
Author’s preprint version. Published 2014 in Laboratory Phonology (5)1, 195-230. 

1 

Incipient tonogenesis in Phnom Penh Khmer: Computational studies 

James P. Kirby 

School of Philosophy, Psychology and Language Sciences, University of Edinburgh, Dugald Stewart 

Building, 3 Charles Street, Edinburgh EH9 8AD UK 

 

Abstract 

In the colloquial Phnom Penh dialect of Khmer (Cambodian), lexical use of F0  is 

emerging together with an intermediate VOT category and breathy phonation 

following the loss of /r/ in onsets (e.g. ្ក# /kruː/ ‘teacher’ > [kʰu ̤̀ː]). I show how this 

incipient tonogenesis might arise in a series of computational simulations tracing 

the evolution of multivariate phonetic category distributions in a population of 

ideal observers. Acoustic production data from a fieldwork study conducted in 

Phnom Penh was used as the starting point for the simulations. After establishing 

that the basic framework predicted relative stability over time, two possible 

responses to a phonetic production bias were considered: one in which agents 

correctly identified the source of (and thereby compensated for) the effects of the 

bias, and one in which agents misattributed the acoustic effects of the bias as a 

property of the onset. Good qualitative fits to the empirical production data were 

found for the latter group of learners, while the outcome for compensating learners 

resembled production data from a related dialect. These results are consistent with 

the sudden and discontinuous nature of many sound changes, and suggest that what 

appear to be enhancement effects may also emerge under different assumptions 

about the number of cue dimensions accessible to or deemed relevant by the 

learner.  

 

1  Introduction 

A topic of central interest for researchers studying the evolution of sound systems is PHONOLOGIZATION 

(Hyman, 1976), the historical process whereby the distribution of a predictable and phonetically natural 

process becomes phonologically determined. A familiar example is the idea that lexical tone contrasts can 

trace their origins to the pitch perturbations conditioned by differences in obstruent voicing (Matisoff, 
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1973; Hombert et al., 1979). A schematized account of this process is sketched in Table 1. First, intrinsic 

differences in vowel F0  (Stage I) become a perceptual cue to the identity of the initial consonant (Stage 

II). If other cues to the contrast between initial consonants are lost, the contrast may be maintained solely 

by differences in F0  (Stage III), setting the stage for a reanalysis of pitch as a contrastive phonological 

feature. Similar accounts have been sketched for the development of contrastive vowel length 

(Kavitskaya, 2002), vowel quality (Moreton and Thomas, 2007), nasalization (Beddor, 2009) and 

consonant voicing (Johnsen, 2011). 

  

Table 1: Tonogenesis as phonologization F0 (after Hyman, 1976). Sparklines show time course of F0  production. 

Stage I Stage II Stage III 

pá  pá  pá  

bá  bǎ  pǎ  

 

Phonologization often involves multiple phonetic features. An example is provided by the case of 

incipient tonogenesis in Phnom Penh Khmer, an Austroasiatic language of Cambodia. As shown in Table 

2, Standard Khmer contrasts plain with aspirated stops in onsets; it also allows a large number of onset 

clusters, of which one in particular, /Cr/, will be of interest here. It has long been noted that in the 

colloquial speech of the capital Phnom Penh (hereafter PP), words such as ្ក# /kruː/ ‘teacher’, realized as 

[kruː] in Standard Khmer, are produced in PP as something like [kùː], [kʰǔː], or [kṳː]: that is, realized with 

a falling or falling-rising pitch contour along with increased post-release aspiration and/or breathy 

phonation in place of the trill (Noss, 1966; Huffman, 1967; Wayland and Guion, 2005; Filippi and 

Vicheth, 2009). Thus the contrast between colloquial forms of words such as ្ក# /kruː/ ‘teacher’ and ក ូ

/kuː/ ‘pair’, or ត /taː/ ‘grandfather’ and ្ត /traː/ ‘seal, stamp’, is presumably being maintained primarily 

by differences in the phonetic realization of the nucleus. 

  

 



Author’s preprint version. Published 2014 in Laboratory Phonology (5)1, 195-230. 

3 

Table 2: Plain, aspirated, and plain stop+trill onset clusters in Standard Khmer. 

ប"# /paː/ ‘father’ ផ /pʰaː/ ‘cloth’ ្ប /praː/ ‘kind of fish’ 

ត /taː/ ‘grandfather’ ថ /tʰaː/ ‘to say’ ្ត /traː/ ‘seal, stamp’ 

កូ /kuː/ ‘pair’ ឃូរ /kʰuː/ ‘old’ ្ក# /kruː/ ‘teacher’ 

  

In an acoustic investigation of this sound change, Wayland and Guion (2002, 2005) found that /r/-loss 

in PP Khmer was characterized by the development of increased post-release aspiration along with a 

falling-rising pitch contour in two speakers. More recently, I explored the perception and production of 

this contrast in 20 native speaking participants of PP Khmer (Kirby under review). Figure 1 plots F0  (in 

Hz) over the time course of the vowel for male and female speakers’ productions of /CrV/ forms in both 

reading (Standard Khmer) and colloquial (PP) conditions. For speakers of both sexes, F0  of words 

produced in the colloquial condition was consistently lower (by 20-30 Hz) than F0  of words produced in 

the standard/reading condition at all timepoints; however, the steepness of the F0  drop was not 

significantly greater in /CrV/ onsets compared to /CV/ or /CʰV/ onsets. Items were also examined for 

evidence of a phonation type distinction by measuring the amplitude differential between the first and 

second harmonics (H1-H2) and the difference between the amplitude of the first harmonic and the 

amplitude of the most prominent harmonic of the third formant (H1−A3), both corrected for the influence 

of vowel height using the method of Iseli and Alwan (2004). The results indicate that both H1*−H2* and 

H1*−A3* are generally higher in colloquial speech than in standard speech; however for both measures 

this difference is primarily manifested at onset and offset of the vowel (Figure 2).  
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Figure 1:  Average F0  (in Hz) by sex (left: female, right: male) and condition for /CrV/ items. Bars show standard 

error of the mean. After Kirby (under review). 

  

Figure 2:  Average H1*−H2* (left) and H1*−A3* (right) by condition (standard: solid, colloquial: dashed) for /CrV/ 

items. Bars show standard error of the mean. After Kirby (under review). 

 

As they only analyzed forms with underlying trills, Wayland and Guion assumed that the degree of 

aspiration in colloquial forms was comparable to that of fully aspirated stops. However, data from Kirby 

(under review) shows that the duration of post-release aspiration in colloquial PP /CrV/ forms is 

intermediate between that of standard /CV/ and /CʰV/ forms. Figure 3 shows VOT values for /CrV/ in 

colloquial PP speech in comparison with standard Khmer /CrV/, /CV/ and /CʰV/ items.1 Although VOT of 

                                                
1 Note that there are no significant differences between reading (Standard Khmer) and colloquial (PP Khmer) 

pronunciations of /CV/ and /CʰV/ forms for any of the acoustic variables studied. As such, these forms will be 
conflated in the remainder of the manuscript. 
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colloquial /CrV/ forms is indeed increased relative to the reading pronunciation of those same forms, it is 

not as extensive as in reading condition /CʰV/ forms. A multilevel regression model estimates the VOT of 

aspirated stops in reading condition to be, on average, nearly twice as long as the VOT of plain stops in 

/CrV/ sequences when produced colloquially. Thus it appears that, rather than merging with one of the 

existing categories, the loss of /r/ in PP has triggered the emergence of a novel phonetic (if not yet 

phonological) category. 

  

Figure 3:  VOT by onset in standard (open) and colloquial /CrV/ forms (shaded). From Kirby (under review). 

