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Abstract

We consider the problem of language evolution in a population
setting, focusing on the case of continuous parameter learn-
ing. While theories of phonetic change tend to emphasize the
types of transmission errors that could give rise to a shift in
pronunciation norms, it is challenging to develop a model that
allows for both stability as well as change. We model the ac-
quisition of vowel-to-vowel coarticulation in both single- and
multiple-teacher settings, considering progressively more re-
strictive prior learning biases. We demonstrate that both sta-
bility and change are possible at the population level, but only
under fairly strong assumptions about the nature of learning
and production biases.
Keywords: Language evolution; sound change; computa-
tional modeling; phonetics; coarticulation

Introduction
The problem of language evolution and change has received
increased attention from a computational perspective in re-
cent years (e.g. Niyogi & Berwick, 1995; Wedel, 2006; Kirby,
Dowman, & Griffiths, 2007). Most of this work has focused
on modeling either lexical or syntactic change, where the task
is usually cast as deciding between competing discrete repre-
sentation, e.g. different grammars (Baker, 2008). A similar
approach is often taken in models of the evolution of sound
patterns, where the learning problem is cast as one of deciding
between discrete pronunciation variants (e.g. Niyogi, 2006).

However, learning a sound pattern of a language also con-
sists of learning continuous phonetic cue distributions that de-
scribe how the sounds of that language are realized. Under-
standing the dynamics of these distributions is important for
understanding sound change, because the seeds of category-
level change are often claimed to be based in continuous pho-
netic variation (Ohala, 1993). In this paper, we address the
evolution of sound patterns by considering the acquisition
of continuous parameter distributions in a population setting.
While we consider the particular example of a phonetic pa-
rameter, the basic results are applicable to the learning of con-
tinuous parameters more generally.

Stability and change in phonetic realization
In all languages, when a sound is produced in a connected
stream of speech, its phonetic realization is influenced by the
preceding and/or following context. This contextual variabil-
ity, termed coarticulation, has often been argued to underlie
a wide variety of sound changes in the world’s languages.
One example is a historical process known as primary um-
laut, attested in Old High German beginning c. 750 AD, in
which short low /a/ was fronted and raised to /e/ when a
high front vowel or glide occurred in the following syllable,

e.g. *[gasti:] > /gesti/ ‘guests’ (modern German Gäste). It
has been proposed that the roots of umlaut may be traced
to vowel-to-vowel coarticulation (Iverson & Salmons, 2003);
however, vowel-to-vowel coarticulation did not invariably re-
sult in umlaut. For example, even while primary umlaut was
spreading throughout West Germanic, it is clear that it did
not affect Gothic (Campbell, 1998:75). The umlaut example
illustrates a more general point: the mere presence of a poten-
tial trigger does not imply that phonetic change is inevitable.
Thus, any empirically adequate model of how the sound pat-
tern of a language evolves must account for instances of sta-
bility as well as change (Weinreich, Labov, & Herzog, 1968).

Learning bias in phonetic change

An important body of research on phonetic change has fo-
cused on establishing the preconditions for change to occur
in a single speaker-hearer (Ohala, 1993). Similarly, compu-
tational models of phonetic change have mostly considered
individuals, focusing on how biases in learning or in speech
production/perception impact whether or not change occurs
(Pierrehumbert, 2001). However, even if a change were to
obtain at the level of a single speaker, its spread in the speech
community is far from inevitable: social and cultural factors
may conspire to inhibit or enhance a change in the popula-
tion at large. In addition, the dynamics of linguistic popula-
tions are complex: how assumptions about individual speak-
ers play out in population dynamics can be surprisingly non-
trivial and dependent on assumptions about population struc-
ture (Niyogi, 2006). For both reasons, the general plausibility
of accounts of contextually-driven phonetic change, and what
role channel and learning biases play, cannot be properly as-
sessed until their dynamics at the population level are better
understood.

