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Abstract

Cross-situational learning is a mechanism for learning the meaning of words across multiple expo-

sures, despite exposure-by-exposure uncertainty as to a word’s true meaning. Doubts have been

expressed regarding the plausibility of cross-situational learning as a mechanism for learning human-

scale lexicons in reasonable timescales under the levels of referential uncertainty likely to confront

real word learners. We demonstrate mathematically that cross-situational learning facilitates the

acquisition of large vocabularies despite significant levels of referential uncertainty at each exposure,

and we provide estimates of lexicon learning times for several cross-situational learning strategies.

This model suggests that cross-situational word learning cannot be ruled out on the basis that it

predicts unreasonably long lexicon learning times. More generally, these results indicate that there

is no necessary link between the ability to learn individual words rapidly and the capacity to acquire

a large lexicon.

Keywords: World learning; Cross-situational learning; Lexicon learning time; Slow mapping; Fast

mapping

1. Introduction

Humans excel at learning words—they learn very large vocabularies (around 60,000

words by age 18, or roughly 10 words a day; Bloom, 2000) and can also form an approxi-

mate representation of a word’s meaning after just a single exposure through fast mapping
(Carey & Bartlett, 1978; see Horst & Samuelson, 2008; Jaswal & Markman, 2001;
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Wilkinson & Mazzitelli, 2003; Woodward & Markman, 1998 for reviews). A causal rela-

tionship between these phenomena is widely assumed, and there are suggestive correlations

between the onset of the ability to fast map and the time at which vocabulary begins to rap-

idly expand (summarized in Wilkinson & Mazzitelli, 2003, pp. 48–49, but see McMurray,

2007 for an alternative explanation of the vocabulary explosion).

However, the process of fast mapping a new word represents the start, not the end, of word

learning: The approximate word meanings established by fast mapping need to be fleshed

out through a process dubbed slow mapping by Carey (1978), involving identifying a word’s

extension, elaborating its meaning, and placing it within the broader semantic network (see

McGregor, 2004, for a useful summary). Indeed, Carey’s influential account suggests that

the initial fast mapping event establishes little more than a placeholder in the lexicon that

forms the basis for this subsequent slow mapping process. Recent work further suggests

that these fast-mapped lexical entries may be very fragile indeed and prone to being forgot-

ten unless bolstered by environmental cues that support the immature lexical entry (Horst &

Samuelson, 2008). The implications of the more gradual nature of slow mapping for the

learning of large lexicons are unclear: While it seems obvious that rapidly adding words to

the lexicon via fast mapping will facilitate learning large lexicons, the same logic suggests

that the slow mapping process will potentially limit the eventual size of the lexicon attained.

Why is slow mapping necessary? In other words, why are the representations of word

meaning established by fast mapping incomplete approximations? One-shot word learning

is problematic because it requires a word learner to accurately infer the meaning of a new

word the first time he or she hears it. This is not straightforward: As noted by Quine (1960),

there are in principle infinitely many possible meanings that would be consistent with a par-

ticular utterance (or sequence of utterances) of a word. He imagined an anthropologist inter-

acting with a native speaker of an unfamiliar language. As a rabbit runs by, the speaker

exclaims ‘‘gavagai,’’ and the anthropologist notes that ‘‘gavagai’’ means rabbit. Quine

showed, however, that the anthropologist cannot be sure that ‘‘gavagai’’ means rabbit; in

fact, it could have an infinite number of possible meanings, such as undetached rabbit parts,

dinner, or even (perhaps a superstition of the speaker) it will rain.

This infinite range of possible meanings must be reduced to a more manageable size in

order for word learning (via slow or fast mapping) to be possible. Various sociopragmatic,

representational, interpretational, and syntactic heuristics have been proposed to explain

how this might be achieved: Children use behavioral cues to identify the attentional focus of

a speaker in order to infer word meaning (Baldwin, 1991; Tomasello & Farrar, 1986); chil-

dren assume that words refer to whole objects, rather than parts or properties of those

objects (Landau, Smith, & Jones, 1988; Macnamara, 1972); knowledge of the meaning of

other words is used to infer the meaning of a new word, for example, by assuming that

words have mutually exclusive meanings (Markman & Wachtel, 1988); argument structure

and syntactic context facilitate word learning, particularly for ‘‘hard words’’ such as verbs

denoting abstract relationships (Gillette, Gleitman, Gleitman, & Lederer, 1999; Gleitman

Cassidy, Nappa, Papafragou, & Trueswell, 2005). In order for a word’s meaning to be

learned in a single exposure, these various word learning heuristics would have to act in

concert to uniquely and reliably identify the meaning of the word being learned. This is a
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demanding task, requiring strong heuristics. Could a large lexicon still be learned if the

learner’s heuristics were somewhat weaker, and sometimes (or even routinely) failed to

eliminate all uncertainty as to a word’s meaning?