 

To explore perceptual sensitivity to cues distinguishing colloquial PP forms like ្ក# /kruː/ ‘teacher’ 

from ក ូ /kuː/ ‘pair’, Kirby (under review) employed a two-alternative forced choice (2AFC) listening 

paradigm to test listener sensitivity to three potential cues distinguishing standard from colloquial 

pronunciations: F0 , VOT, and breathy voice quality. The perception tests employed synthesized stimuli of 

quasi-continuously varying F0  and categorically varying differences in VOT and breathiness. The results 

indicate that F0  has become a sufficient cue distinguishing colloquial /CrV/ forms from /CV/ forms, but 

that increased aspiration and breathy voice quality may also used by listeners as cues to this contrast. 

These findings confirm that, to the extent that colloquial PP realizations like [kʰu ̤̀ː ] can be assumed to 

be the end result of a historical process of change starting from Standard Khmer forms like /kruː/, the 

contrast appears to have transphonologized: in this case, the loss of the trill has been compensated for by 
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the enhancement or emergence of other acoustic cues.2 While superficially similar to the process sketched 

in Table 1, it is not immediately clear what phonetic precursor may have conditioned this particular 

change, since all of the onsets in the affected series (/pr- tr- cr- kr-/) are voiceless. In Kirby (under 

review), I suggest an account of this incipient tonogenesis grounded in the tendency in standard/read 

speech for /r/ to fortite, either devoicing or becoming a fricative or fricativized glide. An example of such 

a production is shown in Figure 4. These fricativized or devoiced /r/s can condition breathy voice quality 

at nucleus onset, which would in turn result in a lower F0  on account of reduced vocal fold tension. The 

increase in VOT could then result from listeners misparsing the resulting frication noise as a property of 

the onset consonant (cf. Beddor, 2009). 

 

Figure 4:  Example of a fricativized trill in the initial portion of a reading production of the form េ្ចៀង /crieŋ/ ‘to 

sing’. Labels are underlying (quasi-phonemic) transcriptions. 

This type of account, on which sound change is suggested to be the result of gradual accumulation of 

articulatory phonetic bias and listener error, is susceptible to at least two types of criticism. First, such an 

account predicts a more or less linear relationship between the degree of /r/-loss, VOT, breathy voice, and 

F0  lowering over time. This prediction runs counter to the well-established sigmoidal progression often 

observed in sound changes involving consonantal contrasts, whereby changes between generations are 

often discontinuous and abrupt (Labov, 1994, 2001). Although no apparent-time study of the PP Khmer 

                                                
2 Note that many (though not all) Khmer speakers in Phnom Penh control both standard and colloquial varieties, 

i.e., this is a state of relatively stable variation for some speakers. However, since the /r/-ful realizations of 
/CrV/ forms are clearly historically conservative, I take approach the task here as to model the emergence of the 
novel (colloquial) form from the conservative variety. 
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case has yet been conducted, there is no evidence, anecdotal or otherwise, to suggest that differences in 

the realization of e.g. the form of ្ក# /kruː/ ‘teacher’ in Standard Khmer (where /kruː/ > [kruː]) and 

colloquial PP Khmer (where /kruː/ > [kʰu ̤̀ː ]) are anything but categorical. 

Second, this account fails to explain why F0 , and not phonation type or VOT, has become the primary 

perceptual cue to the contrast in PP Khmer. Indeed, the process by which Khmer is thought to have 

acquired its sizeable inventory of diphthongs and two contrasting consonantal registers almost certainly 

involved a stage of contrastive voice quality (Henderson, 1952; Ferlus, 1992), and several scholars have 

proposed that the canonical path to tone is similarly mediated by phonation type contrasts (Pulleyblank, 

1978; Diffloth, 1989; Thurgood, 2002). This hypothesis is complicated by the existence of languages or 

dialect clusters that show evidence for a range of different outcomes of a cue restructuring process. A 

good example is that of Kammu dialects, which provide evidence for a number of possible evolutionary 

outcomes (Svantesson and House, 2006; Abramson et al., 2007). As shown in Table 3, while the 

conservative Eastern dialects retained a voicing contrast in initial consonants, this contrast 

transphonologized differently in each of the three Western dialects. The result is a dialect continuum 

suggesting several evolutionary trajectories, or stopping points along a single trajectory. 

  

Table 3: Evolution of initial obstruent voicing in Kammu (after Premsrirat, 2001). 

 E. Kammu W. Kammu W. Kammu W. Kammu gloss 
 (tone 1) (tone 2) (register)  
buːc pùːc pʰùːc pṳc ‘rice wine’ 

puːc pûːc pʰúːc pûc ‘to take off clothes’ 

glaːŋ klàːŋ kʰlàːŋ kla ̤ː ŋ ‘stone’ 

klaːŋ klâːŋ kʰláːŋ klâːŋ ‘eagle’ 

  

In the case of tone and voice quality, it is also not clear why languages would necessarily have to 

‘pass through’ a stage of contrastive voice quality, rather than simply employing both cues 

simultaneously. Indeed, the frequency with which phonologization of one cue seems to entail the 

dephonologization of another is actually unexpected from a perceptual point of view, since considerable 

redundancy is the typical state of a phonetic contrast (Lisker, 1978). If phonologization is the end result of 

an enhancement of subphonemic cues, what conditions this enhancement, and what governs the selection 

of one phonetic dimension for enhancement and not another?  
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In this paper, I pursue an account of phonologization that is based around the conception of the learner 

as an IDEAL OBSERVER (Green and Swets, 1966; Geisler and Diehl, 2002; Clayards, 2008; Kirby, 2013a). 

On this account, the catalyst of subphonemic reorganization is a loss of contrast precision at the level of 

sublexical categorization, driven by a sufficiently actuated phonetic bias. Shifts in the magnitude of the 

cue realizations are then predicted to result from the application of an optimal or near-optimal 

categorization strategy. On this approach it is straightforward to represent the multivariate richness of the 

acoustic signal and to reason about the categorization behavior of learners under different scenarios using 

empirical production data of the sort just reviewed. In what follows, I outline the fundamentals of this 

approach, and then illustrate its application to the case of incipient tonogenesis in PP Khmer. 

 

2  Modeling phonetic category acquisition 

The basic problem of speech perception finds a useful metaphor in the ‘noisy channel’ familiar from 

information theory (Shannon and Weaver, 1949). At one end of the channel is the speaker, who is 

attempting to send a message to the listener at the other end. However, even under relatively ideal 

conditions, speech communication is fraught with difficulties, and a number of factors – including, but by 

no means limited to, the influence of physiological, social, and cognitive constraints on speech production 

and perception – can introduce variability into the acoustic realization, potentially obscuring the speaker’s 

intended message. Here, such influences will collectively be referred to as BIAS FACTORS. Setting aside 

for the moment questions about the source, nature, and influence of these bias factors (but see Garrett and 

Johnson, 2013), it is enough to simply note that many different types of bias can have a similar effect: 

namely, they introduce additional asymmetric variability into the speech signal.  

To make this a bit more concrete, we may conceive of the speaker’s goal as being to transmit to the 

listener a sequence of labels, representing phonetic categories, each one signaled along multiple acoustic-

phonetic dimensions. The listener’s task is to recover the speaker’s intended sequence of labels based on 

the acoustic-phonetic information they receive. All else being equal, the speaker’s success is to some 

extent dependent on the PRECISION of the contrasts being transmitted – precision being determined based 

on the statistical distribution of acoustic-phonetic cues to the contrast in question. Precision may be 

reduced for a variety of reasons, including channel noise introduced by bias factors, or changes in the 

system of contrast at the structural level, which may result in an increase or decrease in the number of 

categories competing over some acoustic-phonetic space.  