This paper explores the effects of different assumptions
about bias and population structure on the evolution of pho-
netic categories in a population, as applied to a simplified ver-
sion of primary umlaut in Germanic. In particular, we con-
sider six models of learning how /a/ is pronounced before a
high vowel. Our aim is a model which satifies three goals:

1. Stability of limited coarticulation in the population, as in
pre-Old High German

2. Stability of full coarticulation in the population (e.g. um-
laut), as in Old High German

3. Change from stable limited coarticulation to stable full
coarticulation.
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Figure 1: (a) Parallel diffusion chains (classic iterated learning). (b) Single-teacher scenario. (c) Multiple-teacher scenario.

Properties of populations
Fig. 1 illustrates three types of population structure. Fig. 1a
shows a classic iterated learning (IL) scenario, also known
as a diffusion chain (Smith, Kirby, & Brighton, 2003). In IL,
each learner of generation t + 1 receives input from a ran-
domly chosen member of generation t. Thus, every member
of a generation functions both as learner and as teacher. Fig.
1b illustrates single-teacher learning with replacement. This
scenario differs crucially from classic IL in that while the in-
put for a learner comes from exactly one teacher, some teach-
ers may provide input to more than one learner, while oth-
ers may not provide any. Finally, Fig. 1c illustrates multiple-
teacher learning with replacement. Here, input may come
from more than one teacher, although some teachers may not
provide data to any leaners in the following generation.

The IL scenario has frequently been assumed in work on
language evolution and change (e.g. Smith et al., 2003; Kirby
et al., 2007).1 While these models have well-understood dy-
namics and may be appropriate in some situations, in general
different dynamics emerge in population learning scenarios
(1b-c) (Dediu, 2009; Smith, 2009). In this work we focus on
scenarios (1b-c), aiming to determine (1) what type of biases
are necessary for stability and change to obtain in a popula-
tion of learners, and (2) if and how such biases interact with
differences in the number of teachers. We begin with a naive
learning model (no prior) and then turn to consider progres-
sively more restrictive priors.

Framework
We assume that (1) speech sounds have been organized into
discrete segments; (2) the phonetic realisation of segments
is subject to coarticulation; and (3) the learner has access to
the complete segmental inventory. We consider here a simple
language with the lexicon Σ = {V1,V2,V12}, where V12 rep-
resents V1 in the potentially coarticulation-inducing context
of V2. For the primary umlaut example, V1 and V2 can be
thought of as the vowels /a/ and /i/ in isolation, and V12 as the
vowel /a/ in a context where it is coarticulated towards /i/.

For simplicity, vowel tokens are represented by their first
formant (F1) value, an acoustic measure of vowel height. We
assume that the F1 distributions of V1 and V2 are known to
all learners, are the same for all learners, and do not change
over time. The distribution of V12 differs from that of V1
only by an offset to the mean p, indicating how much V1 is
affected by coarticulation (i.e. raised) in the V2 context. In all

1Some work, e.g. Griffiths and Kalish (2007), has also consid-
ered models of type (1b), but only for the discrete parameter case.

derivations below, we assume in particular that for a learner
with parameter p, the three categories V1, V2, and V12 follow
normal distributions in a single dimension (F1):

V1 ∼ N(µa,σ
2
a), V2 ∼ N(µi,σ

2
i ), V12 ∼ N(µa− p,σ2

a) (1)

We assume that learners are divided into discrete genera-
tions Gt of size M. Each learner in generation Gt receives
nV12 examples of V12 from the members of generation Gt−1.
The learner’s task is then simply to infer p. The state of the
population Gt can thus be characterized by the distribution
p∼ πt(p). For simplicity, we assume that M is infinite, so the
evolution of the population is not a stochastic process.

