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Generative grammars, a.k.a. rewriting systems, are devices for defining sets of sentences by
enumeration. This idea is generally thought to have been invented by Noam Chomsky in the 1950s.
(For his first use of the verb ‘generate’ for the relation between a formal system and a set of strings,
see Chomsky 1951: 3.) It has totally dominated theoretical linguistics for six decades. But Chomsky
was not the first to conceive of such devices.

Pān. ini (India, 4th century BCE) developed what are now seen as rewriting systems 2,500 years ago,
but his work was entirely unknown to rediscoverers in the West, and was not their inspiration; it will
not be my topic here (but see Kadvany 2016 for an important recent contribution).

Albert Sechehaye (1870–1946) hints informally at the idea of grammars ‘generating’ sentences
(Seuren 2018: 131). He called the Subject + Predicate pattern “the generative principle [‘principe
générateur], the central organ of the entire grammatical mechanism” (Sechehaye 1908: 30), and claims
that “The spirit of syntax . . . must be constructive and architectural” rather than “an enormous learned
compilation of superficially classified facts” (Sechehaye 1916: 76). This certainly resembles
Chomsky’s critique of “taxonomic” linguistics. But Sechehaye said nothing about the mechanisms
now called generative grammars.

A generative grammar is a formal system comprising [i] a finite set of one or more given strings (or
other objects such as trees) and [ii] a finite set of operations for making new ones from those. Two
examples:

Initial string: {0} Initial strings: {a, b, aa, bb}
Operations: X =⇒ 1X; X =⇒ 0X Operations: X =⇒ aXa; X =⇒ bXb
Defined set: Even numbers in binary. Defined set: Palindromes over {a, b}.

Categorial grammars are clearly generative in this sense. Bar-Hillel (1953) cites the 1935 revival by
Kazimierz Ajdukiewicz (1890–1962) of a seminal 1929 paper by Stanisław Leśniewski
(1886–1939). This antedates Chomsky’s work by a quarter of a century, but still is not the earliest
20thC work on generative grammars.

The 20th-century development of generative grammars emerged from the formalist program in
logic. Principia Mathematica, published by Whitehead and Russell (W&R) in 1910–1913, was
surprisingly informal in its logic. Corresponding to Modus Ponens (MP) W&R had: “Anything
implied by a true elementary proposition is true” (Vol. 1, p. 94). This muddles together syntax and
semantics: it fails to separate derivability of symbol strings from truth of propositions. Urquhart
(2009) notes that W&R “fail to make the basic distinction between axioms and rules of inference . . .
they are lumped together under the heading of ‘Primitive Propositions.’ ”

Clarence Irving Lewis (1883–1964) sketched a way of avoiding confusion between form and
meaning (Lewis 1918: 344ff). Start with a list of strings (axioms, but you don’t need to know that they
are), and some operations for adding new strings to the list (i.e., deriving theorems — but you don’t
need to know that either). Assuming an alphabet {∼,⊃, (, ),∨, p, p′, p′′, . . .}, MP should say
something like this (modified from Lewis 1918: 357):
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Modus Ponens: Find a string w1 on the list that begins with ‘(’, ends with ‘)’, and
contains ‘⊃’. Find another string w2 on the list that is identical with the bit of w1 between
the ‘(’ and the ‘⊃’. Take the bit of w1 that follows the ‘⊃’, remove its final ‘)’, and add
the remainder of w1 to the list.

Emil Leon Post (1897–1954), as a young mathematics graduate student, was inspired by work like
Lewis’s to try and turn the intuitively conceived operations of logic into pure math. His PhD project in
mathematics at Columbia under the philosopher-mathematician Cassius Jackson Keyser
(1862–1947) was ambitious: to prove the consistency and semantic completeness of W&R’s
informally assumed propositional logic. It required:
[1] a rigorous truth-table method for showing tautologousness of propositional formulae;
[2] an algorithmic procedure reducing proof to deriving new symbol strings from already

available ones with no reference to meaning;
[3] a proof that from W&R’s axioms (represented as symbol strings) the syntactic proof

method [2] can produce a string x if and only if the truth-table method [1] establishes
that x is a tautology.

Post’s mathematicization of inference rules makes them purely mechanical operations on
uninterpreted strings. MP says that if something matching (X1 ⊃ X2) on the list (where X1 and X2

can match anything at all), and the string that matched X1 is also on the list, then whatever matched
X2 can be added to the list. In postdoctoral work, Post generalized, placing no upper bound on the
length or number of strings in a production, thus yielding a rather daunting schema:

Post’s general ‘canonical’ form for productions:

g1,0 X1,1 g1,1 X1,2 . . . X1,n1 g1,n1

g2,0 X2,1 g2,1 X2,2 . . . X2,n2 g2,n2

... . . .
...

gk,0 Xk,1 gk,1 Xk,2 . . . Xk,nk
gk,nk

produce

h1 Xr1,s1 h2 Xr2,s2 . . . hj Xrj ,sj hj+1

In an actual production, each of the gi and hi is specified string; each Xi is a free variable over
substrings; there are k strings preceding the word ‘produce’; each string has a fixed length ni, seting
an upper bound to the number of g’s and X’s; and 1 ≤ ri ≤ k and 0 ≤ si ≤ nri , which means the X
variables in the last line all have to be present somewhere in the earlier lines. Thus a production may
specify that the value of the ith variable of premise number j is to be inserted at some point in the last
line, but you can’t just insert arbitrary random material.

