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Abstract. Formal syntax has hitherto worked mostly with theoretical frameworks that

take grammars to be generative, in Emil Post’s sense: they provide recursive enumerations

of sets. This work has its origins in Post’s formalization of proof theory. There is an

alternative, with roots in the semantic side of logic: model-theoretic syntax (MTS). MTS

takes grammars to be sets of statements of which (algebraically idealized) well-formed

expressions are models. We clarify the difference between the two kinds of framework

and review their separate histories, and then argue that the generative perspective has

misled linguists concerning the properties of natural languages. We select two elementary

facts about natural language phenomena for discussion: the gradient character of the

property of being ungrammatical and the open nature of natural language lexicons. We

claim that the MTS perspective on syntactic structure does much better on representing

the facts in these two domains. We also examine the arguments linguists give for the

infinitude of the class of all expressions in a natural language. These arguments turn

out on examination to be either unsound or lacking in empirical content. We claim that

infinitude is an unsupportable claim that is also unimportant. What is actually needed is

a way of representing the structure of expressions in a natural language without assigning

any importance to the notion of a unique set with definite cardinality that contains all

and only the expressions in the language. MTS provides that.

Introduction
For the last half century a large community of linguists has been devoted to

the goal of stating grammars for natural languages, and general linguistic theories,
in the form of fully explicit theories. Attainment of this goal means making fully
explicit all of the consequences of grammatical statements and theoretical princi-
ples. We argue here, specifically with respect to syntax, that linguists have been
led astray as a result of taking too narrow a view of what it means to construct an
explicit grammar or theory. Linguists have largely restricted themselves to a class

∗This paper presents the main content of the invited lecture given by the first author at the 12th
International Congress of Logic, Methodology and Philosophy of Science (Oviedo, Spain, 2003).
It was based on joint research and is here written up jointly. We are grateful to many people for
stimulating questions and comments on these ideas, not only at the International Congress but
also at Stanford University; the University of California, Santa Cruz; Simon Fraser University; the
Technical University of Vienna; the University of Pennsylvania; and Harvard University. Thanks
to Peter Alrenga, John Colby, Robert Conde, Ascander Dost, Paul Postal, Chris Potts, James
Rogers, and Dag Westerstahl for helpful comments; they enabled us to avoid some errors, and
bear no blame for the ones that remain.
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of theoretical frameworks for syntax, what we call generative frameworks, which
are in fact ill suited to stating theories and grammars for natural languages (though
ironically, they are ideal for stating explicit definitions of the denumerable infinite
sets of formulae referenced in fields like logic). In consequence, highly distinctive
features of natural languages, features crucially differentiating them from invented
formal languages, have been overlooked.

There is an alternative type of framework for stating explicit grammars of nat-
ural languages. We use the term model-theoretic syntax to refer generically
to frameworks of this type. Model-theoretic syntax has great heuristic value for
linguistics, in the sense of providing appropriate guidance of theoreticians’ thinking
with respect to just those aspects of natural languages that generative frameworks
have ignored. Among these are two that we discuss here: the gradience of ungram-
maticality and the lexical openness of natural languages.

We also argue that the machinery and structure of generative frameworks have
misled linguists, philosophers, and psycholinguists alike into thinking that the car-
dinality of the set of expressions generated by a generative grammar is important
theoretically, in a way that is connected with settling the question of whether natu-
ral languages are infinite. We argue that this is a particularly clear case of scientists
having confused their subject matter with their theoretical toolkit, and suggest that
the model-theoretic perspective permits an escape from that confusion.

Origins of generative frameworks
In his invited address at the first International Congress of Logic, Methodology

and Philosophy of Science in 1960, Noam Chomsky laid out a convincing case for
the goal of stating explicit grammars. He then turned to the development of a
framework for stating them, remarking:

Clearly, a grammar must contain two basic elements: a ‘syntactic com-
ponent’ that generates an infinite number of strings representing gram-
matical sentences and a ‘morphophonemic component’ that specifies the
physical shape of each of these sentences. This is the classical model for
grammar. (Chomsky 1962:539)

But such a model is not “classical” in any sense. The idea that grammars of natural
languages generate infinite sets of strings was only a few years old in 1960, and the
mathematics supporting it only a few decades older.

The most important source for the approach Chomsky advocated was the work
of Emil Post in the period 1920–1950. Post’s goal was a mathematicization of
the notion of a proof in logic. In pursuit of this he developed a schema defining
the general form of inference rules in terms of what he calls productions (see
Post 1943:197). A production has a finite number of ‘premises’ and produces one
‘conclusion’. Each of these is a finite string of symbols. A production thus maps
a set of strings to a string, has the form seen in (1a), where ‘⇒’ represents the
relation of producing or licensing, and each σi is a string of the form in (1b).2

(1) a. {σ1, · · · , σn−1} ⇒ σn

b. x0 X1 x1 X2 x2 · · · Xm xm

2Kozen (1997:256-7) provides a brief but useful elementary overview of Post production systems,
which we have drawn on here.
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Each xi in (1b) is a specified symbol string (possibly null), and each Xi is a free
variable over (possibly null) symbol strings. There are two associated stipulations.
First, every Xi in the conclusion σn must appear in at least one of the premises
{σ1, · · · , σn−1} (intuitively because inference rules never allow arbitrary extra ma-
terial to be introduced into a conclusion). Second, no assignment of strings to
variables is permitted if it would lead to σn being the empty string e (because
conclusions have to say something).

Proofs are formally represented as derivations. A derivation is a sequence of
symbol strings in which each string in the sequence either belongs to a fixed set
of strings given at the start (i.e., it is an axiom) or is derivable by means of a
production from some set of the strings that precede it in the derivation (i.e., it is
licensed by a rule of inference). A production system is a set of axioms together
with a set of productions, and it generates the set of all and only those strings
that appear as the last line of some derivation.

Post showed that production systems could generate any recursively enumerable
(r. e.) set of strings, thus connecting provability to the characterization of sets of
strings by Turing machines. Chomsky (1962) refers to this work just half a dozen
lines below the quotation given earlier, and comments:

A rewriting rule is a special case of a production in the sense of Post; a
rule of the form ZXW → ZYW, where Z or W (or both) may be null.
(Chomsky 1962:539)

The idea of defining restricted special cases of production systems without losing
expressive power was already present in Post’s work. Post (1943) had defined a
special case of production systems by imposing the following limitations:

– n in (1a) is limited to 2 (i.e., only one premise is allowed), so productions have
the form σ1 ⇒ σ2;

– m in (1b) is limited to 1 (i.e., only one variable is allowed), so σ1 and σ2 have
the form x0X1x1;

– x1 in σ1 and x0 in σ2 are both null.

