitrary

language. And there is no hope of answering questions about whether some

feature in a Minimalist account is to be equated with a feature employed in an

HPSG grammar, or even whether a certain feature in one Minimalist gram-

marian’s analysis is the same one as some other Minimalist is employing.

The specific thesis of this chapter is that distinguishing between the ‘real’

features and the spurious, artefactual, or superfluous features is even more

difficult than might have been thought. We argue that notions like ‘spurious
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feature distinction’ or ‘artefact of the descriptive machinery’ are not really well

defined. This means that linguists’ feelings of distaste or acceptance for particu-

lar features may be based in nothing more solid than personal prejudice.

Our main point is a mathematical one. In making it we shall employ the

methods of what is becoming known as model-theoretic syntax.

11.2 Model-theoretic syntax

Model-theoretic syntax, henceforth MTS, is represented by several different

theoretical frameworks, but only a small minority of theoreticians. The Arc

Pair Grammar of Johnson and Postal (1980) was the first full presentation of

the MTS idea within linguistics. HPSG in its recent versions is another fairly

clear example.

The leading idea is that linguistic expressions – syllables, words, phrases,

etc. – should be represented for theoretical purposes as structures in the sense

familiar from model theory. A structure is simply a set with various relations

and functions defined on it and certain individual constants identified within

it. And an MTS grammar is simply a finite set of statements, formulated in a

logical metalanguage adapted to the statement of descriptions of natural

language structural properties.

Model theory is typically familiar to linguists only through its application

in semantics, but the application we are talking about here is very different. In

semantics, model-theoretic structures are used to make sentence meaning

precise in terms of denotation in a model: the meaning of an expression is

explicated in terms of the set of structures (e.g. possible worlds, or situations)

that are its models. In effect, we fix a particular natural language sentence in

some semantic representational form and consider which structures satisfy it.

The way structures are used in MTS is in a sense the opposite of this: instead

of fixing a sentence and giving it a meaning by specifying what models it has,

we fix a certain structure and consider what statements it satisfies – the relevant

statements, of course, being the metalanguage statements that make up (or

are entailed by) the grammar.

To be more specific, we use a logical metalanguage interpreted on structures

of a certain sort. These structures are taken to be idealized representations of

syntactic form for particular expressions. For any such structure we can ask

whether all of the statements in the grammar are true in it – i.e. whether it is a

model of the grammar. We define a structure as well formed in the natural

language being described iff it satisfies all the statements that make up the

grammar.
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Notice that there is no single MTS framework. MTS is an approach to

formalization. It is possible, in fact, to take a generative grammatical frame-

work and re-formalize its claims in MTS terms. The insights that can be

gained from such re-formalization are explored in such works as Blackburn

and Gardent (1995) (on LFG), Blackburn et al. (1993) and Rogers (1997) (on

GPSG), Rogers (1998) (on GB), etc. Certain wider theoretical consequences of

the MTS approach are discussed by Pullum and Scholz (2001) and Pullum

and Scholz (2005). Here, however, we are not attempting to compare or relate

MTS to generative frameworks. We merely use certain techniques that have

emerged within MTS to make explicit a point that holds for all theories of

syntax of whatever kind.

The structures we use below will be of the very simple type known as

relational structures. In these there are no functions or individual constants.

A relational structure is simply a set of points (the domain) with certain

relations defined on it. Properties are just the special case of unary (one-

place) relations.

Strings, trees, and graphs of all sorts clearly fall under this definition. Strings

represent a very simple special case. A single word like aardvark in its ordinary

spelling could be represented as a relational structure with the domain

{1,2,3,4,5,6,7,8} (the eight positions in the string of letters), with six relations

defined on it. There are five unary relations (properties) that we canwrite with

a, d, k, r, and v, each intuitively corresponding to the property of being (a

position labelled with) a certain letter. In addition there is one binary relation

intuitively corresponding to the arithmetical successor relation on the integers

in the domain. Writing such a structure down in the usual way can be seen as

compressing the information it contains in two ways: the actual elements of

the domain are represented by the unary relation letters, and the successor

relation is represented by immediate right-adjacency on the page.