Cross-situational learning is a mechanism for word learning in the face of this kind of

referential uncertainty. The idea behind cross-situational learning (as discussed in e.g.,

Pinker, 1989, 1994) is that the context of use (in conjunction with the learner’s word learn-

ing heuristics) provides a number of candidate meanings for a word, each of which is in

principle equally plausible. If the same word is produced in a different situation, a different

set of candidate meanings may be suggested. The learner can make use of this cross-situa-

tional information—the true meaning of the word will lie at the intersection of the two sets

of candidate meanings—and repeated exposure therefore enables the learner to reduce his

or her uncertainty as to the word’s true meaning. As such, cross-situational learning falls

within the much larger set of processes involved in slow mapping: It is one mechanism by

which a learner can refine his or her understanding of a word’s meaning over time.

Experimental studies involving the acquisition of small numbers of words from

sequences of artificial or naturalistic exposures suggest that humans (both adults and infants)

are capable of cross-situational learning (Akhtar & Montague, 1999; Gillette et al., 1999;

Smith & Yu, 2008; Yu & Smith, 2007, but see Smith, Smith, & Blythe, 2009 for a critique

of the methodology employed by Yu & Smith, 2007). Formal models (reviewed in Section

2) also suggest that cross-situational learning can be used to accurately infer the meanings

of words from corpora. Existing formal models typically focus on showing that a cross-

situational learner can accurately learn the meaning of a relatively small set of words from a

small (but realistic) corpus of language use. This is a worthwhile and important enterprise.

However, these models do not at present show that cross-situational learning can scale up to

the learning of human-sized vocabularies. In Section 3, we show, via a mathematical model,

that such scaling is in principle possible—there is no necessary link between rapidly learn-

ing the meaning of individual words and eventual acquisition of large vocabularies, and

cross-situational learning potentially facilitates the rapid acquisition of large vocabularies

despite massive levels of referential uncertainty. While our formal model deals with a much

more stereotyped and simplified word learning scenario, this result suggests that it is worth

pursuing these more realistic formal models on increasingly complex corpora. The results of

this model also have more general implications for the relationship between speed of learn-

ing individual words and eventual vocabulary size. As we discuss below, our general tech-

nique could be used to derive an estimate of overall lexicon learning times for any theory of

word learning that provides an estimate of learning times for single words.

2. Existing formal treatments of cross-situational learning

Siskind (1996) presents an early and influential operationalization of cross-situational

learning, providing an algorithm capable of correctly extracting word meanings from a syn-

thesized corpus of utterances paired with (intended and spurious) meanings, despite referen-

tial uncertainty, homonymy, and noise. Siskind’s cross-situational learner proceeds via the
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eliminative process outlined above, attempting to identify a word’s meaning by winnowing

down a set of candidate word meanings across exposures. Siskind also shows that cross-situ-

ational learning procedures can be specified in such a way as to allow a learner to retreat

from errors introduced by environmental noise or homonymy. For example, a common criti-

cism of the eliminative cross-situational learning algorithm (see e.g., Gleitman, 1990) is that

it breaks down in situations where the intended referent for a word is not present in the situ-

ation in which the word is uttered—in such a scenario, a strict eliminative learner will rule

out the word’s true meaning due to this noisy data point. Similarly, two homonymous words

will share a null intersection of meaning, as there will be no common meaning consistently

present across multiple uses of those homonyms. Siskind’s learning algorithm is capable of

identifying and correcting these sorts of errors (by associating confidence scores with word-

meaning associations, and allowing back-tracking and splitting of lexical entries based on

those confidence scores).

In addition to his basic finding that working cross-situational learning algorithms can be

provided, Siskind also provides a limited sensitivity analysis in an attempt to identify how

his algorithm copes with increasing task difficulty along several dimensions. Siskind reports,

based on a small number of simulation runs, that lexicon learning time:

1. increases approximately linearly with lexicon size;

2. increases as noise or degree of homonymy in the target lexicon increases;

3. is invariant with respect to the number of conceptual primitives used to construct utter-

ance meanings; and

4. is invariant with respect to degree of referential uncertainty at each exposure.

His third and fourth findings are particularly surprising in the context of the theoretical

debate on cross-situational learning. For example, it is often assumed that increases in

degree of representational complexity and referential uncertainty will lead to some sort of

explosion of complexity which will necessarily stymie the process: ‘‘the trouble is that an

observer who notices everything can learn nothing, for there is no end of categories known

and constructable to describe a situation’’ (Gleitman, 1990, p. 12); ‘‘The very richness of

perception guarantees multiple interpretative possibilities at many levels of abstraction for

single scenes; but the problem for word learning is to select from among these options the

single interpretation that is to map on to a particular lexical item’’ (Gleitman, 1990, p. 13).

This point is generally immediately conceded even by proponents of cross-situational learn-

ing (e.g., by Pinker, 1994, see p. 392). Yet Siskind’s finding seems to suggest that an explo-

sion of complexity is not inevitable—neither a proliferation of conceptual primitives, nor an

increase in the level of referential uncertainty per exposure produces, at least for his algo-

rithm, any decrease in performance. It seems important to explore whether Siskind’s finding

is generally true, or whether it is perhaps an artifact of his model or a consequence of the

fairly limited nature of his sensitivity analysis.