In Gt+1, each learner is presented with n examples of V12
drawn from a sequence of teachers in Gt chosen by some sam-
pling procedure S .2 Given these examples, the learner applies
some learning algorithm A . Assuming S and A are the same
for all agents in Gt+1, this implies the following evolution
equation for πt :

(πt+1) = fS,A(πt |constants) (2)

For a given A and S , our goal is to determine f , and character-
ize its behavior, in particular which (if any) of our modeling
goals it satisfies.

Models
This section describes the evolutionary dynamics of a popu-
lation of learners who estimate the degree of coarticulation
from training data based on the assumption that these exam-
ples are independently and identically (i.i.d.) generated by a
single source with a fixed p. We consider learners with three
types of prior bias in estimating p, corresponding to three
choices of A : no prior (Anaive), a simple prior (Asimple), and a
more complex prior (Acomplex). These learners are embedded
in two of the types of populations shown in Fig. 1, corre-
sponding to two choices of S : (1b), in which a learner’s input
is provided by a single teacher (Ssingle), and (1c), in which her
input may be drawn from multiple teachers (Smultiple).

Anaive: Naive learning models
We first consider maximum-likelihood (ML) learners who are
“naive” in the sense of having no prior over estimates of p.3

2This is equivalent to sampling from πt(p) and generating an
example from the distribution implied by the value of p chosen.

3These models are equivalent to special cases of ‘blending in-
heritance’ models of cultural evolution of a quantitative character
(Boyd and Richerson, 1985: 71ff).



Model 1.1: Naive learning, single teacher First we con-
sider a situation in which a learner in generation Gt+1 re-
ceives examples from a single member of generation Gt .
Each learner is associated with a value pparent (one draw from
the πt distribution, representing the single teacher’s degree
of coarticulation), which is used to generate n training ex-
amples ~y = (y1, . . . ,yn). Let ȳ be the mean of this sam-
ple. Each example is normally distributed, following (1):
P(yi) = N(µa− pparent,σ

2
a). The sample’s mean is also nor-

mally distributed, with the same mean and reduced variance:

P((y1 + · · ·+ yn)/n | pparent) = N(µa− pparent,σ
2
a/n) (3)

Given ȳ, the learner’s maximum-likelihood estimate of p is
p̂ = µa− ȳ. Thus, using Eq. 3, the distribution over values of
p̂ the learner could acquire given pparent is:

P(p̂ | pparent) = N(pparent,σ
2
a/n) (4)

We are interested in the evolution of the distribution πt :
that is, the marginal distribution of p̂ as a function of the dis-
tribution of pparent. Abbreviating pparent as p, this is:

πt+1(p̂) =
∫

P((p̂ | p)︸ ︷︷ ︸
Eq. 4

πt(p)d p

=
∫

πt(p) ·Np̂(p,σ2
a/n)d p (5)

To get a sense of the evolution of πt , we can compute how
its mean and variance change over time. Let p be the random
variable distributed according to πt , and p̂ the same for πt+1.
The expected value of p̂ is then:

E[p̂] =
∫

πt+1(p̂) p̂d p̂ =
∫ [∫

πt(p) ·Np̂(p,σ2
a/n)d p

]
p̂d p̂

=
∫

πt(p)
[∫

Np̂(p,σ2
a/n) p̂d p̂

]
︸ ︷︷ ︸

=E[p̂ | p]=p

d p

=
∫

πt(p) pd p = E[p] (6)

By a similar derivation for E[p̂2], the variance of p̂ can be
shown to be:

Var(p̂) = E[(p̂−E[p̂])2] = E[p̂2]−E[p̂]2

= σ
2
a/n+Var(p) (7)

Thus, the distribution of p in the n+ 1th generation has the
same mean as in the nth generation, but larger variance; i.e.,
the distribution becomes more diffuse with each generation.4

4This contrasts with the common statement that ‘blending inher-
itance’ reduces variance of a quantitative trait over time (Boyd and
Richerson, 1985: 75). However, stable or increasing variance are
possible for particular cases of Boyd and Richerson’s model, such
as the case considered here where each learner has a single ‘cultural
parent’ and there is noise in estimating the parent’s cultural model.

