LSA Colloquium, SDSU

April 16, 2005

Semantic Role Labeling

collaborative work by:

Lucien Carroll (SDSU), Rebecca Colavin (SDSU), Hannah Rohde (UCSD), and Lara Taylor (UCSD)

supervised by:

Rob Malouf

The Problem

Computational task of semantic role labeling

- Identify verbal arguments
- Label with semantic role: Agent/Patient

Relevance of General Task

Why is semantic role labeling useful?

Automatic question-answering systems have problems with:

- No information about semantic roles

Previous Approaches

COMPUTATIONAL:

- Syntax & word-order (Gildea & Palmer 2002, and others)
- Lexical information about verb (Gildea & Jurafsky 2002)

Named entity recognition (Pradhan et al. 2004)
 THEORETICAL: Dowty (1991)
 Roles as clusters of proto-properties

 (ex. prototypical agent has more 'agent-like' properties)

 Verbal Argument Selection Principle (1991: 576)

 (ex. given sentence with 2 arguments, argument with more 'agent-like' properties will be labeled the 'agent')

Our Question

BIG PICTURE: How can we use Dowty's (1991) theory of proto-properties for the computational task of semantic role labeling?

FIRST STEP: Use inherent semantic properties of head word to label arguments as Agent/Patient

Our Proposal

TRAIN:

• Use training data to learn which properties are predictive of which role labels

TEST:

• Use these properties to predict role labels for unseen test data

RESULTS:

- Evaluate our predictions against a handlabeled answer key
- Compare our performance with that of a syntactic baseline on the same data

Training Phase

Given: 900 sentences of newspaper text – Parser-selected arguments/heads <u>Parsers</u>: Charniak, Collins, RASP (finds arguments 93%)

Dictionary of words
 <u>Dictionary</u>: General Inquirer
 with ~8000 words, 166 properties
 (coverage 78% of heads)

Train

 learn best predictors of each label by calculating conditional probabilities

Predictive Properties: Agent

<u>Property</u>

collective human kin male name non-adult perception political power pronoun role

Example Word

'government' 'student' 'uncle' 'father' 'Italy' 'child' 'mistrust' 'queen' 'president' 'it' 'expert'

Dowty proto-agent volition sentience perception causer movement

Predictive Properties: Patient

Property

abstract animal building part activity communication completion common object means to goal object ordinal solve tool

Example Word 'accuracy' 'fish' 'kitchen' 'task' 'media' 'defeat' 'television' 'payment' 'pistol' 'eighth' 'project' 'fork'

Dowty proto-patient

stationary causally affected incremental theme undergoes change of state

Testing Phase

- Given: 100 test sentences and same tools
- Further elimination: arguments Baseline doesn't label

Test

- given a verb and its arguments:

- 1. find properties for each argument head
- 2. for each arg, calculate how likely each label is
- 3. pick argument with "strongest" preference for a label and assign it that label
- 4. reduce set of remaining labels & remove labeled arg from consideration
- 5. repeat 1-4 until no arguments remain

Results

100 arguments attempted:

- Random:
- Baseline:

Semantic Labeler:

precision 33%
precision 88%
precision 81%

Error Analysis I

- Errors from learned semantic properties:
- Non-prototypical agents
- Lack of pronoun resolution

Error Analysis II

- Non-prototypical agents:
 - Personification

(5) ...another machine is doing the work.

Multiple Roles

(6) <u>Applications</u> won't have to be rewritten to work with Task Broker...

Error Analysis III

Lack of pronoun resolution:

(7) The program gets the task_i and **splits** $\underline{it_i}$ up into parts...

Things we get right!

Where semantics wins over word order

 ☺ semantic properties ⇒ patient
 (where Baseline depends on word order and mistakenly chooses agent)

'get' passives

(8) When elephants start fighting, ants get killed...

unaccusative verbs

(9) If the <u>battle</u> continues much longer ...

Conclusions & Future Research

- Predicted semantic roles (81% accuracy) using properties that overlap with Dowty's proto-properties
- Tension between syntax and semantics
- Inherent properties now need event-level information (e.g. movement with respect to other participant)
 - (10) a. The batter hit the baseball.
 - b. The baseball hit the batter.
- Larger project: implementation using conditional random fields, allows us to label all arguments simultaneously

References

- Briscoe, E. and J. Carroll. 2002. Robust accurate statistical annotation of general text. In Proceedings of the 3rd Intl Conference on Language Resources and Evaluation: pp. 1499–1504.
- Carreras, X. and Màrquez, L. 2004. Introduction to the CoNLL-2004 Shared Task: Semantic Role Labeling. In Proceedings of the 8th Conference on Natural Language Learning.
- Charniak, Eugene. 2000. A Maximum-Entropy-Inspired Parser. In Proceedings of NAACL-2000.
- Collins, Michael. 1996. A New Statistical Parser Based on Bigram Lexical Dependencies. In Proceedings of the 34th Annual Meeting of the ACL.
- Dowty, David. 1991. Thematic proto-roles and argument selection. Language 67.3:547-619.
- Gildea, Daniel & Daniel Jurafsky. 2002. Automatic Labeling of Semantic Roles. Computational Linguistics, 28(3):245-288,2002
- Gildea, Daniel & Martha Palmer (2002). The Necessity of Parsing for Predicate Argument Recognition. In Proceedings of ACL 2002, Philadelphia, USA, 2002.
- Pradhan, S., Ward, W., Hacioglu, K., Martin, J., Jurafsky, D., 2004. Shallow Semantic Parsing using Support Vector Machines. In Proceedings of HLT/NAACL.