This means that each production has the form ‘xX ⇒ Xy’ for some x and y.
Post shows that this makes no difference to expressive power, provided only that
the vocabulary can contain certain symbols that function in productions but do
not appear in the strings derived; today these are called nonterminals, and the
symbols appearing in generated strings are called terminals. The definition of
‘generates’ is altered slightly when nonterminals are introduced: the generated set
is taken to be the set of all and only those strings of terminals that appear as the
last line of some derivation. Post proves that any r. e. stringset over the terminal
vocabulary can be generated by a production system in the restricted form. And
he shows that this remains true if there is just a single axiom consisting of one
symbol.

The Type 0 rules of Chomsky (1959)) are defined by a restriction very similar in
spirit. Type 0 grammars are essentially Post’s semi-Thue systems, deriving from
earlier work by Axel Thue (see Post 1947). Again, n in (1a) is limited to 2 so that
productions have the form σ1 ⇒ σ2, but:
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– m in (1b) is limited to 2 (i.e., there are just two variables in each production),
so σ1 and σ2 both have the form x0X1x1X2x2; and

– in both the premise and the conclusion, x0 and x2 are both null.

In other words, each production has the form ‘X1xX2 ⇒ X1yX2’ for some x and
y: it rewrites a string x as a different string y in contexts where X1 precedes and
X2 follows. Again there is no loss of expressive power from Post’s unrestricted
production systems over vocabularies of terminal and nonterminal symbols (this is
proved in Chomsky 1959): all (and only) the r. e. sets over the terminal vocabulary
can be generated.

The idea of cutting productions completely adrift from the formalization of infer-
ence calculi, and using them instead to enumerate strings of words corresponding to
natural language sentences, did not come from any classical or traditional source;
it was original with Chomsky, who had read Post and acknowledges the intellectual
debt (Post 1944 was Chomsky’s cited source for the term ‘generate’; see Chomsky
1959:137n).

Today, virtually all theoretical linguistics that aims at explicitness is based on
Chomsky’s development of Post. Chomsky’s early transformational grammars rep-
resented an elaboration rather than a further restriction of Post systems (though
expressive power is not increased). The context-sensitive, context-free, and regular
grammars defined in Chomsky (1959) are special cases that have reduced expressive
power so that not all r. e. sets are generable.

Categorial grammars (the origins of which antedate not only Chomsky’s work
but also Post’s) can be seen as a kind of bottom-up special case of Post systems
where instead of starting with the single-symbol axiom S and iteratively rewriting
it until a string over the terminal vocabulary Σ is obtained, we start with a multiset
of pairs 〈σi, α〉, where σ is a one-symbol string over Σ and α is a nonterminal, and
we form larger strings by iterative combination under general principles (e.g., given
〈σ1, A/B〉 and 〈σ2, B〉 we are allowed to form 〈σ1σ2, A〉); the combination process
proceeds until we obtain a pair 〈σ1 . . . σk, S〉 (S being the designated category of
complete or saturated expressions), which corresponds in a standard Post system
to a proof that the string σ1 . . . σk can be derived from S.

Under some formalizations which allow function composition as well as function
application, categorial grammars are equivalent to tree adjoining grammars (Weir
and Vijayshanker 1994); some simpler forms are equivalent to context-free gram-
mars. The so-called ‘minimalist’ grammars of Chomsky’s recent transformationalist
work appear to be very similar to categorial systems in this regard, and if Edward
Stabler’s formalization of them is accepted (Stabler 1997) they are equivalent to
multi-component tree-adjoining grammars (Harkema 2001; Michaelis 2001).

Mathematical sources of model-theoretic syntax
There is an entirely distinct alternative way to state explicit grammars. With

hindsight we can glimpse its mathematical beginnings in the work of Büchi (1960).3

Büchi’s results were motivated by questions of arithmetic. It took more than thirty
years for their relevance to linguistics to be appreciated (e.g., by Rogers 1994,

3The recent literature contains some more elegant and accessible proofs of Büchi’s theorem: see
especially Thomas (1990), Engelfriet (1993), and Straubing (1994).
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Rogers 1998, and Kracht 2001). The basic question concerned the expressive power
of logic of a particular kind for talking about finite sequences. The logic in question
was ordinary predicate logic augmented in such a way that in addition to variables
ranging over individuals it has variables ranging over finite sets of individuals. It
is known as weak monadic second-order logic (henceforth wmsol). One very
desirable property of wmsol is that its satisfiability problem is decidable — there
is an algorithm for determining whether the set of structures satisfying a wmsol
formula is empty.

When wmsol is interpreted on finite linearly ordered structures, which we will
call string structures, Büchi showed that the following holds:

(2) Büchi’s theorem
Given any existential wmsol formula, the set of all its string-structure
models is a regular stringset, and for any regular stringset there is a wmsol
formula having that stringset as the set of all its string-structure models.

This gives us a purely model-theoretic perspective on the regular stringsets (gener-
ated by Chomsky’s ‘Type 3’ grammars): a regular stringset is simply a set contain-
ing all and only those finite string structures that are models of a certain existential
formula of wmsol.

It took a number of years for Büchi’s work (and the similar contemporaneous
work of Calvin Elgot (1961)) to be appreciated, but in due course the result was
generalized to structures having the form of labeled trees. Doner (1970) proved an
analog of Büchi’s theorem for finite, ordered, directed, acyclic, singly-rooted, non-
tangled graphs with labeled nodes as used by linguists for representing syntactic
structure that was of special interest in automata theory. In Rogers (1998) these
results are finally applied to linguistics rather than computation. Rogers defines
a wmsol description language in which in addition to the binary relation symbol
‘≺’, interpreted by the ‘left of’ relation found in string structures, there is also a
second binary relation symbol ‘/∗’, interpreted by the dominance relation. The
usual exclusivity and exhaustiveness condition for dominance and precedence can
be stated thus:

(3) ∀x∀y[(x /∗ y ∨ y /∗ x) ↔ ¬(x ≺ y ∨ y ≺ x)]
A pair of nodes stands in the dominance relation or its inverse if and only
if it does not stand in the precedence relation or its inverse.