To say that a grammar � defines a certain structure A as well formed is

just to say thatA satisfies � (or is a model of �), notatedA⊨ �. The structure
which represents aardvark, for instance, satisfies the first-order formula

∃x∃y[a(x) ∧ a(y) ∧ x ≺ y], meaning ‘there is an a that has an a immediately

following it’. It does not satisfy 8x[a(x)) ∃y[r(y)∧ x≺ y]], meaning ‘every a

has an r immediately following it’ (position 1, for instance, is a counterexam-

ple to this).

However, most of the interest within model-theoretic syntax has centered

on the study of logics interpreted on relational structures much more com-

plex than strings. Logics interpreted on strings can be remarkably weak in

expressive power. For example, the example just cited used a first-order

metalanguage with a predicate interpreted by ‘immediately precedes’, and
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this is an extremely weak formalism. It cannot even describe all the regular

(finite-state) sets of strings. It can describe only the ‘locally threshold testable’

stringsets (Straubing 1994: 46–49), a proper subclass of the star-free or

‘counter-free’ stringsets studied by McNaughton and Papert (1971), which

are in turn a proper subclass of the finite-state. Even if we switch to the

most powerful kind of logic that has played a major role in model-theoretic

syntax, namely the logics known as weak monadic second-order (wMSO) on

string models, we get no more than the regular stringsets, so our descriptions

are limited to the descriptive power of finite-state machines. (AwMSO logic is

like a first-order language with an extra set of variables for quantifying over

finite sets of nodes. See Straubing 1994 or Libkin 2004 for detailed exposition

of results on first-order and wMSO logics on strings.)

The most important structures employed in natural language syntax are

labelled constituent-structure trees. Our next task is to present a brief intro-

duction to the study of logics on trees because it will be crucial for our main

argument.

11.2.1 Logics on trees

To illustrate how trees can be represented mathematically, we consider the

phrase structure tree in (1).

(1) S

NP

D

this

N

job

VP

V

stinks

This tree has nine nodes. These will be the elements of the domain of the

structure. It does not really matter what we take them to be – it is the system

of relations defined on them that is crucial – but it is convenient to take them

to be not just atomic elements like integers but rather addresses of nodes –

descriptions of positions relative to the root. These addresses can be repre-

sented by strings of integers. Starting from the root, which has the empty

string (�) as its address, we add ‘0’ for the left child of the root and ‘1’ for the

right child, and we go on down: ‘01’ for the right child of the left child of the

root, ‘010’ for the left child of that, and so on, thus:
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(2)

0

00

000

01

010

1

10

100

This means we can identify each node in a binary branching tree with a string

over {0, 1}; and since no string ever appears at more than one node – each

string over {0, 1} corresponds to a unique address – we can equate trees with

sets of such strings.

Not every set of strings over {0, 1} represents a tree; but the two conditions

we need to impose to guarantee that such a set does correspond to a tree are

remarkably simple. Simplifying by assuming (with much recent literature)

that all branching is binary (see Rogers 1998: 19 for a more general statement,

which also is very simple), the conditions defining binary tree domains are

these:

(3) A binary tree domain is a set T � {0, 1}*, such that (where x and y are

strings over {0, 1}),

(a) if xy is in T, then so is x, and

(b) if x1 is in T, then so is x0.

Part (a) of this definition requires any node to have all of its ancestors in the

domain (because prefixes of digit strings correspond to addresses higher up

on the path to the root), and part (b) requires all right branches to have left

siblings (because ending in 1 corresponds to being a leaf on a right branch,

and for every right branch there has to be a left branch).

This defines binary tree domains in terms quite independent of both the

diagrams with which we depict trees and the generative grammars that

linguists often assume for generating them, though thus far the result looks

a bit unfamiliar.

We now define a binary tree structure as a triple hT, R#, R!i, where T is a

binary tree domain, R# is the child-of relation (we use androgynous kinship

terminology for relations between nodes: ‘parent’, ‘child’, and ‘sibling’); i.e.

(n, m)

3

R# iff m ¼ n0 or m ¼ n1, and R! is the left-sibling-of relation, i.e.

(m, n)

3

R! iff m ¼ s0 and n ¼ s1 for some s.
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So the tree in (2) would be formalized as a tree structure, (T, R#, R!), where

T is the set {�, 0, 1, 00, 01, 10, 000, 010, 100} and, for example, the pair (10,

100) stands in the R# relation and the pair (00, 01) stands in the R! relation.