Model 1.2: Naive learning, multiple teachers We now
consider the case where a learner in generation Gt+1 receives
each training example from a randomly-chosen teacher in
generation Gt+1. This is equivalent to drawing n values of
p from πt , ~p = (p1, . . . , pn), and for each pi generating one
training example yi:

P(yi | pi) = N(µa− pi,σa) i = 1, . . . ,n (8)

As in the single-teacher case, we assume that the learner
chooses the ML estimate for p, p̂ = µa− ȳ. Using (8) and
the fact that the yi are independent and normally distributed:

P(ȳ |~p) = N(µa− (p1 + · · ·+ pn)/n,σ2
a/n)

=⇒ P(p̂ |~p) = N(p̄,σ2
a/n) (9)

where p̄ = (p1 + · · ·+ pn)/n. Thus, the learner’s estimate p̂
is the mean of the p values which generated the training data,
plus some noise.

To obtain πt+1(p̂), the marginal distribution of p̂, we inte-
grate out p1, . . . , pn from (9):

πt+1(p̂) =
∫

Np̂(p̄,σ2
a/n)

n

∏
i=1

πt(pi)d pi (10)

As in the single-teacher case, we can get a sense of how the
distribution of p evolves by computing the mean and variance
of πt+1. Let pt be the random variable with distribution πt .
The expected value and variance of p̂ can be shown to be:

E(p̂) = E(pt), Var(p̂) = σ
2
a/n+Var(pt)/n (11)

Some algebra shows that

(Var(p̂)−α∗) = (Var(p)−α∗)/n

where α∗ = σ2
a/(n− 1). The variance of the distribution of

p moves over time towards α∗; if already at α∗, it stays there
forever. Thus, the mean of the distribution of p stays the same
over time, but its variance moves towards a single value.

Summary Whether the single-teacher (1.1) or multiple-
teacher (1.2) scenario is assumed, the naive learning models
predict that the average degree of coarticulation in the popu-
lation will not change over time. It follows that, under these
assumptions, change from little coarticulation to full coartic-
ulation (Goal 3) is not possible.

The single-teacher model has an additional problem. The
variability of the degree of coarticulation in the population
is predicted to increase with each generation., i.e. speakers
come to coarticulate increasingly differently. Intuitively, be-
cause each production is noisy, the learner’s estimate of the
degree of coarticulation is inherently noisy (Eq. 4): it is im-
possible to exactly acquire the target value of the parent from
a finite sample. Increasing population-level variation in the
degree of coarticulation over time is clearly empirically in-
adequate, because the effects of umlaut are generally either
present or absent in a given population. Thus, Model 1.1 does
not allow for stability of a population with little coarticulation
(Goal 1) or full coarticulation (Goal 2).



Asimple: Simple prior models
Intuitively, the reason that the single-teacher naive learning
model fails to allow for stability around a particular value
of p is that there is no force counteracting the noise in each
learner’s estimate (4), which causes the distribution of p val-
ues to spread out over time. In this section, we consider the
effect of a simple prior learning bias on the evolution of p.

As above, we assume the learner estimates p based on the
assumption that data is generated i.i.d. from a source with a
fixed p. The distribution of the data under this assumption is

P(~y | p) = P(y1 | p) · · ·P(yn | p) (12)

=
exp
[
−∑

n
i=1(yi−µa + p)2/(2σ2

a)
]

(2πσ2
a)

n/2 (13)

However, we now assume that learners’ knowledge about p
is probabilistic: they begin with a prior distribution (P(p) =
α(p)) on how likely different values of p are a priori, which is
updated to a posterior distribution based on the data (P(p |~y)).