The condition that says every tree has a node (the root) that is the minimum point
in the weak partial dominance ordering can be stated thus:

(4) ∃x∀y[x /∗ y]
There is a node that dominates every node.

The other basic axioms defining trees can be given in a similar way (for details see
Rogers 1998:15-16).

Structural generalizations about trees with particular properties can also be
defined (and most of the time we can do it with just the first-order fragment of
our wmsol language). For example, we can say of a tree that it has only binary
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branching. Let ‘/’ be a symbol interpreted by the immediate dominance or ‘parent
of’ relation.4 Then a tree is binary-branching iff it satisfies (5).

(5) ∀x[∃y∃z[x / y ∧ x / z ∧ y 6= z] ∨ ¬∃y[x / y]]
Every node is the parent either of two distinct nodes or of none.

But wmsol also allows quantification over finite sets of nodes, which enables
further properties and relations on trees to be defined. Quantification over sets
of nodes is the key to the full power of wmsol on tree models that Doner (1970)
exploited. It permits the expression of certain projections between label sets that
enable the logic to define the property of being recognizable by a finite-state tree
automaton, distinguishing it from the (more restrictive) property of being generable
by a context-free grammar. The difference is, in effect, that a recognizable treeset
may have certain dependencies between nodes in the trees that are not registered
in the node labeling.5 What Doner’s theorem says is this:

(6) Doner’s theorem
Given any existential wmsol formula, the set of all its finite tree models is
recognizable by a finite-state tree automaton, and thus the yield of that set
of trees is a context-free stringset; and for any context-free stringset there
is a wmsol formula having that stringset as the yield of the (recognizable)
set containing all and only its finite tree models.

The decidability result holds as before: wmsol on binary trees corresponds to the
wmsol theory of arithmetic with two successor functions, which was shown by
Rabin (1969) to be decidable.

We now have a characterization of both the context-free stringsets and the rec-
ognizable treesets in terms of a logic with a decidable satisfiability problem. What
is important about this is that, as shown by the work of Gazdar et al. (1985),
henceforth GKPS, a very large part of the central facts of syntax for English can
be stated in terms of recognizable sets of trees. And Rogers (1997) shows that the
kinds of theoretical statements made in GKPS can be restated much more simply
using wmsol to impose conditions on syntactic structure directly. For example,
Rogers shows how to express the theory of feature specification defaults in a way
that is vastly simpler than the cumbersome development of GKPS. A predicate P ′f
of sets of nodes is defined for a feature specification f to characterize the property
of (i) including all nodes that are free to take f without violating other statements
of the theory, and (ii) being closed under propagation of f (Rogers 1997:739). Then
the notion of being privileged with respect to feature f can be defined by

Privilegedf (x) ≡ ∀X[P ′f (X) → X(x)]

4That is, let x / y mean by definition x /∗ y ∧ x 6= y ∧ ¬∃z[x /∗ z ∧ z /∗ y ∧ x 6= z ∧ z 6= y].
5Doner gives a useful example to distinguish the two: the set of all binary-branching trees in
which every node is labeled A except for a unique node labeled B. Generating this set with a
context-free grammar is impossible, yet it is easily recognizable by a finite-state tree automaton
that keeps track in its state space of not just how many daughters the current node has and what
the daughter labels are but also whether the unique B is contained within the subtree dominated
by the current node.
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(Rogers 1997:740). Feature specification defaults become easily statable as simple
material conditionals about trees without any special non-classical default seman-
tics; for example,

∀x[¬Privileged[–inv] → [–inv](x)]

says that if a node is not privileged with respect to [–inv], then it is [–inv].
Work on other natural languages shows that they too are mostly describable in

terms of recognizable sets of trees, hence by wmsol on trees. Where natural lan-
guages do have constructions that go beyond the sets of trees (henceforth, treesets)
that are recognizable in the standard sense, the expression types involved are often
grammatically rather marginal. For example, English has an idiomatic adjunct
type illustrated by the bracketed part of The US will go ahead, [UN support or no
UN support ]; the adjunct must be of the form ‘. . . W or no W ’. But the construc-
tion is not that common, the values of W are typically just individual nouns or
noun-noun compounds, and the syntax of the construction does not interact with
central properties of clause structure at all.

There are a few central clausal constructions in other languages that go beyond
the recognition power of standard tree automata, but they have so far been found
only in Germanic (Shieber 1985; Miller 1991), and they seem quite rare. Work
in computational linguistics has shown that if we have the power to describe the
recognizable treesets, we have enough descriptive power for doing most of the work
necessary in natural language processing.

Insofar as describing non-context-free constructions model-theoretically is re-
quired, Rogers (2003) shows how to do it for a very interesting class of cases. He
shows that the tree adjoining treesets (and derivatively, the tree-adjoining stringsets
that are their yields) can be characterized in terms of wmsol on three-dimensional
tree manifolds — roughly, trees that have trees as their nodes; and Langholm (2001)
has shown that the much larger class of indexed stringsets (Aho 1968) can also be
characterized with a particular kind of bounded existential quantification in wmsol
on trees with added links between the nodes.

All the work just reviewed uses model theory to characterize sets of structures.
The possibility this opens for linguistics is that if we idealize expressions of natural
languages as structures such as trees or similar graphs, we can formulate grammars
for natural languages as sets of interpreted statements in a logic, the models being
expression structures. These grammars will be fully explicit, though not generative.

Linguistic foundations of model-theoretic frameworks
There is a sense in which McCawley (1968) might be said to have introduced

the model-theoretic view to the linguistics literature, though in various ways his
approach does not exactly coincide with the one we will adhere to below. McCawley
pointed out that phrase structure rules can be interpreted as statements that are
satisfied (or violated) by trees.6 He noted that for context-sensitive rules there is
an expressive power difference between what we could now call their generative
and model-theoretic interpretations.

6This insight of McCawley’s does not appear to have been influenced by the work of Büchi, and
predates that of Doner. Note that McCawley (1968) does not explicitly make the link to using
logic as a descriptive formalism for trees.
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The generative interpretation of a rule of the form ‘A0 → A1 . . . An/X Y ’ is
that it means “in a string containing the substring XA0Y , the A0 may be replaced
by A1 . . . An.” (A0 is a nonterminal, A1, . . . , An are terminals or nonterminals,
and X, Y are strings of terminals or nonterminals.) Under this interpretation,
grammars with context-sensitive rules generate all and only the context-sensitive
stringsets over the terminal vocabulary (i.e., all and only the stringsets that are
Turing-recognizable in linear space — a very large proper superset of the context-
free stringsets).