This formulation allows us to address the question of how learners might respond in general to 

variation in the degree of contrast precision, abstracting away from the precise causes of such variation. 

The basic premise of the model of category acquisition outlined here is that learners attempt to parse this 
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potentially noisy speech input in an optimal fashion. This requires that we make explicit the mechanism 

by which learners (re)construct category structure on the basis of multivariate acoustic input. 

 

2.1  Representational scheme for phonetic categories 

If the speech signal is inherently multidimensional, then any representational scheme for sublexical 

categories must be capable of handling multiple dimensions. One formal representation meeting this 

description is a FINITE MIXTURE MODEL (McLachlan and Peel, 2000; Rosseel, 2002), which models a 

statistical distribution as a weighted sum of other distributions. Mixture models have a long history in 

speech research and have been used in work on speech perception (Lisker and Abramson, 1970; Nearey 

and Hogan, 1986; Pierrehumbert, 2001; Clayards, 2008), the perceptual integration of acoustic cues 

(McMurray et al., 2009; Toscano and McMurray, 2010), and the unsupervised induction of phonetic 

category structure (de Boer and Kuhl, 2003; Vallabha et al., 2007; Kirby, 2011). 

For computational simplicity, and in line with much previous work, we assume that the underlying 

probability distributions of the mixture components (i.e., the cue dimensions) are normal (Gaussian); 

however, there is nothing in the following that relies crucially on this assumption, so other distributions 

(log-normal, gamma, etc.) could be substituted if it is determined they are more appropriate for some of 

the particular cues investigated here. In a GAUSSIAN MIXTURE MODEL (GMM), a D-dimensional 

observation vector x = (x1,…, xD )  is assumed to be independently generated by an underlying 

distribution with a probability density function 

 
 
f (x;Θ) = π k

k=1

K

∑ N (x | µk ,Σ k )  (1) 

 

where Θ = (θ1,…,θK ) = ((π1,µ1,Σ1),…,(π K ,µK ,ΣK ))  is a K(D+2)-parameter structure containing the 

component weights π k ,mean vectors µk , and covariance matrices Σ k  of the D-dimensional Gaussian 

densities 

 
 
N (x | µk ,Σ k ) =

1
(2π )D/2 | Σ k |

1/2 exp − 1
2
(x − µk )

T Σ k
−1(x − µk )

⎧
⎨
⎩

⎫
⎬
⎭

 (2) 

Note that the component weights π1,…,π K  must sum to 1. 

To make this more concrete, we may think of x as a set of cue values representing an instance of 

phonetic category c; of D as representing the number of cue dimensions (x1, x2,…, xD )  relevant to the 

perception of that category; and of K as representing the total number of category labels (c1,c2,…,cK )  
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competing over the region of phonetic space defined by D. For example, for a language with three initial 

stops (K=3) cued along four dimensions (D=4), we might have c1  = /b/, c2  = /p/, c3  = /pʰ/ and x1  = 

VOT, x2  = amplitude of release burst, x3  = F0 , and x4  = spectral tilt. A given utterance x will thus 

consist of four columns, each one providing a value for one of these cues. 

 

2.1.1  Production: sampling 

A great conceptual and practical advantage of representing sublexical categories with GMMs is that a 

single representation can serve as the basis for production as well as perception, thus providing a formal 

link between production data and categorization behavior (Nearey and Hogan, 1986; Solé, 2003). This 

allows a learner’s experience to form the basis for both the production of instances of a category as well as 

for determining the category label of novel instances. Formally, production is modeled by taking a point 

estimate from the approximate cumulative distribution function of the multivariate density as given in 

Equation 2. Because the cue distributions are continuous, the true probability of any given value of x is in 

fact 0. However, we can define the probability of x falling into some interval of the cue space [a,b] as  

 P[a ≤ X ≤ b]= f
a

b

∫ (x)dx  (3) 

for some arbitrarily small difference between a and b. In practice, the selection of a particular value may 

be achieved by methods such as inversion sampling (where the cumulative distribution function is equated 

to that of a pseudo random number generator) or rejection sampling (see Devroye, 1986 for details). 

 

2.1.2  Perception: the ideal observer 

The GMM for a given category c defines a probability density function f (x | c) ; as illustrated above, 

sampling from this density may be used as a coarse approximation of the output of speech production. The 

task of the listener can be modeled as the inverse problem: determining the likelihood of a given category 

label c given an observation vector x. If we consider the task of a listener to be choosing the speaker’s 

most likely intended message given a set of cue values, and under certain assumptions about the 

information in the speech signal available to the listener, we can construct a model of the behavior that 

would optimize this task. This is sometimes referred to as an IDEAL OBSERVER model, a type of Bayesian 

classifier. Ideal observer models have been used to successfully model perception in a variety of domains 

and contexts including visual discrimination (Geisler, 1989), reading (Norris, 2006), word segmentation 

(Goldwater et al., 2009) and auditory word recognition (Clayards et al., 2008).  
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In order to assign a category label c to an utterance x , the ideal observer requires access to two 

sources of information: p(c) (the prior probability of the category c) and p(x|c) (the probability of the 

observation, given that it is a member of category c). If we assume these probabilities can be estimated 

from the statistical distributions of speech cues (Maye et al., 2002; Clayards et al., 2008), the probability 

that the speaker intended an instance of category ci  given a particular vector of cue values x is given by 

Bayes rule as 

 p(ci | x) =
p(x | ci )p(ci )

p
k=1

K

∑ (x | ck )p(ck )
 (4) 

The optimal classifier is then one in which classification accuracy is maximized. Formally, this means that 

a given observation vector x is assigned to a category ci  in such a way that p(ci | x)  is maximized. 

Assuming that the a priori probabilities of the category indicesn and the class-conditional likelihoods 

p(x | ck )  for  k = [1,…,K ]  are known (or can be estimated from the data), and that each dimension 

attribute is independent of every other, the posterior probability of each category index can be computed 

as:  

 P(ci | x = x1,…, xD ) =
p(x1 | ci )p(x2 | ci ),…, p(xD | ci )p(ci )

p
k=1

K

∑ (x1 | ck )p(x2 | ck ),…, p(xD | ck )p(ck )
 (5) 

A deterministic classification rule assigns x the category label ĉk  with the highest maximum a posteriori 

probability:  

 ĉk = argmaxk=[1,…,K ][p(ck | x1,…,kD )p(ck )]  (6) 

This classifier is sometimes called a BAYES OPTIMAL CLASSIFIER (Duda et al., 2000). The error rate of this 

classifier may be expressed as  

 
 
 = 1− p∫

k=1

K

∑ (x | ck )p(ck )dx  (7) 

Although optimal classifiers make strong assumptions and their predictions are not always in line with 

human classification behavior (Ashby and Maddox, 1993), they provide a lower bound on the error rate 

that can be obtained for a given classification problem. Given an ideal observer model of a classification 

task, one can then degrade the performance in a systematic fashion by introducing known or hypothesized 

sources of noise, altering the decision process, and/or simulating physiological constraints that could limit 

performance (Geisler and Diehl, 2002). 
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3  Simulating sound change: Case studies 

Several recent computational treatments of language change (Niyogi and Berwick, 1995, 2009; Baker, 

2008a) argue that the sigmoidal or discontinuous nature of change can only be modeled by characterizing 

the behavior of populations, noting that models where individuals receive input from a single teacher 

(e.g., S. Kirby et al., 2007) have a linear dynamics that converge to a single stable state from all initial 

conditions. Most of this work has focused on modeling either lexical or syntactic change, where the task is 

usually cast as deciding between competing discrete representation, e.g. different grammars (Baker, 

2008b). A similar approach is often taken in models of the evolution of sound patterns, where the learning 

problem is cast as one of deciding between discrete pronunciation variants (Niyogi, 2006).  