Writing such a structure down in the way linguists usually do can be seen as

compressing the information in three ways: writing the appropriate unary

relation letters for the elements of the domain; representing the parent

relation by sloping downward lines connecting parents to children; and

representing precedence by left-right orientation of siblings on the page.

11.2.2 Modal logic metalanguages

To talk about trees in this chapter we will use propositional modal logics. This

choice may need some explanation, though the idea of using modal logics to

describe trees goes back at least as far as Gazdar et al. (1988) (see Blackburn et

al. 1993 for a more thoroughgoing development of the idea, and Moss and

Tiede 2007 for a detailed and up-to-date survey). Modal logics provide a very

tightly restricted way of describing the structure of trees, and their relation-

ships with and translations into other formalisms are beginning to be very

well understood. Though they originate in philosophical efforts to under-

stand the notions of necessity and possibility, they are best seen much more

generally, as languages for describing relational structures (such as trees) from

a local and internal perspective. Blackburn, de Rijke, and Venema (2001: xii)

observe that ‘the reader who pictures a modal formula as a little automaton

standing at some state in a relational structure, and only permitted to explore

the structure by making journeys to neighbouring states, will have grasped

one of the key intuitions of modal model theory.’ The linguist can read ‘state’

as ‘node’ and (here, at least) ‘relational structure’ as ‘tree’.

The key idea is to represent the labels attached to nodes in trees by atomic

propositional formulas of the logic. In other interpretations of modal logic

these would be propositions true at particular worlds in a set of worlds under

an accessibility relation; here they simply represent labellings present at

certain points in the model.

Before we formalize labelled trees in these terms, we need to fix the syntax

of the logics that we will be considering. We can use a very simple and basic

kind of modal logic LB as a reference point. LB has a set of atomic formulas

corresponding to syntactic categories (we can assume this is finite), and just

two modalities, h!i and h#i.
The semantics is such that a formula h#if is true at a node v iff f is true at a

child of v (so it means ‘v has a f-labelled child’) and h!if is true at a node v

iff f is true at a right sibling of v.
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LB can be used to say many of the things about trees that could be

guaranteed by a context-free grammar. Consider the two formulas in (4):

(4) a. PP) h#iP
b. h#iduring) (P ∧ h!iNP)

We use ‘)’ for material implication, defined by f) c � ¬(f ∧ ¬(c)). So
what (4a) says is that a node where PP is true has a child where P is true; that

is, it expresses the claim of X-bar theory that every PP node must immediately

dominate a Preposition node. And what (4b) says is that a node that has a

child labelled during is labelled P and has a right sibling labelled NP – a

subcategorization statement for the preposition during.

However, in general LB is too weak to permit much interesting progress

toward the description of human languages – it is far weaker than context-free

grammars, for example. We need to consider stronger logics.

Three modal logics of increasing expressive strength have been a particular

focus of attention in the context of model-theoretic syntax. They are known

as Lcore , Lcp, and PDLtree respectively. All of them are less expressive than

wMSO.

For our purposes here, it will be sufficient to concentrate on Lcore and Lcp.
(For a detailed discussion of PDLtree, which is increasingly important for

reasons relating to the rise of XML as a data representation language, see

Afanasiev et al. 2005.) The syntax of formulas for the Lcore and Lcp languages
is defined as follows:

(5) Basic syntax for Lcore and Lcp
a. any atomic proposition is a formula;

b. ¬(f) is a formula if f is;

c. f ∧ c is a formula if f and c are;

d. a formula prefixed by a modal operator is a formula.

In addition we will use > for a dummy proposition that is always true (it

could be defined as ¬(a ∧ ¬(a)) or in some similar way; its utility will

become clear below).

The logics Lcore and Lcp differ only with respect to the modal operators they

employ. These operators are logically akin to the diamond operators that

represent possibility in the alethic modal logics familiar from formal seman-

tics. Each is written in the form hpi (the angle brackets are intended to convey
a visual suggestion of the diamond ⋄). The ‘box’ modalities are used as well,
and as usual they are defined in terms of the diamond ones: [p]f (with the
square brackets visually suggesting the box □) abbreviates ¬hpi¬f.
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Lcore is a logic with eight modal operators, the two in LB plus their inverses,
and operators corresponding to the ancestrals of all four:

(6) Lcore modal operators:!  " # !* "* #*

Lcore permits not only statements like h#if, meaning that at one dominance

step down there is a node where f holds, but also h#*if, which corresponds

to the ancestral of the relation that # corresponds to: it means that there is

some finite number k such that at k dominance steps down there is a node

where f holds. Thus, h#*if means that either f holds (k¼0), or h#if holds

(k¼1), or h#ih#if holds (k¼2), and so on for all k � 0.