McCawley’s alternate interpretation for phrase structure rules, stated in the
same formalism, was that they should be interpreted as stating sufficient conditions
for well-formedness of local subtrees. The rule ‘A → A1 . . . An/W Y ’ says that
a subtree T with root A0 and daughters A1 . . . An is legitimate provided that the
sequence W can be found immediately left-adjacent to T in the rest of the tree, and
the sequence Y can be found immediately right-adjacent to T . A string is in the
stringset defined by a grammar under this interpretation iff it is the yield of a tree
in which every subtree is legitimate according to the rule set. This interpretation,
surprisingly, is much more restrictive. It was shown by Peters and Ritchie (1969,
1973) that the set characterized by context-sensitive rules under the tree-admitting
interpretation is the set of context-free stringsets.

A wider application of the same kind of thinking about how to state grammars
can be seen in (Lakoff 1971). Lakoff proposes that the structure of a natural lan-
guage expression should be idealized as a finite sequence of finite trees 〈∆0, . . . , ∆k〉
in which ∆0 is by definition the deep structure of the expression (under Lakoff’s
generative semantics view, the part that determines the semantic interpretation),
and has a form determined by conditions on those structures, and ∆k is the surface
structure, determining the phonological interpretation. For each i ≥ 1, ∆i results
from the application of a transformation to ∆i−1; the value of k will vary, since
some expressions have more complex transformational ‘derivations’ than others.

Crucially, Lakoff takes grammars to be sets of assertions about the structural
properties of tree sequences. The analog of a transformation in Lakoff’s scheme is
a condition specifying the permitted differences between two adjacent trees ∆i−1

and ∆i (0 < i < k) in a sequence. Rule-ordering conditions and global derivational
constraints are claimed to be formalizable as higher-level conditions on the form of
tree sequences.7

Lakoff did not in fact present a well-defined theory of grammar. He left many
crucial matters undefined. The exact character of the models was not clarified, and
no specification of the logical description language or its interpretation was given
(for example, the domain of quantification was never quite clear: sometimes he
seemed to be quantifying over nodes and sometimes trees). The detailed critique
offered by Soames (1974) established that Lakoff’s proposals did not work as stated:
Soames shows convincingly that Lakoff underestimated the difficulty of making his

7Postal (1972) regards it as a fundamental clarification that under this view there is no important
distinction between transformations, which filter out illicit 〈∆i−1, ∆i〉 pairs from sequences, and
‘global’ constraints that filter out illicit tree-pairs 〈∆i, ∆j〉 for arbitrary i and j, since i and j will
simply reference positions between 0 and k in a finite sequence, and whether j− i = 1 can hardly
matter very much.
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proposal explicit.8 Nonetheless, the leading idea that syntactic descriptions can
be stated as sets of well-formedness conditions on syntactic structures, rather than
procedures for generating sets, is clearly present in Lakoff’s paper.

Other antecedents of model-theoretic syntax were present in the work of a group
of Russian mathematicians in Moscow at around the same time. Borščev and
Xomjakov (1973) take ‘languages’ to be collections of what they call ‘texts’, and
idealize texts as finite models in a suitable signature, formulating grammars as
sets of axioms, a grammar being interpreted as a description of those texts that
satisfy it. Borščev (personal communication, May 2002) informs us that the group
did intend to apply this approach to natural language description, but the applied
work that got done mostly related it to the description of chemical structures.

The model-theoretic approach foreshadowed in these early works was much more
fully developed by Johnson and Postal (1980), who overtly adopted the idea of
treating expression structures as models of statements in a logical description lan-
guage. Their structures are complex graph-like objects (actually, graphs with ad-
ditional relations holding between edges), some aspects of which e.g., the linear
ordering of terminals that defines the yield) are not clearly worked out, and their
metalanguage is not fully defined (it may be first-order, or it may be augmented
with the power to define ancestrals of relations, one cannot tell from the exposi-
tion); but without question, the leading idea of model-theoretic syntax is there,
along with a clear perception of some of its metatheoretical advantages.

Virtually no linguists followed Johnson and Postal’s lead in the decade that fol-
lowed. Gerald Gazdar proposed a model-theoretic reconstruction of the generalized
phrase structure grammar of Gazdar et al. (1985) in various lectures in 1987, but
otherwise the approach was forgotten until the 1990s, when papers independently
developing the idea in two directions began to appear. First, Patrick Blackburn
and his colleagues, and independently Marcus Kracht, began to develop an idea
from Gazdar et al. (1988): using modal logic as a description language for syntax
(Blackburn et al. 1993; Kracht 1993; Blackburn and Gardent 1995; Blackburn and
Meyer-Viol 1997). And second, James Rogers began his work on applying wmsol
to linguistics (Rogers 1994, 1996, 1997, 1998, 1999).

These papers from the 1990s, however, were largely preoccupied with restating
particular varieties of generative grammars in model-theoretic terms, the point
being to attain new insights into the character of the syntactic facts or to compare
the expressive power of different classes of grammars. If model-theoretic syntax
were merely a matter of stating generative grammars in a different way, it would
be of only minor importance to linguistics. Our thesis is that model-theoretic
syntax offers the study of natural languages not just a restatement of generative
grammar but a shift of framework type with profound heuristic consequences.

8The technical difficulties could probably be overcome. It would help to link the trees in the
sequence via a correspondence relation holding between the nodes of one tree in the sequence
and the nodes of the next. This would permit movement or erasure of a particular node to be
reconstructed in terms of where or whether a node in one tree corresponded to a node in the
next. See Potts and Pullum (2002) for an application of this idea (on pairs rather than arbitrary
n-tuples of tree-like structures) in phonological theory.
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Two key properties of natural languages
The invented languages of logic, mathematics, and computer science — hence-

forth, formal languages — are stipulated sets of strings (or other structures)
defined over a finite vocabulary of symbols. Post production systems and the gen-
erative grammars that are based on them are ideally suited to stating the explicit
grammars of formal languages, and were invented for exactly that purpose.

But natural languages have a number of properties that clearly differentiate
them from formal languages. In this section we review two illustrative phenomena:
first, the fact that being grammatically ill-formed is a matter of degree, and second,
the fact that there is no fixed lexicon for a natural language. We point out that
model-theoretic frameworks immediately suggest appropriate ways to describe the
relevant phenomena. Generative frameworks do not.