The problem considered here, on the other hand, requires estimation of continuous phonetic 

parameters. Kirby and Sonderegger (2013) provide a simple computational framework for simulating the 

evolution of a continuous phonetic parameter in a population of learners. Here, I extend that framework in 

order to consider an additional source of potential discontinuity between teacher and learner: changes in 

attention to cue. It is well known that speakers often produce impressionistically homophonous categories 

that can nonetheless be reliably distinguished at the phonetic level (Hewlett, 1988; Labov et al., 1991; Yu, 

2007). However, statistical separability along a given acoustic dimension does not guarantee that a learner 

will attend to that dimension when forming a judgment about category membership (Francis and 

Nusbaum, 2002). In Kirby (2010, 2011) I demonstrate how, for a fixed set of input data, varying the 

number of cue dimensions considered by a statistical learner can impact the category structure induced by 

that learner in a somewhat unpredictable fashion. This suggests that changes in attention to the number of 

cue dimensions relevant to a contrast could potentially condition abrupt changes in classification behavior 

across generations of learners. 

In this section, I explore this hypothesis using acoustic data from PP Khmer. Rather than a binomial 

model where a specific variant is either adopted or not adopted, I propose a model that directly represents 

the multidimensional makeup of phonetic categories, and consider a learning regimen that operates over 

these representations. By allowing for the possibility that a learner may consider only a subset of the 

available cue dimensions, substantive and abrupt shifts in the acquired cue distributions become possible. 

Returning to the case of PP Khmer discussed in Section 1, there are several empirical findings for 

which an explanation is desirable. As reviewed above, the loss of /r/ appears to have catalyzed the 

transphonologization of pitch, aspiration and voice quality in PP Khmer, though to different degrees: F0  

seems to have become the most salient cue to the contrast between /CV/ and (underlyingly) /CrV/ forms, 

although the distribution of other cues has changed as well. Is it possible for a model to predict this 

asymmetry without explicitly building it in, for instance in the form of a priori constraint weightings?  
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Similarly, what accounts for the emergence of a phonetically intermediate VOT category in the colloquial 

production of /CrV/ forms, instead of merging with either the plain or aspirated forms?  

To try and answer these questions, we can consider the evolution of a population of ideal observers in 

a computational setting.3 Assume a population of L learners, each of who receives N training samples 

from a population of P teachers; furthermore, assume the population is perfectly mixed, such that each 

training example is equally likely to come from any teacher in population. For the simulations reported 

here, L=P=100 and N=1000, but the results do not depend crucially on these parameter values.4  

At initialization, the population is described by the means and covariance matrices of a D-dimensional 

multivariate normal mixture with K components. This mixture is used to generate the initial population of 

P teacher agents, each consisting of an N-length list of D-dimensional exemplars; thus, the state of the 

population at time t may be described by a list with N × P  rows, which may be subdivided by mixture 

component (category label) into three matrices C1,C2 ,C3  with N /K × P rows each. At each iteration, a 

training sample XT = (x1,…,xN )  is generated for each learner by sampling at random from these matrices. 

More precisely, the means and sample covariance matrices of each of the C matrices are used to 

independently generate N/3 D-dimensional examples of each category using the quasi-randomized Monte 

Carlo procedure of Genz and Bretz (2009). Each learner then classifies their training sample using the 

Bayes optimal classifier described in Section 2, applying Equations (5) and (6) to assign each exemplar 

the maximum a posteriori likely category label.  

The resulting lists of exemplars and their assigned category labels are then aggregated and used to 

compute unbiased estimates of the mixture means and covariance matrices, from which samples for the 

next generation of learners are generated. This requires that learners recover 

Θ = (θ1,…,θK ) = ((π1,µ1,Σ1),…,(π K ,µK ,ΣK )) , the parameter structure containing the component weights, 

mean vectors, and covariance matrices of the GMM from the training sample. Here, Θ  is found by 

maximizing the log-likelihood (8): 

 
 
log p(x1,x2 ,…,xN | µ,Σ) = log

n=1

N

∑ π k
k=1

K

∑ N (xn | µk ,Σ k )  (8) 

Since this cannot be solved in closed form, iterative techniques such as the expectation-maximizaton 

(EM) algorithm (Dempster et al., 1977) are often employed, although other methods (such as Gibbs 
                                                

3 Data and simulation code available at http://lel.ed.ac.uk/�jkirby/khmer. 
4 An important assumption made here is that changes in the phonetic realization of forms are initiated by adult 

language users, and that these (possibly biased) forms form the input for language learners. This assumption is 
consistent with findings that phonetic realization of categories can indeed change over the lifetime (Harrington 
et al., 2000; Harrington, 2006; Sankoff and Blondeau, 2007) but also allows for the fact that children often 
acquire qualitatively different grammars from those of their parents (Sankoff and Laberge, 1973; Payne, 1976, 
1980; Hudson Cam and Newport, 2005; cf. Foulkes and Vihman, in press).  
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sampling) may also be used (Bishop, 2006). Starting from an initial guess about Θ , the EM algorithm 

alternates between computing a probability distribution over completions of missing data given the 

current model (the E-step) and then re-estimating the model parameters using these completions (the M-

step). The E-step computes the conditional probability zik  that observation xi  belongs to the kth 

component: 

 

 

zik =
π kN (x | µk ,Σ k )

π j
j=1

K

∑ N (x | µk ,Σ j )
 (9) 

In the M-step, the parameters Θ  are then re-estimated based on these conditional probabilities. For more 

details on EM-based parameter estimation for multivariate Gaussian mixtures, see McLachlan and Peel 

(2000). 

A further assumption made in the present work is that the learner knows the number of category labels 

in advance. This is a common assumption made in work applying mixture models to the task of phonetic 

category learning (de Boer and Kuhl, 2003; Lin, 2005), in part because of the difficulty involved with 

jointly inferring both the number of mixture components and the parameters of those components. The 

criterion of maximum likelihood in and of itself does little to address the issue, as maximum likelihood 

may be achieved by associating each observation with its own Gaussian, leading to a model with as many 

Gaussians as it has data points. This kind of overfitting may potentially be avoided by finding the optimal 

trade-off between data likelihood and model complexity, a process sometimes termed REGULARIZATION 

(Hastie et al., 2008). One approach to regularization is to pick the simplest model consistent with the data, 

where ‘simplest’ is defined with respect to the number of parameters in the model. Kirby (2010) provides 

an illustration of how the BAYESIAN INFORMATION CRITERION (BIC: Schwarz, 1978) can be used to 

perform model selection in the induction of phonetic categories, by fitting a number of models with 

increasing numbers of mixture components K and selecting the model with the smallest BIC. Vallabha 

et al. (2007) and McMurray et al. (2009) take a ‘winner-takes-all’ approach to the model selection 

problem: starting from some suitably large K, the mixture parameters are updated after each input, but the 

component weight is updated only for the most likely component. Feldman et al. (2009) and Dillon et al. 