The logic Lcp has an infinite set of modalities. They are defined recursively.

All modalities from Lcore are available in Lcp , but it has additional modalities

that cannot be defined using those modalities. The following four simple

operators are included (as in Lcore):

(7) Lcp basic modal operators: !  " #

But in addition, for any modal operator p and any formula f, the following
are both modal operators in Lcp:

(8) Recursively defined modal operators of Lcp:

As in the case of the h#*ifmodality of Lcore , the p* operators afford access to

the ancestral of the accessibility relation for p: the formula p* f is satisfied at a

node u iff f holds at a node v that you can get to from u via a sequence of zero

or more steps mediated by the Rp relation.

The interpretation of hp; f?i needs a little more explanation. Intuitively,

evaluating hp; f?ic involves checking that c holds at a node that we can get to

using p and at which f holds. The two examples in (9) will help.

(9) a. h#;f?ic
b. h(#;f?)*ic

Formula (9a) can be read as ‘at some child of this node where f is true, c is

true’. This is equivalent to h#i(f ∧ c), and thus would also be expressible in

Lcore . But the same is not true of (9b). For (9b) to be satisfied at a node u,

there has to be a node v, dominated by u, at which c is true, and additionally

f has to be true at all nodes on the path from u to v. Notice that the asterisk is

on ‘(#;f?)’, so what is repeated is both the step down from parent to child and

p* for each modal operator p
p; f?
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the check on whether f holds. There has to be a parent–child chain in which

at every node the check to see if f holds is successful, and it has to lead down

to a node where c holds. This relation is inexpressible in Lcore.
Notice the potential applications of a formula like (9b) in describing

syntactic facts in human languages. It has been suggested for various syntactic

phenomena that they are permitted only within the region between the top

and bottom of an unbounded dependency (see Zaenen 1983). Such phenom-

ena could be described with a statement using h(#;f?)*ic, where c is the

property of being a trace and f, holding at all the nodes on the spine leading

down to the node where c holds, is the property that determines the relevant

phenomena.

11.2.3 Trees as models for modal logics

We can identify a labelled tree with a tree model in the following sense. A binary

tree model is a pairM = hT, ValiwhereT is a tree structure and Val is a valuation

function – a function from formulas to node sets which assigns to each atomic

formula the set of all and only those nodes in the tree at which it holds.

So, to complete our example, assume that we have atomic formulas S, NP,

VP, D, . . . , and thus the binary tree model corresponding to the example in

(1) would contain a valuation Val such that Val(NP)¼ {0}, Val(V)¼ {10}, etc.

The remaining thing we need is a definition of the satisfaction relation. We

write ‘M, v ⊨ f’ for ‘the modelM, at the node v, satisfies (or, is a model of )

the formula f.’ We define the relation ⊨ in the following standard way.

(10) For a modelM, a node v ofM, and a formula f:

a. M, v ⊨p , v ∈ Val(p)

(v satisfies atomic formula p iff v is in the set Val assigns to p)

b. M, v ⊨ f ∧ c , M, v ⊨ f ∧M, v ⊨ c
(v satisfies a conjunction iff it satisfies both conjuncts)

c. M, v ⊨ ¬f , M, v ⊭ f
(v satisfies the negation of any formula that it does not satisfy)

As is familiar from alethic modal logic, evaluating a formula containing a

modality always involves an accessibility relation that defines permitted access

from one state or node to another in the model. Given that both Lcore and Lcp
have multiple modalities, each modality hpi will have a corresponding acces-
sibility relation Rp:

(11) M, v ⊨ hpif , ∃u[(v,u) ∈ Rp∧M, u ⊨ f]
(v satisfies hpif iff it bears the p relation to a node u that satisfies f)
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Given our discussion of R# and R! in Section 11.2.1 above, it is fairly

straightforward to get a sense of the accessibility relations for the modalities

in Lcore. The accessibility relations for the modalities in Lcp are more complex,

and will be omitted here (but the details are in Moss and Tiede 2007).