We are not saying that it would be impossible to use a generative grammar in
giving an explicit account of these phenomena. Augmentation with additional the-
oretical machinery is always possible. But it does appear that any such theoretical
augmentations will be entirely ad hoc. The basic structure of generative grammars
does not suggest them. Certain distinctive phenomena of natural language ap-
pear to have been ignored within generative grammar precisely because generative
frameworks are ill suited to their description.

Ungrammaticality is gradient
Some utterances that do not correspond to fully well-formed expressions are

vastly less deviant than others. And this feature of utterances is also a feature
of expressions — or rather (since it may be better to limit the term ‘expression’
to what is fully grammatical), those objects that are like expressions except that
they are only partially well-formed. Let us call these latter quasi-expressions.
For example, (7a) is a quasi-expression that is clearly ungrammatical; and (7b) is
clearly more ungrammatical; but neither is ungrammatical to the same degree as
the utterly incomprehensible (7c).

(7) a. ∗The growth of of spam threatens to make email useless.
b. ∗The growth of of the spam threatens make email useless.
c. ∗The of email growth make threatens spam to useless of.

The point is that some quasi-expressions are closer to being grammatical than
others.

No unaugmented generative grammar describes degrees of ungrammaticality, nor
does it suggest a way to do so. A generative grammar generates a single set L of
expressions over a vocabulary V . L is a subset of V ∗ (the set of all strings over V ).
Given w ∈ L − V ∗ and a generative grammar G such that L(G) = L, G will say
absolutely nothing about w, since no derivation permitted by G will lead to w.

Chomsky (1955), Chomsky (1961), and Chomsky and Miller (1963) give several
basically unsuccessful attempts to augment a generative grammar so that degrees
of ungrammaticality can be described. All these proposals define degrees of un-
grammaticality by matching ungrammatical word sequences with lexical category
strings associated with grammatical word sequences. The idea is to define a series
of lexical category inventories of graded coarseness, the finest being the set of lex-
ical categories assigned to words in a full and accurate grammar for the language,



Contrasting Applications of Logic in Natural Language Syntactic . . . 491

and the coarsest consisting of just the single category ‘Word’. A string w that is
not generated by the grammar is assigned a degree of ungrammaticality according
to which degree of lexical category coarseness must be used to get a match between
w and some string that is generated. Consider these examples:

(8) a. John plays golf. (Nanim Vt[+ anim. subj.] Ninan)

b. Golf plays John. (Ninan Vt[+ anim. subj.] Nanim)

c. ∗Golf fainted John. (Ninan Vi Nanim)

d. ∗The of punctilious. (D P Adj)

The example in (8a) is entirely normal; (8b) is not, but if we just ignore the
requirement that play should have an animate subject we can say that it matches
(8a) in its sequence of lexical categories;9 (8c) is worse, because to find a match for
it we have to descend to a greater level of coarseness of categorization where we
ignore not only the selectional restriction that faint should have an animate subject
but also that faint is syntactically required not to have a direct object (a strict
subcategorization restriction); and finally (8d) is yet worse, because its sequence
of lexical categories matches nothing in English unless we categorize its items at a
level of coarseness where we treat it as simply ‘Word Word Word’.

Proposals of this type are inadequate for describing the phenomena of ungram-
maticality in natural languages. They provide too few degrees of ungrammaticality.
The examples provided in the cited references yield only three levels, and it is not
clear how to go beyond this. A serious problem is that the accounting system for
grammatical errors is not cumulative; for example, all of the strings in (7) will be
assigned exactly the same degree of ungrammaticality, clearly the wrong result.

But perhaps the most important inadequacies stem from deep theoretical failings
in this kind of analysis. First, the proposal relies on an entirely nonconstructive
definition of a transderivational relation between strings in various infinite sets. To
determine whether the relevant relation holds between a a specific ungrammatical
w and a certain string of lexical categories, we have to solve this problem:

(9) Input: an ungrammatical string w1 . . . wn of words categorized at
coarseness level i yielding a category string K1 . . . Kn.

Output: a decision on whether there is a grammatical sentence that
also has lexical category sequence K1 . . . Kn at coarseness level i.

But this is undecidable for Post production systems in general, and for the transfor-
mational grammars that Chomsky developed from them. All r. e. sets have trans-
formational grammars; but r. e. sets do not necessarily have r. e. complements. This
means that although there will always be some answer to a question of the form in
(9), there can be no general effective procedure for finding it.

Even more importantly, the generative grammar that derives the well-formed
strings is independent of the assignment of degrees of ungrammaticality. Degree
of ungrammaticality depends entirely on lexical category sequence similarities, ac-
cording to this proposal; it does not depend on any aspect of syntactic structure.
9Incidentally, we would follow McCawley 1968 in taking the deviance of selectional restriction
violations like Golf plays John as semantic rather than syntactic.
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Indeed, the independence of the grammar from the assignment of degrees of un-
grammaticality is so extreme that it would be the same given any observationally
adequate grammar with the same lexicon.

By contrast, with model-theoretic grammars the same resources employed to
describe the fully grammatical expressions also yield a description of the quasi-
expressions. Let Ω be a domain of relevant structures of some kind and Γ a set of
constraints interpreted on structures in Ω. Let Ω1 be the subset of Ω containing
the structures that satisfy Γ. We note that Γ also structures the rest of the domain,
assigning a status to each member of Ω− Ω1, depending on which of the constraints
in Γ that member fails to satisfy. And notice, the status assigned to a structure
depends entirely on what structural properties it has and what the grammatical
constraints in Γ say.

That is, model-theoretic grammars do not just partition a set of structures into
two subsets (the fully well-formed set and the complement of that set). Rather,
even under a crude view on which structures are evaluated as wholes,10 a set of n
constraints determines 2n subsets, just as any set of n binary attributes determines
a set of 2n distinct attribute-value matrices.

Which quasi-expressions are assigned which degrees of ungrammaticality will not
be invariant under reaxiomatization. What the right constraints are for the gram-
mar of some language has to be decided on the basis of a wide range of empirical
evidence and theoretical considerations — simply selecting a framework does not
settle everything. For example, if we replace a set of two or more constraints by a
single constraint which is their conjunction, we get only one degree of ungrammati-
cality, namely 100% ungrammaticality. So the model-theoretic account can always
mimic the undesirable properties of the generative account.11

Under the model-theoretic view we are suggesting for consideration, therefore,
a whole new range of empirical data, the class of facts about one quasi-expression
being more ungrammatical than another, becomes relevant to decisions about what
the constraints are, and with exactly what degree of delicacy they should be for-
mulated, and in what description language.