(2013) take an explicitly non-parametric Bayesian approach to the problem of phonetic category 

induction, allowing a potentially infinite number of components K but imposing a prior that is biased 

toward mixtures with smaller numbers of categories (Rasmussen, 2000; Teh et al., 2006). A comparison 

of regularization mechanisms for the categorization and density estimation of phonetic categories is left 

for future work.  
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To best try and understand the specifics of a particular instance as well as the more general properties 

governing models of sound change, the simulations reported here use as their starting point the empirical 

parameter estimates for D=4 cues ( F0 , VOT, H1*−H2*, and duration of /r/) distinguishing the K=3 

categories /CV/, /CʰV/ and /CrV/ of Standard Khmer, as reported in Kirby (under review). Without loss of 

generality, we consider here only data from the velar series /k kʰ kr/, with F0  estimates drawn from male 

talker productions, though this could be generalised to apply across categories by normalizing the cue 

dimensions. For reference, density estimates of these cues are plotted in Figure 5.  

  

 

Figure 5:  Density estimates for the initial state of D=4 cues (VOT, F0 , H1*−H2*, and duration of /r/) for K=3 

phonetic categories /k kʰ kr/. Based on data from Kirby (under review). 

 

In the following sections, I report the results of three types of simulations, each seeded from this same 

initial configuration. The first series establishes the basic stability of this procedure in the absence of 

perturbing bias (3.1). The second series describes a scenario where a perturbing bias is introduced and 

learners misparse its acoustic consequences. (Section 3.2). Finally, the third series describes the results of 

a similar simulation in which listeners compensate for the effects of the bias (Section 3.3). 

 

3.1  Series I: Stability 

To establish the basic efficacy of this regime, consider the evolution of these cue distributions over 50 

generations in populations of size 100. The lexicon consists of just three items (arbitrarily labeled /kuː/, 

/kʰuː/ and /kruː/) with equal frequencies, seeded with the data presented in Kirby (under review), given in 

Figure 5.  
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Figure 6:  Stability in the evolution of phonetic cue distributions over 50 rounds of sampling and estimation. 

Classification error rate at generation 0: 0.001; generation 50: 0.002. 

 

Figure 6 shows the evolution of the mean and variance in a representative simulation. Visual 

inspection suggests no significant changes in the mean between the initial and final distributions; this is 

corroborated by the results of Hotelling’s two-sample T 2  test, the multivariate analog of the t test 

(p<0.0001). Error rates are similarly stable over the course of the simulation, never rising above 0.01%. 

What does change slightly over the course of iterating this sampling/estimation regime is the variance of 

the mixture components, especially those with well-separated means (VOT of the /kʰuː/ class and duration 

of /r/ for the /kruː/ class). This is to be expected due to the interaction of the optimizing nature of the 

learning rule, which seeks to maximize the classification accuracy of the learner, and the finite number of 

samples drawn from the distribution at each iteration.5 This is consistent with the analytic results of Boyd 

                                                
5 Recall that a sample estimator µ̂  of a normally distributed random variable is itself distributed  N (µ,σ 2 / n) , 

converging to µ  as n→∞ ; the unbiased estimator of the sample standard deviation s2 =
1

n −1
(xi − x )

2

i=1

n

∑  is 

similarly asymptotically normal, approaching the true standard deviation with large n. 
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and Richerson (1985), who show how such cases of ‘blending inheritance’ reduce the variance of a 

quantitative trait over time (Boyd and Richerson 1985: 75; cf. Kirby and Sonderegger, 2013). 

The results of Series I suggest that transphonologization of F0  is unlikely to emerge spontaneously. 

This is perhaps unsurprising given that, with large training samples and strong parametric assumptions, 

statistical learners are extremely accurate at estimating the parameters of the distribution which generated 

their training data. Nonetheless, it is important to establish that the system predicts (relative) stability in 

the absence of a perturbing bias. 

 

3.2  Series II: Misparsing the acoustic effects of bias 

Where this becomes interesting is when we introduce a bias factor impacting the production of /r/. The 

two main variants observed in the data in Kirby (under review), devoiced taps/trills and (voiced) 

fricatives, accounted for around 20-25% of all reading condition (i.e., Standard Khmer) productions of /r/. 

Here, I assume roughly this percentage of tokens are realized in this way. This was implemented by 

reducing the perceived duration of /r/ in some /CrV/ tokens by a random percentage ρ , which was then 

added to the VOT of those same tokens (see Figure 7). Over time, this has the effect of reducing the 

perceived duration of /r/ and increasing the perceived duration of the onset. 

 

Figure 7:  Illustration of how misparsing is implemented in the simulations, using the example of  េ្ចៀង /crieŋ/ ‘to 

sing’ from Figure 4. Region (a) is the original onset burst (28 ms); region (c) is the misparsed portion of /r/ (25 ms); 

and region (b) is the ‘correctly’ parsed portion of /r/ (20 ms). In this example, the onset would be perceived as 53 ms 

in length, and the /r/ just 20 ms. 
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Applied continuously, it is clear that this type of bias will eventually result in the duration of /r/ in 

/CrV/ training examples approaching zero at a rate proportional to the strength of the bias. It stands to 

reason that at some point, the acoustic presence of the trill will be so degraded in the input that learners 

will no longer consider this dimension when making category assignments. In the absence of any data on 

the minimum duration of a perceptible trill, I adopt a somewhat arbitrary, but empirically derived cutoff: 

when the mean duration of /r/ in the training sample falls below 2 standard deviations away from the mean 

of the initial sample (i.e., from the empirical reading production data), a learner will no longer regard this 

cue dimension as relevant for the purposes of categorization. In the present case, this generally meant a 

cutoff of 4-5 ms. Altering this cutoff point changes the rate at which the qualitative shift in attention to 

cue takes place, but otherwise does not substantively change the predictions of the model as described 

below.  

  

Figure 8:  Evolution of means and variance of cues to category distributions after 50 generations in a population that 

misattributes ρ  proportion of 20% of /r/s as increased VOT (see also Table 4). Lines indicate category means; 

shading shows two standard deviations around the mean. Note the abrupt changes in variance at generation 9, 

especially for the duration of /r/, which is the point in this simulation run at which this dimension becomes ignored 

by the learner. 
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Table 4: Evolution of means and standard deviations of F0 ,VOT, H1*-H2*, and duration of /r/ at t = 1, 5, 10, 20, 

and 50 generations in a population that misparses ρ proportion of 20% of /r/s as increased VOT. ‘emp’ = empirical 

results from Kirby (under review). 

 t VOT (ms) F0  (Hz) H1*-H2* (dB) duration of /r/ (ms) 

/CV/ 

1 25 (8.1) 132 (6.7) -0.20 (2.6)        - 
5 25 (8.0) 132 (6.7) -0.23 (2.6)        - 
10 22 (5.9) 133 (6.1) -0.59 (2.6)        - 
20 22 (4.6) 133 (7.1) -0.25 (2.9)        - 
50 21 (4.2) 132 (7.3) -0.19 (2.9)        - 

emp 25 (8.0) 132 (6.7) -0.20 (2.6)        - 

/CʰV/ 

1 83 (18.5) 135 (8.2) -0.06 (3.1)        - 
5 85 (16.0) 135 (8.4) -0.11 (3.1)        - 
10 85 (14.7) 135 (8.4) -0.08 (3.2)        - 
20 86 (14.0) 135 (8.3) -0.08 (3.3)        - 
50 83 (12.6) 135 (8.3) -0.07 (3.3)        - 

emp 83 (18.3) 135 (8.2) -0.09 (3.1)        - 

/CrV/ 

1 26 (9.1) 130 (6.0) 0.33 (2.4) 18.6 (4.9) 
5 29 (9.2) 130 (6.0) 0.38 (2.4) 10.1 (6.7) 
10 26 (6.2) 127 (5.1) 1.09 (2.1) 6.6 (4.9) 
20 40 (3.6) 127 (4.4) 1.03 (1.9) 3.5 (2.4) 
50 41 (2.7) 126 (4.0) 1.14 (1.9) 0.4 (0.3) 

emp 61 (26.9) 120 (9.6) 2.30 (3.8)  
 