Recall that the population of naive learners from a single
teacher did not show the simplest possible empirically ade-
quate dynamics: stability of the distribution of p over time
near p = 0; i.e., most people have a minimal (but fixed) de-
gree of coarticulation. As a first pass to see if this behavior is
possible with learners who reason probabilistically about p,
we assume learners have a prior biasing them towards values
of p near 0, with values away from 0 becoming increasingly
less likely. Intuitively, this prior “should” sharpen the distri-
bution of p towards p = 0 over time, counteracting the effect
of transmission noise which tends to make the distribution of
p spread out more in each generation (as in Model 1.1).

For simplicity, we assume a Gaussian prior α ∼ N(0,τ2).
The posterior is then simply:

P(p |~y) = P(~y | p)P(p)/P(~y) (14)

The learner must pick a point estimate of p, denoted p̂, using
P(p |~y). The two familiar strategies, choosing the maximum
or expected value of the posterior (abbreviated MAP, EV),
turn out to be equivalent:

p̂MAP = p̂EV =
(µa− ȳ)

1+σ2
a/ nτ2 (15)

Abbreviating the denominator of (15) as K = 1+σ2
a/(nτ2),

these estimates of p may then be equivalently written as p̂ =
(µa− ȳ)/K.

As above, we can now consider the consequences of this
learning strategy under different population scenarios.5

Model 2.1: Simple prior, single teacher We again first as-
sume a scenario in which each learner in generation Gt+1 re-
ceives n training examples from a single member of genera-
tion Gt , who has coarticulatory parameter pparent, abbreviated
as p. The distribution of p is P(p) = πt(p).

5The ML estimate of p̂ in the no-prior case above, µa− ȳ, can
thus be thought of as the Gaussian-prior estimate when the prior is
very flat relative to the dispersion of the phonetic category (τ� σa).

We first determine the distribution of a learner’s estimate
p̂, given fixed p and data ~y. ȳ is normally distributed, as de-
scribed by (3), as in the no-prior case. Because ȳ is normally
distributed and p̂ = (µa− ȳ)/K, the distribution of p̂ is

P(p̂ | pparent) = N(pparent/K,σ2
a/nK2) (16)

Thus, on average, the learner’s estimate of p is closer to 0
than the parent’s value.

We can now compute the marginal distribution of p̂:

πt+1(p̂) = P(p̂) =
∫

P(p̂ | p)︸ ︷︷ ︸
(16)

P(p)d p (17)

=
∫

Np̂(p/K,σ2
a/nK2)πt(p)d p (18)

As in the no-prior case, we can gain some understanding of
the evolution equation (18) by examining how the expectation
and variance of p evolve. By a similar derivation to (6), it can
be shown that the expectation of p̂ is:

E(p̂) = E(pparent)/K (19)

Because K > 1 (for any values of σa, n, and τ), the ex-
pected value of the coarticulation parameter decreases with
each generation. By a similar derivation to the no-prior case,
the variance of p̂ can be shown to be

Var(p̂) = [σ2
a/n+Var(p)]/K2 (20)

and some algebra shows that

(Var(p̂)−α∗) = (Var(p)−α∗)/K2

where α∗ =
σ2

a
n(K2−1) . Because K > 1, the variance of p moves

over time towards the fixed point α∗, as in Model 1.2. Thus
(as noted by Smith, 2009 in other settings), the distribution of
coarticulation in the population does not converge to the prior,
unlike the well-known result of Griffiths and Kalish (2007).

Model 2.2: Simple prior, multiple teachers The situation
is similar under Smultiple. The mean of p can be shown to
evolve exactly as in the single-teacher case (19), towards 0.
Similarly, the variance looks very similar to the evolution in
the single-teacher case (20), except for an extra factor of n in
the denominator. The variance again evolves towards a fixed
point, now α∗ = σ2

a/(nK2−1), but in this case more quickly
than in Model 2.1. Intuitively, this means that because learn-
ers have a strong prior against coarticulation, evidence for
coarticulation at the level of the individual is mitigated and is
unlikely to spread throughout the population.