The lexicon is open
Take the structure for some grammatical expression in a natural language and

replace one of its lexical items by a piece of phonological material unassociated with
any grammatical or semantic properties (henceforth we call such a nonsense form a
pseudo-word). For example, take a well-formed structure for (10a) and replace fox
by the random pseudo-word meglip, changing nothing else in the structure, yielding
a similar structure for (10b).

(10) a. The quick brown fox jumps over the lazy dog

b. The quick brown meglip jumps over the lazy dog

10For a more refined view of ungrammaticality we could ask for each node in the structure which
of the constraints is satisfied at that node; obviously, the normal interpretation strategy for modal
logic would be ideal for this.
11Johnson and Postal (1980) actually do adopt the view that a grammar is to be stated as a single
formula, the conjunction of the large set of material conditionals that state their constraints on
syntactic structure, though without noticing the undesirable consequence we point out here.
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What is the grammatical status of the new structure, the one with terminal string
(10b)? Does it have grammatical structure?

An unaugmented generative grammar (either top-down or bottom-up), by defi-
nition, fixes a finite inventory of admissible terminal symbols. The lexicon for the
grammar contains these symbols paired with certain grammatical and semantic
features. In top-down generative grammars only a terminal symbol (lexical item)
that appears on the right hand side of a rule can occur in a derived string, and
all nonterminals must ultimately be eliminated through the application of rules if
the derivation is to complete. Since non-terminating sequences are not derivations
at all (by definition), no top-down generative grammar, in and of itself, allows
any structure containing a pseudo-word to be in the set of grammatical sentences
generated.

The failure of bottom-up generative grammars to derive the structure of ex-
pressions with pseudo-word terminals is particularly clear. Derivations start with
a multiset of items (a ‘numeration’ in minimalist parlance) selected from some
fixed, finite lexical stock, and operations of combination are performed on them.
The generated language is the set of all structures that can be built using some
multiset. Keenan and Stabler (1996), for example, define a bottom-up generative
framework in which a grammar is a finite set Lex of lexical items together with
a finite set F of combination operations defined on Lex. The language generated
is the set of all expressions that can be derived by selecting some multiset M of
items from Lex and iteratively applying operations in F until M is exhausted and
a saturated expression (e.g., a sentence) has been derived. A structure containing
an item not present in Lex cannot be derived.

Thus (10b) has no derivation in such grammars, and is not even classified by
such grammars as a candidate for grammaticality in English, because it does not
belong to the universe of strings over the appropriate set of symbols.

A distinctive and fundamental feature of natural languages is being missed by
generative frameworks: the lexicons of natural languages are not fixed sets. Natural
languages are strikingly different from formal languages in this respect. In a natural
language the lexicon continuously changes, not just on an intergenerational time
scale (in the sense that children do not learn exactly the same words as those
their parents learned), but week by week and day by day. New brand and model
names are introduced; novel personal names are given; technical terms are devised;
new artifacts are dubbed; onomatopoeic terms are made up on the fly; words are
borrowed from other languages; noises are imitated and used as words; and in
dozens of other ways the word stock of a natural language is constantly under
modification. The lexicon of a natural language is open and indefinitely extensible.
In consequence, explicit grammars for natural languages, if they are to describe
the phenomena, must not entail that the lexicon is some fixed, finite set.

We are not concerned here with whatever diachronic processes add new lexical
items to languages during their history, nor with the psycholinguistic processes
involved in the recognition of expressions containing pseudo-words or the coining
or production of nonce words. Rather, we are concerned with a fundamental feature
of natural languages and with how explicit grammars can be formulated in a way
that is compatible with it.
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A model-theoretic syntactic framework makes available a fully explicit descrip-
tion of lexical openness.12 In model-theoretic terms, to say that a language has a
lexical item with a certain phonological form and certain grammatical and seman-
tic properties, is to say simply that there are constraints on that phonological form
stating limits on the grammatical and semantic properties that are associated with
it. That is, what it means for there to be a noun fox in English is that a condi-
tion in the grammar of English links the phonological representation /faks/ to the
lexical category N and the property of having regular inflection and the meaning
“member of the species Vulpes vulpes crucigera.”

A pseudo-word, by definition, is phonologically well-formed but has no gram-
matical or semantic properties. A correct grammar will thus state no conditions
on grammatical or semantic aspects of the structures in which it may occur. Thus
there are no grammatical or semantic constraints in any model-theoretic grammar
for a pseudo-word to violate. No expression structure will be ungrammatical solely
in virtue of containing a pseudo-word at some terminal node. If the structure of
(10b) is the same as that of (10a), then (10b) does not violate any constraint at
all.

Introductory works on language and linguistics commonly observe that expres-
sions containing pseudo-words are well formed. Many (see Pinker 1994:89 for a
typical example) reprint the first stanza of Lewis Carroll’s Jabberwocky (“ ’Twas
brillig, and the slithy toves / Did gyre and gimble in the wabe; / All mimsy were the
borogoves . . . ”) to make exactly this point — the point that syntactic structure
is not entirely dependent on lexical inventory. The authors correctly regard the
clause all mimsy were the borogoves as grammatical English. What they appear
to miss is that this insight is implicitly at odds with the machinery of generative
frameworks, which define grammars in a way that precludes the explicit description
of lexical openness.

We are not claiming that no generative framework could be modified to incor-
porate an open lexicon. There would doubtless be some way to modify generative
grammar to get the effect of a lexicon containing all possible well-formed phono-
logical representations, the default being that phonological representations are as-
sociated with the disjunction of all sets of grammatical and semantic properties.
And we are not claiming that model-theoretic frameworks entail that the lexicon is
open: it is perfectly possible to close the lexicon of a model-theoretic grammar (in
fact Rogers (1998:119) does this, for good reason, since he is interested in demon-
strating full equivalence to a context-free generative grammar). What must be
done to close the lexicon is to give an exhaustive disjunction of all the phonological
realizations and all the grammatical features they can be paired with, thus disal-
lowing for each lexical category all other realizations than the ones appearing in a
finite list.