The result is a bifurcation in the learning chain. Figure 8 shows the evolution of the mean and 

variance over 50 generations for a representative simulation where 20% of /kruː/ tokens were 

devoiced/fricated by a random percentage in each training sample at each iteration. For the first few 

generations there is little qualitative change in the mixtures learned, but at generation 9, the number of 

dimensions used for classification changes from 4 to 3, and as a result the category labels assigned by the 

learner are significantly different than those intended by the teacher. This coincides with a spike in the 

classification error rate (see Figure 12). The marginal mixture distribution estimates learned by the 

following generation further serve to find separations in this multidimensional cue space due to the 

objective function being optimized by the decision rule. The result is that F0  drops for the /kruː/ category, 

while H1*−H2* rises slightly and an intermediate VOT category emerges. After 50 generations or so the 

simulation tends to stabilize, as seen in Figure 8 and assessed by non-significant (p>0.3) results of 

Hotelling’s T 2  tests comparing distributions at adjacent timepoints. 
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Figure 9:  Top row: density estimates for 3 cues in a population that misattributes ρ  proportion of 20% of /r/s as 
increased VOT after 50 generations (duration of /r/ = 0). Classification error rate at generation 50: 0.002. Bottom 
row: empirical cue distributions for colloquial pronunciations of /kuː/, /kʰuː/, and /kruː/ forms (after Kirby under 
review). Classification error rate: 0.006. 

 

These results can be compared with the empirical distributions taken from the colloquial production 

data of Kirby (under review), given in Figure 9 and Table 4. These indicate good qualitative, if not 

quantitative fits; the ideal observer seeks to maximize differences in category structure, whereas the 

empirical data display a greater range of variance, especially in terms of the VOT distribution for /CrV/ 

forms. As noted above, the ideal observer estimates represent optimal, rather than actual, performance; it 

is therefore encouraging that the effect is broadly compatible with the empirical findings. Greater 

approximation to the empirical distributions might be obtained by degrading the input or learning 

procedure in some principled manner (Section 2.1.2). 

 

3.3  Series III: Compensation for coarticulation 

In the simulations described above, it was assumed that the devoiced/fricated proportion ρ of /r/ was 

misparsed by learners as increased VOT. That is, the assumption is that learners failed to compensate for 

what is in some sense an effect of coarticulation. It is instructive to consider the outcome if we do not 

make this assumption. This is broadly in the spirit of Labov’s (1994: 586) suggestion that ‘misunderstood 

tokens may never form part of the pool of tokens that are used to establish probabilities’ (see also Kroch, 

1989; Garrett and Johnson, 2013), or what is sometimes referred to as ‘input filtering’. In this set of 
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simulations, the duration of 20% of all tokens of /r/ were reduced by a random proportion ρ  as in Series 

II, but now this was not added to the VOT of those same training examples. The same 2-standard-

deviation cutoff was employed to determine when a dimension would cease to be considered by the 

learner. 

  

Figure 10:  Evolution of means and variance of cues to category distributions after 50 generations in a population 

that does not misparse devoiced/fricated portions of /r/ as onset VOT (see also Table 5). Lines indicate category 

means; shading shows two standard deviations around the mean. Note the abrupt changes in variance at generation 9, 

especially for the duration of /r/, which is the point in this simulation run at which this dimension becomes ignored 

by the learner. 

 

The result is again a bifurcation in the learning chain, but with a qualitatively different outcome. 

Figure 10 shows the evolution of the mean and variance over 50 generations for a representative 

simulation under this regime. For the first few generations there is little qualitative change in the mixtures 

learned, but by generation 10, the number of dimensions used for classification changes from 4 to 3, again 

coinciding with a spike in the classification error rate (Figure 12), as the category labels assigned by the 

learner are significantly different than those intended by the teacher. However, because the production of 

VOT is not being actively modified in any way by the phonetic bias, the separation in cue values occurs 

exclusively in the F0  and H1*−H2* cues. While there is also a brief initial separation in mean H1*−H2*  
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between /kʰuː/ and /kruː/, this becomes lost by around 40 generations, with F0  and H1*−H2* serving only 

to distinguish /kruː/-class from /kuː/-class forms. 

 
Table 5: Evolution of means and standard deviations of F0 ,VOT, H1*-H2* ,and duration of /r/ at t = 1, 5, 10, 20, 

and 50 generations in a population that misparses ρ proportion of 20% of /r/s as increased VOT. ‘emp’ = empirical 

results from Kirby (under review). 

 t VOT (ms) F0  (Hz) H1*-H2* (dB) duration of /r/ (ms) 

/CV/ 

1 25 (8.1) 131 (6.9) -0.19 (2.6)        - 
5 25 (8.0) 132 (6.9) -0.18 (2.6)        - 
10 25 (6.5) 136 (5.1) -1.15 (2.7)        - 
20 26 (6.3) 137 (4.5) -0.60 (3.1)        - 
50 26 (6.3) 137 (3.2) -0.47 (3.2)        - 

emp 28 (11.3) 106 (1.3) -8.3 (7.5)        - 

/CʰV/ 

1 83 (18.3) 135 (8.2) -0.10 (3.1)        - 
5 85 (15.8) 135 (8.3) -0.08 (3.1)        - 
10 85 (14.5) 134 (8.2)  -0.09 (3.1)        - 
20 86 (13.3) 134 (8.3) -0.21 (3.2)        - 
50 86 (11.9) 134 (8.1) -0.25 (3.2)        - 

emp 66 (9.9) 110 (3.5) -6.50 (6.2)        - 

/CrV/ 

1 26 (9.1) 130 (6.0) 0.32 (2.4) 15.3 (4.9) 
5 26 (9.0) 130 (5.9) 0.35 (2.4) 9.9 (7.5) 
10 27 (9.8) 126 (3.7) 1.31 (1.9) 6.5 (5.5) 
20 26 (9.3) 126 (2.2) 1.27 (1.6) 3.7 (3.1) 
50 26 (8.3) 124 (1.6) 1.21 (1.5) 0.2 (0.3) 

emp 25 (10.3) 96 (5.2) -5.8 (7.2)        - 

 

It is interesting to consider the predictions of this model in light of the empirical facts of a different 

Khmer dialect, that spoken in Kiên Giang (KG) province in neighboring Vietnam. Thạch Ngọc Minh 

(1999) reports a development of a falling F0  contour following loss of /r/, but does not transcribe any 

subsequent increase in aspiration, giving examples such as Standard Khmer /krɑː/ ∼ KG Khmer [krɑ̀ː] 

‘poor’ (otherwise homophonous with /kɑː/ ‘neck’), Standard Khmer /craːn/ ∼ KG Khmer [càːn] ‘to push’ 

(otherwise homophonous with /caːn/ ‘bowl’), etc. Preliminary analysis of data from an acoustic/perceptual 

study of this variety confirm that while KG lexical items pronounced with trills in Standard Khmer have a 

lower F0  compared to their Standard Khmer counterparts, there is no accompanying increase in VOT 

(Kirby, 2013b). This can be seen from Table 5 and the density plots in the bottom row of Figure 11, which 
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show empirical cue distributions for the productions of forms with onsets /k/ /kʰ/ /kr/ from a 

representative speaker in the study. At least in this speaker, there does not appear to be any evidence of 

breathy voice quality, but average F0  is clearly much lower in /CrV/ forms. Although the data are still 

being analyzed, it is encouraging that the results of changing a single parameter setting in the model 

framework appear to correspond to empirically attested stable states. Nonetheless, it remains to be 

demonstrated that the productions of this speaker are representative of the population in question. 