Summary For both single- and multiple-teacher scenarios,
a simple Gaussian prior drives the value of p to 0, predict-
ing phonologization of coarticulation to be impossible. Thus,
both Model 2.1 and 2.2 meet modeling Goal 1 (stability of
little coarticulation), but neither of Goals 2 or 3.



Acomplex: Complex prior models
The preceding section has shown that the distribution of p
in populations of learners with a Gaussian prior always con-
verges to 0. This simple prior model is empirically inade-
quate, because it fails to predict the possibility of stable coar-
ticulation in a population. We therefore considered several
more complex priors. Here we discuss one such prior, a
quadratic polynomial with a minimum at (µa− µi)/2 which
is concave up between 0 and µa−µi:

P(p) ∝
[
a(µa−µi)

2 +(p− (µa−µi)/2)2] (21)

Here, a is a scale parameter controlling the “strength” of the
prior: as a→ 0, values of p near the endpoints are maximally
weighted relative to values near (µa−µi)/2; as a is increased,
the prior is progressively flatter.

We assume the learner takes the MAP estimate of p for
values of p in [0, µa−µi], which does not have a closed form
solution, but can be found numerically. We thus proceeded
by simulation to determine the evolution of the distribution
of p over time in this case. The results reported here assume
µa−µi = 200 and a strong prior (a = 0.01) in a single-teacher
setting. Due to space constraints we discuss only the results
for single-teacher models; the results for analogous multiple-
teacher models are similar, in terms of our modeling goals.We
used large generation sizes (M = 10000) to approximate the
deterministic behavior of infinite populations.

Model 3.1: Complex prior First, we considered cases
where there is little coarticulation in the population (p0 ∼
N(10,10)) and where primary umlaut is effectively complete
(p0 ∼ N(190,10)). The evolution of density estimates for p
over 1000 generations can be seen in the first panel of Fig.
2. While there is a slight shift in the mean and variance,
they reach relatively stable values by around 1000 genera-
tions. However, the strength of the prior, in terms of the value
of a, is important: as seen in the second panel of Fig. 2, for a
weak prior (a = 0.99), the variance of p in the population in-
creases quickly over time, with results similar to the no-prior
case discussed above.
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Figure 2: Evolution of density of p over time (indicated by
color) with (left) a strong polynomial prior (a = 0.01) or
(right) a weak polynomial prior (a = 0.99).

The simulation results suggest that a strong polynomial
prior can result in a stable distribution for p in the popula-
tion over time, with most learners having values near 0 (little
coarticulation) or 200 (full coarticulation). Model 3.1 thus
satisfies our Goals 1 and 2.

Model 3.2: Complex prior, production bias More exten-
sive simulation with Model 3.1, however, suggests that it does
not satisfy Goal 3: it is never possible for a population to
transition from a stable state of little articulation to a stable
state of full coarticulation. The reason is intuitively clear: the
prior is strong enough to bias learners towards either p = 0 or
p = µa−µi, but there is no countervailing force which could
bias learners towards full coarticulation.

One plausible type of bias is an external force that increases
the likelihood of coarticulated variants. Here, we implement
a systematic production bias by assuming that some percent-
age of the learner’s data have been moved towards µi by a
quantity ` ∼ N(λ,λ/2); that is, they are coarticulated more
than expected from the teacher’s value for the coarticulatory
parameter. This kind of bias, corresponding to a general ten-
dency in speech production to over- or undershoot articula-
tory targets, is commonly considered in computational mod-
els of phonetic change (e.g. Pierrehumbert, 2001).