11.2.4 Definability

In order to relate the model-theoretic approach to the generative approach,

we need a model-theoretic notion that corresponds to the set of derived

structures in the former approach. We will restrict the set of atomic formulas,

denoted by F, to be finite. Atomic formulas will be used to represent features.

We will denote the set of trees that are labelled only with the features from the

set F by T F, and for the set of formulas in the logic L that only use the atomic

formulas from the set F we will write LF.
We say that a subset of T F is definable inL if there is a formula inLF such that

the subset in question is exactly the set of all those trees which at their root nodes

satisfy the formula. What it means to say that some set T � T F is definable inL
is simply that there is some f∈ L such that T = {t | t, e⊨ f} (that is, T is the

set of all and only those trees which at the root node satisfy f).
As an example of how grammars of certain specific types can be formalized

in certain specific logics, it is worth noting – with an informally sketched

proof – that despite its very limited expressive power, Lcore is capable of

defining the set of all the parse trees obtainable from an arbitrary context-

free phrase structure grammar (CF-PSG).

(12) Theorem For any context-free phrase structure grammar G there is a

formula fG in Lcore that defines the set of all parse trees of G.

Proof Let the terminals, non-terminals, rules, and start symbol of G be

respectively VT, VN , P, and S. Since we are only considering binary branching

trees (it is not hard to generalize the result to n-ary branching), every rule in P

is of the form A! BC or A! a, with A, B, C ∈ VN and a ∈ VT . (Here and

below we reserve ‘!’ for the rewriting operation of CF-PSG rules.) The effects

of such rules can be encoded directly in Lcore as follows.
The set of formulas covering the binary branching rules contains for each

symbol A appearing on the left-hand side of a branching rule a statement

‘A)�’, where� is a disjunction that for each rule A! BC contains a disjunct

of this for

(13) h#i(B ∧ h!iC)

So if the only rules with VP on the left of the arrow were (i) VP ! V1, (ii)

VP! V2 NP, and (iii) VP! V3 Clause, the corresponding logical statement
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would contain a statement that in effect says this: ‘If VP holds at a node then

either (i) V1 holds at a child node that has no right sibling, or (ii) V2 holds at a

child node that has a right sibling where NP holds, or (iii) V3 holds at a child

node that has a right sibling where Clause holds.’

To this we add, for each A that appears on the left-hand side of a unary rule,

a statement A) �, where � is a disjunction with disjuncts of the form h#ia,
one for each a such that A! a.

This much ensures that the models of fG comply with the restrictions

that the rules impose on parse trees of G. The rest of what we need to do is

to ensure that only parse trees of G are models of fG (from what has been

said so far, there could be other models of fG with all sorts of labellings

about which the rules say nothing, and they could vacuously satisfy the

statements summarized above). This we accomplish by adding four further

statements.

First, we affirm that node labels are unique – at each node exactly one proposi-

tional symbol is true – by stating that at every node some proposition holds:

(14) [#*](A1 ∨ A2 ∨ . . . ∨ An) where VT

\

VN = {A1, A2, . . . , An}

and we state that for all pairs of distinct propositions the negation of one of

them holds:

Second, we assert that the start symbol S is true at the root – that is, S must

hold at any node where not even the dummy tautology > holds at the

immediately dominating node:

(16) ["]¬(>)) S

Third, we stipulate that the terminal symbols are true only at leaves – that

wherever a terminal symbol holds, not even the dummy tautology holds

at any immediately dominated node thereof (which means there cannot

be one):

(17) [#*]�, where � is the conjunction

(a1) ¬h#i>)∧(a2) ¬h#i>)∧ . . . ∧(ak) ¬h#i>) for all ai ∈ VT.

Fourth, we assert that non-terminal symbols are true only at internal nodes –

that wherever a non-terminal holds, the dummy tautology holds at the

immediately dominated node (which means there must be one).

(15) [#*](f1∧f2∧ . . . fk) wheref1, . . . ,fk is the list of all statements of the

form ‘(¬(Æ) ∨ ¬(b))’, for Æ, b ∈ VT

\

VN and Æ 6¼ b
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(18) [#*]�, where � is the conjunction

(A1) h#i>)∧(A2) h#i>)∧ . . . ∧(Ak) h#i>)
for all Ai ∈ VN.