 

 

 
Figure 11:  Top row: density estimates for cues of a population that does not misattribute devoiced /r/ to onset VOT. 

Classification error rate at generation 50: 0.002. Bottom row: empirical cue distributions for productions of /kuː/, 

/kʰuː/, and /kruː/ forms forms based on recordings of a representative male speaker of KG Khmer (after Kirby, 

2013b). Classification error rate: 0.05. 

 

 

Figure 12:  Evolution of error rates for each of the three simulation series. Series I: stable evolution, no bias. Series 

II: bias misparsed as a property of the onset. Series III: bias plus input filtering (no misparsing). 
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4  Discussion 

The simulations reported above show how learners modeled as ideal observers in a social learning 

environment, given Standard Khmer cue distributions as input, will converge on a set of cue distributions 

that qualitatively resemble the empirical distributions observed in actual PP Khmer data. In addition, 

whether or not learners were assumed to misattribute the acoustic result of a phonetic bias factor was seen 

to have a dramatic impact on the evolution of the phonetic category structures.  

Given a reasonably accurate characterization of a synchronic start state and a hypothesized phonetic 

bias factor, this type of model enables predictions about directionality in phonologization from a point in 

time when the ‘seeds’ of the change still lie below the threshold of perceptibility. In the Khmer case 

examined here, it may be that the pre-existing bias towards slightly lowered F0  and slightly higher 

H1*−H2* in /CrV/ forms became ‘amplified’ or enhanced when the contrast became endangered. Of 

course, things need not have turned out this way, and the precise outcome illustrated here is in some ways 

dependent on other assumptions about the makeup of the population, the rate of fortition, and the 

threshold at which attention to cue will shift. Nonetheless, the finding that under relatively realistic 

assumptions the model’s prediction is broadly in line with the empirical findings suggests that this is a 

promising approach worthy of further investigation. 

 

4.1  Independence of phonetic dimensions 

In the Introduction, I referred to an account of incipient tonogenesis in PP Khmer grounded in the 

tendency for /r/ to devoice or fricativize, conditioning breathy voice quality which would in turn result in 

a lower F0 . In the ideal observer model, however, all cue dimensions are treated as independent. While 

not wholly unmotivated (Clayards, 2008), such independence assumptions are almost certainly not 

warranted in every case: that is, there are some cues which are not independent for physiological reasons, 

such as breathy voice quality and lowered F0  (which share the articulatory setting of reduced vocal fold 

tension). One way to capture such dependencies would be to relax the independence assumption of the 

naive Bayes classifier used here. Completely removing this assumption entails estimating the entire 

covariance matrix, which can be problematic in multivariate settings. One potential compromise would be 

the use of a BAYESIAN BELIEF NETWORK (Pearl, 1988), a probabilistic model where conditional 

dependencies are represented by edges in a directed acyclic graph. Due in part to the existence of efficient 

learning and inference algorithms for Bayes nets, they have become increasingly popular in automatic 

speech recognition applications (Zweig, 1998; Livescu et al., 2003; King et al., 2007), where they provide 

an attractive and tractable way to capture all and only the relevant dependencies between cue dimensions.  
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4.2  Compensation for coarticulation and population diversity 

The implementation of the phonetic precursor discussed here is closely related to the proposal of Beddor 

(2009), who shows how a gesture initially associated with one segment can come to be interpreted 

distinctively with a different segment. Beddor’s study focuses on the emergence of contrastive 

nasalization, whereby the acoustic effects of velum lowering initially associated with a nasal come to be 

associated with a following vowel, but it is conceptually very similar to the temporal exchange between 

duration of /r/ and onset VOT hypothesized here. It would be interesting to see if Khmer listeners are 

sensitive to experimental manipulations of this covariation in the same way that participants in Beddor’s 

study were sensitive to covariation in the duration of nasals and the degree of anticipatory vowel 

nasalization. 

In the third set of simulations discussed above, however, the assumption was made that listeners were 

disregarding coarticulatory effects when they resulted from the application of a phonetic production bias. 

This too is a commonly held assumption: Garrett and Johnson (2013) for example state that “[i]t seems 

reasonable to assume that variants produced by phonetic bias factors are usually ‘corrected’, either by 

perceptual processes like compensation or by rejection of speech errors” (73). The degree to which this 

type of correction might be applied presumably needs to be related to the strength of the bias factor in 

some fashion, given that perceptual learning is known to generalize across speakers (Kraljic and Samuel, 

2006) and that variation in cognitive processing styles can give rise to differential rates of compensation 

for coarticulation in a neurotypical population (Yu, 2010). Moreover, the findings of Labov, Sankoff, 

Harrington, and others indicate that the phonetic realization of phonological categories can and does 

change over the lifespan, and that social factors (such as the desire to distinguish oneself or one’s group 

identity via linguistic means) are sure to play an important role. Future extensions of this framework 

should therefore explore the space of outcomes under a more varied and realistic set of assumptions about 

the incidence and causes of compensation for coarticulation in the population. 

 

4.3  Actuation and stability 

The role of population diversity is also important for the issue of actuation in sound change, an issue not 

directly addressed in the present simulations. Although stability is predicted when no bias factor is 

present, the introduction of a bias factor begins an inevitable progression towards a qualitative change in 

the distributions learned. As noted repeatedly at least since Weinrich et al. (1968), this is problematic 

given that the general state of sound systems appears to be one of stability rather than constant change, 

even (or especially) in the presence of bias. Baker (2008a) goes so far to assert that ‘phonologization-of-
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coarticulation’ models are completely empirically inadequate (32) because they predict sound change to 

occur “whenever possible, in every language, and at every time” (31). 

However, there are reasons to think it may be premature to reject this mechanism of change entirely. 

Besides studies that do appear to show incremental change across the lifespan, other mechanisms may 

impact the likelihood of phonologization of phonetic variability. In addition to mechanisms that warp the 

perceptual space prior to categorization (Iverson and Kuhl, 1995), learners may be biased towards existing 

or smaller numbers of categories (Pothos and Close, 2008; Pothos and Bailey, 2009), which may inhibit 

the phonologization of intermediate variants; aspects of population diversity and dynamics reviewed 

above surely play a central role as well (Baker et al., 2011; Kirby and Sonderegger, 2013).  

 

4.4  Relation to other models 

The model sketched above employs a relatively simple characterization of the relationship between 

teachers and learners, whereby each learner receives independent and identically distributed random 

samples from its teachers and uses these to compute maximum likelihood estimates by making strong 

assumptions about the form of the distributions. Different approaches are of course possible. If the 

distributional assumptions were relaxed, one might instead simulate draws from the posterior distribution 

using some type of Monte Carlo sampling technique (rejection sampling, Gibbs sampling, etc.). The 

implementation of such techniques for multivariate mixtures with possibly differing covariance matrices 

is challenging, however, and in this instance it is not immediately clear how the added complexity of such 

a model would shed greater light on the issues of interest here. Despite differences in the basic 

assumptions about the source of data, results from the iterated learning literature are likely to be relevant 

here (Griffiths and Kalish, 2007; S. Kirby et al. 2007; Burkett and Griffiths, 2010).  

The learning method sketched here is also related to several other previously proposed models of 

phonological change. While space precludes a detailed comparison, several observations are worth noting. 