The two framework types therefore can, to some extent, simulate each other. But
the contrast between them is nonetheless stark. They point in opposite directions.
In a model-theoretic framework, additional content (the stipulated impermissibility
of other shapes for each lexical category) has to be built into a grammar to get the

12Here, as in Pullum and Scholz (2001), we are essentially just reiterating and elaborating an
important point made by Johnson and Postal 1980:675–7. It has since been discussed more fully
by Postal (2004).
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effect of a closed lexicon. A generative framework as standardly defined, on the
other hand, would have to be modified (in a way that has so far never been worked
out) in order to get the (desirable) effect of lexical openness.

Languages, expressions, and infinity
The dominance of the generative conception of how language is to be described

has led to two items of dogma: that the set of all expressions belonging to a natural
language is an infinite set, and that each of those infinitely many expressions is a
finite object. We now proceed to argue that both of these claims are artifactual.

The myth that natural languages are demonstrably infinite
Contrary to popular belief, it has never been shown that natural languages have

infinitely many expressions. To say this is to reject familiar arguments that are fre-
quently repeated in introductory linguistics texts, encyclopedia articles, and other
presentations. Stabler (1999:321) expresses the standard wisdom tersely by saying:
“there seems to be no longest sentence, and consequently no maximally complex
linguistic structure, and we can conclude that human languages are infinite.” Such
arguments have been much repeated over the past thirty or forty years; in (11) we
offer samples, one statement from each of the last four decades.

(11) a. If we admit that, given any English sentence, we can concoct some
way to add at least one word to the sentence and come up with a
longer English sentence, then we are driven to the conclusion that the
set of English sentences is (countably) infinite. (Bach 1974:24)

b. Is there anyone who would seriously suggest that there is a number,
n, such that n is a number is a sentence of English and n+1 is a
number is not a sentence of English . . . ? On this basis we take it
as conclusively demonstrated that the number of English sentences
is infinite and, therefore, that English cannot be equated with any
corpus no matter how large. (Atkinson et al. 1982:35-36)

c. By the same logic that shows that there are an infinite number of
integers—if you ever think you have the largest integer, just add 1
to it and you will have another—there must be an infinite number of
sentences. (Pinker 1994:86)

d. It is always possible to embed a sentence inside of a larger one. This
means that Language is an infinite system. Carnie (2002:13–14)

Some of these are more carefully worded than others, but clearly the same basic
argument is repeated over and over again. It assumes that natural languages
have the property of productivity — that is, they have expression-lengthening
operations that preserve well-formedness. We do not question this. A sentence
as simple as (12a) illustrates that English has expressions with tautocategorial
embedding — i.e., a constituent of type α having a proper subconstituent of type
α, as shown in (12b).

(12) a. See Spot run away.

b. [VP see Spot [VP run away ]]
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This suggests a lengthening operation that will also permit longer expressions such
as Let Jane see Spot run away, Watch Dick let Jane see Spot run away, etc., and
indeed these are grammatical.

Our use of the term ‘operation’ here is an informal reflection of the algebraic
use of the term, not the algorithmic one. In algebra, a unary operation on a set
is just a function f : A 7→ A, and A is said to be closed under an operation
iff a ∈ A implies f(a) ∈ A. The authors quoted above apparently think that
given any productive expression-lengthening operation it follows immediately that
the set of well-formed sentences is countably infinite. It does indeed follow that
the set formed by closing a set of expressions under a lengthening operation will
be infinite. But the argument is supposed to be about natural languages such
as English. What needs to be supported is the claim that (for example) English
actually contains all the members of the closure of some set of English expressions
under certain lengthening operations.

The illustrative quotations in (11) are attempts at providing that support. We
will refer to the underlying form they all share as the Master Argument for language
infinity. Let us try to restate it in more precise form. Let E(x) mean ‘x is a well-
formed English expression’ and let µ be a measure of expression size in integer
terms — for simplicity we can let µ measure the length of the yield in words, so
that µ(w1 . . . wk) = k. Then the argument runs like this:

(13) The Master Argument for language infinity

a. There is at least one well-formed English expression that has size
greater than zero:

∃x[E(x) ∧ µ(x) > 0]

b. For all n, if some well-formed English expression has size n, then some
well-formed English expression has size greater than n:

∀n[∃x[E(x) ∧ µ(x) = n] → ∃x[E(x) ∧ µ(x) > n]]

c. Therefore, for every positive integer n there are well-formed English
expressions with size greater than n (i.e., the set of well-formed En-
glish expressions is at least countably infinite):

∴ ∀n∃x[E(x) ∧ µ(x) > n]

The Master Argument fails, in one of two different ways, depending on what
sort of universe we apply it to — more specifically, what set we assign as the
interpretation for the predicate E. There are two cases.

(i) If we choose a finite set as the extension for E, then clearly (13b) is false, and
the argument is unsound.

(ii) If we choose an infinite set as the extension for E, then (13b) is true, but we
have assumed what we set out to show — we have begged the question.
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That is, the argument fails because if English were finite one of the premises would
be false, while if English were infinite the argument would be circular, and we are
given no way to tell which is the case. (This point is not new; we are basically just
paraphrasing Langendoen and Postal 1984:30-35.)

If some argument did show that English or some other natural language had
infinitely many expressions, the fit with generative grammars would be a good one
in this respect, for given nontrivial and unbounded productivity, Post production
systems and all kinds of generative grammars generate countably infinite sets of
expressions. But in the absence of such an argument, the cardinality of the set
generated by a generative grammar is irrelevant to the choice of a framework for
linguistic theory.

Under a model-theoretic framework, no claim is made about how many natural
language expressions there are. Although each constraint in a model-theoretic
grammar will entail claims about the structure of individual expressions, nothing
in any collection of constraints need entail any claim about the size of the set of
all expressions.13 A set of constraints that accurately characterizes the syntactic
properties that well-formed English expressions have in common will be satisfied by
each well-formed expression no matter how many or how few there are, assuming
only that no restriction stated in the grammar places a ceiling on productivity —
a reasonable assumption.

The model-theoretic view enables us to distinguish two issues: (i) the existence
of productive lengthening operations in natural languages, and (ii) the cardinality
of the set of all expressions in a language. Our thesis is that the first of these is
relevant and important to the formulation of grammars for natural languages, but
the second is not.

Natural languages and expressions of infinite length
Schiffer (1972) proposes a definition of what he calls ‘mutual belief’ under which

what it would mean for Jones and Smith to have mutual belief of the proposition
that iron rusts might be expressed in an infinite string of which the following is a
representative initial subpart:

(14) Jones believes that iron rusts, and Smith believes that iron rusts, and Jones
believes that Smith believes that iron rusts, and Smith believes that Jones
believes that iron rusts, and Jones believes that Smith believes that Jones
believes that iron rusts, and . . .