This guarantees that any model of the complex formula we have constructed

will be a parse tree of G, which completes the proof.

11.3 Features

The trees considered so far are labelled with atomic category labels, repre-

sented in the description logic as atomic formulas with the property that each

node satisfies exactly one of them. If we want to label trees with features, we

have to extend the approach presented above. One easy way to include

features is to allow each node to satisfy multiple atomic formulas. That way,

each atomic formula corresponds to a binary valued feature: if some feature f

holds at a node, that node is [þf], and if it is false, the node is [�f].
We can use the approach to represent non-binary features too, as long as it is

combined with some formulas limiting their co-ocurrence. Thus we could

represent the bar feature in a two-bar system by means of three features, call

them bar0, bar1, and bar2. It is easy to assert what the GPSG literature calls a

feature co-occurrence restriction – a statement of the type exemplified in (15) –

saying that one and only one of these features is true at each node (‘bar0 )
(¬bar1 ∧ ¬bar2)’, and so on).

To give an example of the use of Lcp , consider the following formalization

of projection from heads, based on Palm (1999). We first introduce an

abbreviation meaning ‘the feature f belongs to a node that is a head’, where

(for this purpose) we treat being a head as simply a matter of bearing an

atomic feature, corresponding to the atomic proposition head, with the

statement Hf � f ∧ head.

Then we define what it is for a feature f to be projected from a leaf:

(19) Proj f � h(#; (Hf))*i(Hf ∧ lexical)

Here lexical is just an abbreviation for ‘h#i¬(h#i>)’.
Finally, we can require every node to be a projection: given a finite set of

lexical features Lex, we assert [#*]�, where � is the disjunction of all the

statements Proj f such that f is in Lex.

The feature indicating that a node is the head would be needed in cases

where two siblings shared the same lexical feature. Furthermore, there are

certain regularities that this head feature has to observe, such as that (if we set

aside the multiple-heads treatment of coordination argued for in some GPSG

work) no two siblings may both be heads, a condition that we could state thus:
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(20) [#*](head) ¬(h ihead ∨ h!ihead))

11.3.1 Eliminable features

The clearest sense in which a feature can be considered intuitively superfluous

is when one can eliminate it from the grammar without any loss to the

description. Given a tree t ∈ T F and a subset of features G � F, there is a

corresponding tree t0 ∈ T G that is the result of removing the features in F – G

from t. We will denote the corresponding function by p̂; thus p̂(t) = t0, and
define p̂(T ) as {p̂(t) | t ∈ T }.
The notion of a feature being superfluous, in the sense that it can be

eliminated without loss to the description, can now be formalized by means

of the following definition:

(21) Let F be a finite set of features, G � F, T � T F, and L a logic. Suppose

that T is definable in LF. We say that G is eliminable in L for T iff p̂(T )
is definable in LF–G.

Notice that this notion of eliminability is relative to a given logic: the features

in G are eliminable in some language L with respect to some set of trees T if

and only if the function that gets rid of the G features is definable inLwithout
using any G features. This might hold for some particular L but not in

another metalanguage. In other words, questions of whether some feature is

truly needed cannot be addressed in isolation but only in the context of a

particular descriptive metalanguage in which the feature is used. This obser-

vation is made more precise in the following theorem:

(22) Theorem (Tiede 2008)–Any tree language that is not definable in Lcore
but is definable in Lcp can be defined with additional features in Lcore
that are not eliminable in Lcore.

This theorem could actually be strengthened, as its proof (for which see Tiede

2008) does not depend on any of the logics in particular. It applies to any case

of two different formal ways of defining sets of trees, each capable of defining

all local sets (those that a CF-PSG can define), and one defining a proper

subset of the tree-sets definable by the other, provided they are not more

powerful than wMSO. For any set T of trees definable in the more powerful

formalism but not in the less powerful one, T will be definable in the less

powerful formalism if we are permitted to decorate its nodes with additional

features.

These results can be read in two different ways. First, they state that any

language that cannot be defined in a weaker formalism but can in a stronger
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one can be defined in the weaker one if additional features are added.

Conversely, they state that the only difference between the different formal-

isms mentioned above, as well as a variety of other formalisms, is which

features are required to define languages: the more expressive the formalism,

the fewer features are required for defining languages.