A number of authors have considered sound change from within the general framework of exemplar 

models (Johnson, 1997; Kirchner, 1998; Pierrehumbert, 2001; Wedel, 2006), which have close analogs to 

statistical methods of probability density estimation of the kind employed in the present work (Estes, 

1986; Ashby and Maddox, 1993; Rosseel, 2002). In particular, many models of classification can be 

shown to be equivalent to an inductive process by which the observer estimates the likelihood that a novel 

stimulus x belongs to one of K categories (Ashby and Alfonso-Reese, 1995). The difference between 

‘true’ exemplar models and density estimation models of the type described here is less important than the 

distinction between whether the classifiers are assumed to be parametric or nonparametric - that is, 
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whether or not the distribution of the observed data is assumed to have been generated by a distribution 

easily described by just a few parameters, such as the mean and variance.  

While some research (most of it involving the classification of visual stimuli) argues in favor of 

nonparametric models of human categorization behavior, there are other empirical domains (such as 

speech) where the relevant distributions do appear to follow well-known parameterized distributions. In 

addition, nonparametric approaches predict that, given enough training experience, human classification 

behavior should eventually come to resemble that of the underlying category structure, no matter how 

arbitrary. This is probably not the case, since human classification behavior clearly is limited, or at least 

preferentially constrained. For instance, McKinley and Nosofsky (1995) conducted an experiment in 

which they had participants categorize visual stimuli for which the optimal likelihood classification 

boundary was both highly nonquadratic and not possible to characterize as a simple continuous curve. 

Even with continuous corrective feedback, only one-third of the participants in this experiment were able 

to exceed the classification accuracy of a quadratic (parametric) classifier, and another third were unable 

to even perform as well as a simple linear classifier. In their computational work on English and Japanese 

vowel category learning, Vallabha et al. (2007) compared parametric and nonparametric versions of an 

online mixture estimation algorithm. They found the parametric algorithm significantly outperformed the 

nonparametric one, which they attributed to the nonparametric estimator’s inherent lack of constraints on 

the underlying category structure.  

These types of results suggest that nonparametric density estimators may be too powerful a model of 

human classification behavior. This is especially true in the case of speech sounds, where most evidence 

suggests that variability in the speech signal is accessible to and used by speakers and listeners in forming 

category judgments (Pisoni and Tash, 1974; Miller and Volaitis, 1989; McMurray et al., 2002; Clayards 

et al., 2008). As the notion of category is ill-defined in exemplar-based approaches – the categories are, in 

a very real sense, defined by the experienced tokens themselves – it is not clear how variability in the 

signal should become information for the listener in such a model. 

Another approach to phonological category learning and change from a non-exemplar perspective is 

Boersma and Hamann (2008), who consider the evolution of phonological categories in a constraint-based 

framework. In order to avoid computing auditory distances, their model discretizes the continuous 

auditory cue space into an arbitrary number of cue constraints, which are then ranked using a standard 

constraint-demotion algorithm. However, this approach requires that the cue constraints be ranked relative 

to a universal ‘ease of articulation’ curve, a concept that has proven particularly difficult to rigorously 

quantify (Pouplier, 2003). In addition, since the authors’ primary focus was on accounting for auditory 

dispersion, they do not explore the question of how multiple phonetic cues would interact in their model.  
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In spite of the difference between these models, superficial and otherwise, it is important to point out 

that their basic predictions are all consistent with the idea that changes to phonological systems may be 

emergent, rather than explicitly goal-oriented. The main contribution of the present formulation is provide 

an explicit characterization of categorization in the multivariate case, and to show how changes in 

attention to one phonetic cue can have abrupt and substantive impact on the realization of others.  

 

4.4.1  Lexical competition effects 

In the simulations reported above, the number of category labels K is assumed to be fixed and 

unchanging. Looking at the degree to which some of the cue distributions overlap, however, one might 

wonder why transphonologization, and not category merger, should be the outcome in this case. One 

reason might involve some type of systemic pressure for lexical distinctiveness. Blevins and Wedel 

(2009) propose a model in which VARIANT TRADING promotes separation between competing adjacent 

categories. The degree to which variant trading plays a role is mediated by the disambiguating influence 

of both word-external factors, such as discourse context, as well as word-internal factors, such as 

distributional overlap in phonetic cues. In fact, in this model, any factor that reduces categorization error 

promotes greater contrast between categories over time.  

For Blevins and Wedel, variant trading provides a principled, non-teleological mechanism for 

explaining the avoidance of sound change in just those cases where it would create ‘pernicious’ 

homophony, such as in inflectional paradigms. As Khmer is not an inflecting language, it is not obvious 

that ambiguity in word-internal dimensions should outstrip the disambiguating effects of the relevant 

word-external factors: ‘father’ and ‘kind of fish’ seem unlikely to be confused, even if pronounced 

identically. Furthermore, while variant trading should promote the distinctiveness of existing covert 

contrasts, it is not clear how it would drive the emergence of an intermediate VOT category. Nevertheless, 

this approach suggests a promising avenue for additional modeling work. 

 

4.4.2  A role for probabilistic enhancement?  

In Kirby (2010, 2013a) I outlined a similar computational model of sound change, arguing that bias-

induced loss of contrast precision alone is not enough to induce transphonologization; at least in some 

cases, (probabilistic) enhancement of subphonemic cues also appears to be necessary. I proposed that 

degree of enhancement is a probabilistic function of contrast precision, while the probability with which a 

given cue is enhanced is related directly to its informativeness or reliability – the degree to which it 

contributes to accurate identification of a speech sound. This approach was successfully used to model the 

emergence of contrastive F0  in Seoul Korean (Kirby, 2010, 2013a), and the incipient tonogenesis in PP 
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Khmer looks on the surface to be a similar scenario: a phonetic bias factor (here, fortition of /r/) affects a 

loss of precision (here, between /CrV/ and /CV/ or /CʰV/ forms). This loss of precision would then be 

predicted to drive probabilistic enhancement of other available cues, such as the degree of F0  drop or 

breathy phonation. Thus, it is perhaps surprising that a qualitative approximation of the empirical results 

obtains in the Khmer case without this mechanism. Indeed, when the procedure outlined above was 

augmented with a probabilistic enhancement mechanism, the results were more or less identical.  

Why should this be the case?  There are several differences between the two procedures that may play 

a role, but the most important is probably that the two approaches model the acquisition and classification 

of categories in fundamentally different ways. First, Kirby (2010, 2013a) simulates an ‘online’ learning 

scenario in which two adult speakers exchange speech tokens one at a time. In the face of bias, the 

probabilistic enhancement strategy works to rein in this bias, promoting stability of the status quo. In the 

present work, learners operate in ‘batch mode’, performing classification and density estimation 

simultaneously with access to the sum total of experienced tokens. The second major difference is the 

introduction here of the potential for a shift in the number of cue dimensions used to perform 

categorization. It is interesting to note that changing the number of dimensions has much the same effect 

as probabilistic enhancement, but without having to track incremental changes in cue distributions within 

a single learner. The present model therefore predicts (near-)categorical discontinuities between 

generations, as has often been empirically observed. While this does not mean that listener-oriented 

enhancement plays no role whatsoever in sound change (cf. Lindblom, 1990; Lindblom et al., 1995; 

Diehl, 2008), it does suggest that its impact on the process of cross-generational change may be 

constrained or obscured relative to the role played by categorization behavior and attention to cue. 

5  Conclusions 

This paper has described a computational modeling framework that can shed light on the dynamics of 

transphonologization. We have examined the case of incipient tonogenesis in Phnom Penh Khmer and 

seen how, by making minimal assumptions about learners, transphonologization results from the 

application of phonetic production bias in a population of ideal observer agents. In particular, abrupt 

changes in the distribution of acoustic cues to category membership coincided with changes in attention to 

cue. These results are consistent with the sudden and discontinuous nature of many sound changes, and 

suggest that what appear to be enhancement effects may also emerge from different assumptions about the 

number of cue dimensions accessible to or deemed relevant by the learner. 
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