Joshi (1982:182) actually states the mutual belief schema in terms of an infinitely
long conjunctive formula of this sort. The truth conditions of the infinite conjunc-
tion are clear enough under the ordinary interpretive principles for English: each
of Jones and Smith believes that iron rusts, and each has a set of beliefs about
the other’s beliefs that is closed under reapplying Jones believes that to sentences
about Smith’s beliefs and vice versa.

But is the infinite string of which a small finite initial subpart is seen in (14) a
grammatical English sentence? If not, it is certainly not clear why, since the string
13Of course, if one added to the grammar a statement such as ‘there are not more than 374
nodes’, structures would be limited to a certain finite maximum size, and thus (assuming also a
finite bound on the set of node labels and relations) would be finite in number. But the point is
that one does not have to if one has no warrant for doing so.
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is entirely Englishlike in terms of its grammatical properties. But if it is, then some
English expressions have infinite length.

No generative grammar can derive the fully expanded infinite version of 14, be-
cause derivations, by definition, complete in a finite number of steps. A derivation-
like sequence that goes on adding terminals to the string but in a way that always
adds new nonterminals as well never generates a terminal string under the standard
definitions.

Linguists seem to have been led astray by this property of Post production
systems and their progeny, taking the finiteness of expressions to be a truth about
natural languages rather than a stipulated fact about a class of formal systems.14

We see no fact about natural languages here.
We therefore take it as a point in favor of model-theoretic syntax that it permits

description of the structure of expressions without entailing claims any about their
size. The infinite sequence suggested by (14) would appear to satisfy all the con-
straints for English: subjects precede predicates, clausal complements follow their
licensing verbs, present-tense verbs agree with subjects, and so on. Those proper-
ties are the ones that a syntax for English should describe. The description need
not say anything about whether infinite length is possible for English expressions.15

What seems to be wanted here is the right to remain silent concerning expression
size. A model-theoretic syntax for English can provide that, defining the infinite
version of (14) as not violating any grammatical constraints but not insisting that
it is ipso facto a sentence.16 It would also be possible to stipulate that the infinite
version of (14) is ungrammatical by using wmsol: assuming tree structures as
above, we would state something like (15), where X is a variable over sets of
nodes:

(15) a. ∀X[∃x[X(x)] → ∃x[X(x) ∧ ∀y[(y /∗ x ∧ y 6= x) → ¬X(y)]]

b. ∀X[∃x[X(x)] → ∃x[X(x) ∧ ∀y[(y ≺ x) → ¬X(y)]]

These statements say that every sequence of nodes ordered by domination or prece-
dence comes to an end (Rogers 1998:22), which entails that structures are finite
in size (though with no specific finite upper bound). Our point, however, is that
14The relevant definitions can easily be modified, and have been for theoretical reasons within
logic and computer science (see Thomas 1990); but the standard definitions absolutely exclude
infinite expressions.
15The observation that model-theoretic (“nonconstructive”) grammars are compatible with
infinite-size grammatical expressions is stressed in Langendoen and Postal (1984). What dis-
tinguishes our position from theirs is that they hold that natural languages are proper classes,
closed under an operation of infinite coordinate compounding that renders them too large for the
laws of set theory to apply. We have no space to discuss this position here, but we note one
point. Langendoen and Postal claim that for every set X of sentences in a natural language L
there is a coordinate sentence of L having all the members of X as its coordinates. This claim
is not statable as an MTS constraint, because it is not interpretable on individual expressions.
So under a strict construal of our position, Langendoen and Postal’s closure generalization is not
just unmotivated but actually unstatable.
16Note, though, that if a first-order logic is used as the description language, the infinite version
of (14) cannot be blocked. It is a simple corollary of the compactness theorem for first-order logic
that if a theory places no upper bound on the size of its finite models, it must have an infinite
model. Thus any model-theoretic grammar that permits finite structures of arbitrary size (that is,
any grammar that is at all plausible) must admit infinite structures if it is stated in a first-order
language.
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model-theoretic frameworks do not require this. We can state a grammar without
any such stipulation, and restrict attention to an appropriate class of models as
necessary for a given task. To prove Doner’s theorem, we need to restrict atten-
tion to finite models; for other theoretical purposes, allowing infinite models might
be appropriate. Model-theoretic syntax does not require that a decision be made
once and for all on this, because model-theoretic grammars can make claims about
the structural regularities expressions have without saying anything about how big
expressions can be.

Conclusion
For nearly fifty years explicit grammars for natural languages have been formu-

lated within generative frameworks that heuristically suggest that

– quasi-expressions have no syntactic properties at all;
– all quasi-expressions are ungrammatical to the same degree;
– the lexicons of natural languages are fixed;
– natural language expressions with pseudo-words are ungrammatical; and
– a natural language contains a countable infinity of expressions.

Our thesis is that all of these are artifacts of a view that is imposed on linguistics
by generative frameworks, and leading to neglect of the actual properties of natural
language.

Model-theoretic frameworks guide explicit grammar development in a notably
different direction, correctly suggesting that

– quasi-expressions have a full array of syntactic properties describable by means
of the same grammar that defines the grammatical expressions;

– quasi-expressions are ungrammatical in a multidimensional variety of ways
and to an indefinitely large number of different degrees;

– the lexicon of a natural language is open and continually changing, often
without the changes having any syntactic implications;

– natural language expressions with pseudo-words are fully grammatical as well
as meaningful; and

– there is no theoretically important notion of the cardinality of the set of ex-
pressions in a natural language.

A rethinking of the mathematical and logical foundations of 20th-century theo-
retical syntax is in order. In 1960, when the first International Congress of Logic,
Methodology and Philosophy of Science took place, linguists were rightly taken
with the results of Chomsky (1959) on formal language theory, and few if any
knew of the almost contemporaneous work of Büchi.17 But generative frameworks
best fit the task for which Post initially developed them: describing the syntax
of artificial languages in mathematical logic. We argue for a different theoretical
basis for syntax, based not on Post’s formalization of proof theory but on the more
recent work that has begun to forge a link between the syntax of natural languages
and the semantic side of logic.
17Though Büchi was in fact present as the first Congress in 1960, and a paper of his, Büchi (1962),
opens the proceedings volume.
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