When we move to the most powerful of the logics commonly used in model

theoretic syntax, wMSO, a single feature suffices. This follows from the fact

that wMSO characterizes the tree-sets that are recognizable by finite-state tree

automata (Doner 1970). These tree-sets are known as the regular tree-sets (or

‘regular tree languages’). The set of all regular tree-sets is known to be closed

under linear tree homomorphisms, which means that any systematic symbol-

for-symbol relabelling of all the nodes in all the trees of a regular tree-set will

always yield a regular tree-set.

To make this clearer, imagine a finite-state tree automaton that recognizes

some set of trees with all nodes labelled by either A or B. Suppose we wanted

to relabel the B nodes as A nodes without losing track of which were the

original A nodes. We can simply modify the automaton so it has two different

states for admitting A nodes: one in effect corresponding to ‘original A node’,

and the other to ‘relabelled B node’. Since any finite-state tree automaton is

equivalent to a wMSO logical description (Doner 1970), there is a wMSO

theory that corresponds to the new automaton.

So consider in this light the question of whether the slash feature of GPSG

and HPSG is a genuine substantive element of the grammars of human

languages. A node dominated by a category Æ is marked with a feature

specification [slash:b] in GPSG in order to identify it as containing a b
extraction site. This eliminates any need for movement transformations in the

description of unbounded dependencies (Gazdar 1981), as seen in (23), where

we simplify visually by notating Æ[slash:b] in the form Æ/b.

(23) Clause

NP

this

Clause/NP

NP

I

VP/NP

V

think

Clause/NP

NP

she

VP/NP

V

knew

NP/NP

e
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It might be charged that this simply substitutes another formal device for the

formal device of movement: instead of the NP this being moved from an NP

position to another NP position as sibling of a Clause node, it is a sister of a

Clause/NP node that dominates a chain of Æ/NP nodes that leads to an NP/

NP node at what would have been the pre-movement location. The chain of

slash categories marks the path from the root of the landing-site constituent

down to the extraction site. So is the feature slash artefactual, rather than

corresponding to a genuine syntactic property of constituents?

Our thesis is that the answer is neither yes nor no. The question is a

pseudo-question, insufficiently well defined to receive an answer.

11.3.2 Inessential features

Given that the question whether a feature is eliminable depends on the

formalism employed, it is only natural to try to give a purely structural

definition of uselessness applying to features. Marcus Kracht (1997) has pro-

posed such a definition. Kracht called a feature inessential ‘if its distribution is

fixed by the other features’, and he proposed the following formal definition.

(24) Let F be a finite set of features; let G be a subset of F; and let T be a set

of trees labelled with the features in F. The features in G are inessential

for T if the function that eliminates the features in G is one-to-one.

The reason for identifying superfluous features with those that can be elimi-

nated by a one-to-one (injective) function is that no two trees can be distin-

guished only with these features. If they could, the function that eliminates

them would map them to the same tree, hence it would not be one-to-one.

The features referred to in the theorem in (22) are inessential in exactly

Kracht’s sense. And this might seem to conform to the intuition that when a

feature is added solely to make a non-definable set of structures definable, it

has an ad hoc nature. When there is a distinction in tree structure that we are

unable to capture using a given logic, and we add a special feature to certain

nodes in certain trees just to enable the distinction to be captured using that

logic, erasing the feature we added would just give us back our original trees.

They would not be identical with any other trees in the set because, if they were,

we would not have needed to add the feature annotations in the first place.

An example due to Thatcher and used by Rogers (1998: 60) will be useful in

making the point. Consider the set of all finite binary trees in which all nodes

are labelled A except that in each tree exactly one node is labelled B. This set of

trees is not definable in Lcore, or by any CF-PSG. But we can make it

describable if we add a feature. We will assume that its presence or absence
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can be explicitly referenced at any node, and we will indicate its presence by

‘▾’. We annotate a tree like (25a) as shown in (25b).

(25)

A A

A

B

A A

A

A

A A

a. A b.