Assuming a strong polynomial prior a= 0.01, change from
no to full coarticulation turns out to indeed be possible, but
only for a sufficiently large bias. Fig. 3 illustrates this with
bias factors λ = 2 and λ = 10, starting in a state with lit-
tle coarticulation (p0 = 10), in which 10% of tokens in each
generation were subject to a lenition bias. As in Model 3.1,
for a strong enough prior (low a) with no bias, the little-
coarticulation state is stable. As the amount of bias (λ) is
increased past a critical value, there is a rapid shift of the pop-
ulation to a stable state where most learners have full coar-
ticulation. That is, there is a bifurcation where the amount
of bias has overcome the stabilizing affect of the prior, and
the little-coarticulation state becomes unstable. These results
also illustrate a more general tradeoff between the strength of
the prior and the amount of bias observed in further simula-
tions (not shown here): for a stronger prior, the critical value
of λ increases: more bias is needed to overcome the prior.

Thus, Model 3.2 meets all three of our modeling goals:
(1) a stable population with little coarticulation, (2) a stable
population with full coarticulation, and (3) a rapid transition
from little to full coarticulation are all possible, for particular
initial conditions and values of the system parameters (a, λ).

Discussion
Our main goal in this paper was to evaluate how assumptions
about bias and population structure for a population of learn-
ers of a continuous parameter translated into population-level
models capable of modeling three empirically-observed sce-
narios of stability and change.

One interesting result was that population structure did
not necessarily have much effect on the dynamics. For
the naive learning scenario, the single-teacher and multiple-



 2 10

0

50

100

150

200

0 100 200 300 400 0 100 200 300 400
Generation (t)

D
eg

re
e 

of
 c

oa
rt

ic
ul

at
io

n 
(p

)

Prob(p)
0.00

0.02

0.04

0.06

Figure 3: Evolution of density of p over time (indicated by
color) with a strong polynomial prior (a = 0.01), with 10%
of tokens subject to bias factor λ = 2 (left) or λ = 10 (right).

teacher models had qualitatively different dynamics: the vari-
ance in the degree of coarticulation stabilized over time in the
multiple-teacher model, but increased over time in the single-
teacher model. But for the simple prior and complex prior
models, whether a single-teacher or multiple-teacher scenario
was assumed largely impacted the rate at which a stable state
was reached, rather than changing the qualitative outcome.
Given that social structure plays a key role in the actuation
and spread of language change (Labov, 2001), future work
should further explore the role of different population struc-
tures with more complex teacher-learner relations.6

On the other hand, assumptions about bias mattered a great
deal. When no or weak learning bias (Anaive, or Asimple
with high a) was assumed, stability of the distribution of
the coarticulatory parameter p in the population was impos-
sible. When a strong bias towards non-coarticulation was
assumed (Anaive with low a), stability of minimal coarticu-
lation was possible (Goal 1), but stability of full coarticula-
tion and change between the two (Goals 2, 3) were not. It
was only after assuming learners have a strong prior biasing
them towards either little or full coarticulation, along with in-
troducing an explicit unidirectional pressure to coarticulate,
that it was possible to have primary umlaut: change (Goal 3)
from stability of little coarticulation (Goal 1) to stability of
full coarticulation (Goal 2).

Model 3.2, which met all three goals, shows a bifurcation:
change from one stable state (little coarticulation in the pop-
ulation) to another (full coarticulation in the population) oc-
curred suddenly as a system parameter (the amount of pro-
duction bias) was varied past a critical value. Bifurcations
in linguistic populations have been suggested as a potential
mechanism underlying the actuation of linguistic change, but
to our knowledge have previously only been shown to oc-
cur in models of change in discrete parameters (e.g. Niyogi,
2006). Our demonstration that bifurcations are possible in a
population of learners of a continuous parameter supports the

6A additional extension to be explored is horizontal transmission.
In the present models, learners do not receive input from members
of their own generation, but this could impact the dynamics as well.

hypothesis that bifurcations play a key role in the actuation of
language change more generally. Future work should explore
whether such bifurcations emerge in models that more accu-
rately reflect the social structure of speech communities, and
where the outcome of learning is a distribution over multiple
phonetic cues, rather than a single cue.
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