A generated set in Post’s terms is any set of strings definable by some finite set of productions. Post
sought a DECISION procedure for generated sets — a finite method for determining WHETHER OR

NOT a string could be generated by a given production system (hence, in a logic, whether or not a
given string was a theorem). His program was destined to collapse — but in a way that was itself a
fascinating discovery.

Normal form systems are production systems in a radically simplified form: they have only a single
1-symbol initial string, and the productions are restricted to saying ‘g1X =⇒ Xg2’ (= ‘erase g1 from
the beginning and add g2 on the end’). Post proved that if you allow additional auxiliary symbols that
can never appear in generated strings, then any set generated by a production system can be
generated by one in normal form.
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Post’s strategy for his research on logic was to encode W&R’s logic using formulae in a format as
simple as normal form production systems, and then develop a decision procedure for validity. But
early in his postdoc at Princeton, in the fall of 1921, he realized that this was impossible. Even
extremely simple production formats elude decidability. As an example, consider these rules (due to
Liesbeth De Mol):

{ axX =⇒ Xbc; bxX =⇒ Xa; cxX =⇒ Xaaa }
If x is any arbitrary single letter from {a, b, c} and X can cover any string over those letters, what will
these rules do to a string of a’s, b’s, and c’s? What seems to be true, from experimenting, is that the
rules will reduce any input over the vocabulary {a, b, c} to a single a, after a seemingly chaotic series
of lengthening and shortening steps. But no one has ever managed to prove that this holds for all
strings — or to find a counterexample. (The problem is related to the notorious Collatz Conjecture.)

Post had glimpsed by 1921 several deep and intimately related mathematical truths of huge
importance: that there are necessarily incomplete logics (including every finitary symbolic logic
capable of expressing statements of arithmetic), and sets that cannot be mechanically enumerated, and
therefore problems in mathematics that are absolutely unsolvable. But he did not publish these claims,
which meant that the insights would later be attributed entirely to others:

— Kurt Gödel (1906 –1978): W&R’s predicate logic is inherently incomplete (Gödel 1931).

— Alonzo Church (1903 –1995): lambda-calculus equivalence is incomputable (Church 1936).

— Alan Turing (1912 –1954): there are uncomputable real numbers, and absolutely unsolvable
computational problems (Turing 1937).

Tragic personal reasons lie behind Post’s failure to publish his earthshaking findings in the 1920s.
But more than two decades later, Post published two fundamentally important papers about production
systems (= generative grammars) and their expressive power:

— Post 1943 (henceforth ‘Reductions’): production systems in normal form can generate any set that
is generable at all. [Result obtained by 1922.]

— Post 1947 (henceforth ‘Unsolvability’): production systems limited to the format
‘X1 g1 X2 ⇒ X1 g2 X2’ (later called Type 0 by Chomsky) also allow every generated set.
[Result obtained in 1946, answering a question of Axel Thue (1914).]

An address to the American Mathematical Society (Post 1944, henceforth ‘Integers’), also
appeared in the early 1940s. The paper essentially founded modern computability theory, but it
contained hardly any details about production systems. And another paper in the mid-1940s proved
the unsolvability of an misleadingly simple problem about paired lists of strings: Post (1946),
henceforth ‘Variant’.

Paul Rosenbloom (1950) published a textbook on mathematical logic, three years after Unsolvability,
with detailed coverage of Post’s production systems (but curiously inscrutable bibliographical notes).

Chomsky mentions Post on 8 occasions to my knowledge, mostly with no citation. He attributes the
term ‘generate’ to Post, citing Integers on two occasions (1959: 137n; 1961: 7). He also cites Variant
once (1963: 382, following Bar-Hillel et al. (1961)). And in three early works he cites Rosenbloom,
but not in connection with production systems. He has NEVER cited either Reductions (1943) and
Unsolvability (1947) — the two most crucial papers.

What explains this omission? Apathy (lack of interest in historical antecedents)? Myopia (failure to
see the papers’ relevance)? Amnesia (forgetting that he had read them)? Dishonesty (deliberate
concealment of an intellectual debt)? Ignorance (simply not knowing the relevant papers)?
I conclude by giving an argument for what I think is the right explanation.
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