A A

A

B

A A

A

A

A A

A

The ‘▾’ feature is attached to every A node that dominates the unique B, and

to no other node. This allows us to describe the set with a CF-PSG, using A▾ as

the start symbol:

By the theorem in (12) we know that the set of trees this grammar generates is

describable in Lcore. However, if we erase the ▾ feature from every tree, we will

get exactly the set mentioned above: in every tree there will be one B and all

other nodes will be labelled A. Yet no two distinct trees will ever be collapsed

into one under this ▾-erasure operation. Therefore the ▾ feature is inessential

in Kracht’s technical sense.

Both the slash feature of GSPG and the bar feature familiar from X-bar

syntax are inessential in exactly the same way. The feature slash works in a

way almost exactly analogous to ‘▾’ above: a constituent containing a gap is

marked by placing a specification of a value for slash on the root of the

constituent and on each node in the continuous sequence of nodes from the

root downwards, that dominate the gap.

The bar feature is also (as Kracht notes) inessential. To see this intuitively,

imagine being presented with a tree from, say, Jackendoff (1977), with all of the

bar-level indications removed. It would be easy to put them all back without

error, given the content of theX-bar principles that Kornai andPullum (1990) call

Lexicality, Uniformity, Succession, and Weak Maximality, plus the observation

that Jackendoff simplifies his diagrams in certain respects (specifically, a branch of

the form X000—X00—X0—X—s will be shown as X000—s). Stripping the primes

(26) A▾! AA▾ A▾! AB A! AA

A▾! A▾A A▾! BA B! AA
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from Jackendoff’s trees never collapses a legal tree into the prime-stripped version

of another legal tree. (This might not be true for every version of X-bar theory.)

It would be most desirable if the notion ‘inessential’ were diagnostic for

features that are spurious in the sense of being linguists’ artefacts. Unfortu-

nately, things do not work out this way. Many features that linguists probably

would not want to eliminate are inessential under this definition, and many

features of which they would be suspicious are not inessential.

Take the feature case in a language with a simple Nom vs. Acc contrast, for

example. In many such languages no two trees will be distinguished on the

basis of this feature distinction, as its distribution will be fixed by other

aspects of the trees: an NP functioning as Subject in a tensed Clause will

take the Nom value and an NP functioning as Object will take Acc, and so on.

In such a case the morphosyntactic feature case will be inessential.

At first, it might seem that any feature appearing on lexical category labels

would be inessential in Kracht’s sense, but this is not so. Counter-intuitively,

features are essential when they are optional on a node. Consider aux in

English. Any ‘subject-aux inversion’ clause will predictably have aux on the

initial verb. So will any tree with a verb form ending in the suffix n’t. But take

a dialect where both We haven’t enough milk and We don’t have enough milk

are grammatical. In such dialects, possession have is optionally [þaux]. So all
three of these trees should be well formed (the V in the third is [�aux]):

(27) Clause

NP

we

VP

V[+aux]

haven’t

NP

D

enough

N

milk

Clause

NP

we

VP

V[+aux]

have

NP

D

enough

N

milk

Clause

NP

we

VP

V

have

NP

D

enough

N

milk
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The second and third of these trees will be collapsed if the [�aux] markings

are erased. Solely because of this, aux counts as an essential feature. Yet of

course, on the second and third of the trees in (27) its presence is intuitively

quite unimportant: because the verb is not in one of the auxiliary-only n’t

forms, and is not before the subject, it simply does not matter whether it bears

the marking [þaux] or not. Though essential in the technical sense, it is

entirely superfluous in the intuitive descriptive sense.

In short, Kracht’s notion of being essential – the contrary of being inessen-

tial – does not correspond at all to the descriptive linguist’s notion of being an

essential or significant component of a description.

11.4 Conclusions

We have argued that it is highly unlikely that any formal reconstruction can be

given of the intuitive notion of a feature that is a technical artefact rather than

a genuine element of natural language structure that we should expect to turn

up in some guise in any reasonable description. There is a crucial trade-off

between eliminability of features and expressive power of the descriptive

metalanguage; the two issues cannot be separated.

Thus, just like the question of when a feature used in the description of one

language should be equated with a feature used in the description of another,

the issue of when a feature is a technical trick and when it is a properly

motivated distinguishing property of linguistic expressions will not, we sus-

pect, be reducible to any formal criterion. It may perhaps be approached

informally through an understanding of what natural languages are typically

like, but it will not submit to an authoritative mathematical adjudication.

Philosophy of linguistics, like any other branch of the philosophy of

science, is just not going to be that easy.
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