More recent formal models of cross-situational learning have adopted more probabilistic

notions of the meaning-form mapping in the lexicon and have ratcheted up the level of real-

ism of the data that the cross-situational learner is exposed to. Yu, Ballard, and Aslin (2005)
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describe an impressive system that takes video of visual scenes paired with natural-language

audio descriptions of those scenes as input and develops a lexicon of associations between

visual objects (parsed out from the visual scene) and spoken words (segmented from the

speech stream). At the heart of this model lies a cross-situational learning mechanism that

stores a lexicon as a set of probabilistic associations between words and objects and calcu-

lates the lexicon that best accounts for the cross-situational usage data. Despite a highly

complex set of input stimuli, this system correctly identifies the meaning of approximately

70% of the word-object pairings present in its input. Similarly, working in a Bayesian

framework, Frank, Goodman, and Tenenbaum (2009) present a model that proceeds from

real child-directed speech data paired with a manually produced description of the contents

of the associated scenes to successfully learn small lexicons.

These models show great promise for the development of systems capable of cross-situa-

tional word learning from real-world data. However, they are at present only applied to small

(though relatively complex and realistic) corpora, involving a limited number of possible

referents and a limited lexicon. The development of this sort of system, as an existence proof

for the viability of cross-situational word learning in environments of high complexity,

strikes us as an extremely important one. However, it presupposes that there is no fundamen-

tal cutoff point at which an increase in lexicon size, semantic or environmental complexity,

or referential uncertainty will render cross-situational learning impossible. Siskind’s

sensitivity analysis offers some positive indications that this faith is justified, but given the

complexity of his algorithm, his analysis is necessarily rather sparse. It is therefore desirable

to place cross-situational learning on a more solid theoretical footing: As well as showing

that it can be made to work for increasingly complex corpora, can we be confident that there

is no lurking performance ceiling that will limit cross-situational learning to (relatively) toy

worlds? The mathematical analysis that follows is an attempt to address such a question.

3. Learning time for a simple model lexicon

3.1. Rationale

Our primary aim in this paper is to understand how referential uncertainty affects the time

taken to learn a lexicon of human proportions. For this purpose, we introduce an idealized

mathematical model that allows us to calculate and compare the time required to acquire a

large lexicon through cross-situational learning under a variety of degrees of referential

uncertainty. We stress that this model is not intended to provide a cognitively plausible

account of cross-situational word learning: The models reviewed above (particularly Yu

et al., 2005 and Frank et al., 2009) are much more sophisticated in this regard. Rather, our

aim is to provide an initial evaluation of whether cross-situational learning can in principle

scale up to the learning of large lexicons, and whether there is any inherent cutoff point of

referential uncertainty or lexicon size at which cross-situational learning becomes impossi-

ble. This necessitates formulating a much simpler treatment of cross-situational learning,

at least at first—ideally this can then be elaborated to provide a similar evaluation of the
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cross-situational algorithms provided by Siskind (1996), Yu et al. (2005), and Frank et al.

(2009). We begin by defining our model and the assumptions that go into it, and then we

return in the discussion to the limitations of these assumptions and the likely consequences

of relaxing them.

3.2. Definition of the model

The model lexicon comprises W words, each of which has a unique meaning. The learn-

ing agent experiences a sequence of learning episodes. In each of these episodes, a single

target word is presented (e.g., spoken) to the learning agent. Whenever the target word is

presented, its associated target meaning is assumed always to be present (i.e., inferrable

from the context in which the word is uttered). Alongside the target meaning (i.e., also infer-

rable) are a number of other incidental meanings. Although, as discussed above, there may

be infinitely many of these incidental meanings, we assume that the learning agent is

equipped with some algorithm (i.e, the heuristics discussed earlier: attentional focus of

speaker, whole object bias, etc.) to reduce the number of candidate meanings present in a

given episode to a finite (and possibly small) number.1 There are two key parameters that

enter into the model here: M is the number of incidental meanings that might be inferred

alongside the true target meaning; C is the number of incidental meanings that are inferred

in a given episode. This latter set comprises those meanings that were not eliminated by the

learner’s heuristics (see Fig. 1).

By definition, 0 £ C £ M. Application of powerful word-learning heuristics will elimi-

nate incidental meanings and lead to small C, whereas weaker heuristics will leave greater

uncertainty and larger C (Golinkoff, Mervis, & Hirsh-Pasek, 1994). The ratio C/M quantifies

the strength of these heuristics, the degree of uncertainty, and hence the difficulty of the

problem the learner has to solve. If this ratio is large, incidental meanings may consistently

Fig. 1. Cross-situational learning of the meaning of horse, with C ¼ 2. Given the particular sequence of expo-

sures illustrated here, the word is learned on the third episode.
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appear alongside the target meaning and thus be plausible (though incorrect) candidates for

the word’s meaning, thus delaying word learning.

In order to make progress in analyzing the performance of specific learning strategies

under different degrees of uncertainty, we make a number of simplifying assumptions. First,

we take the values of C and M to be the same for each target and episode. In any given epi-

sode, the C incidental meanings are drawn uniformly at random, and without replacement,

from the full set of M meanings associated with the target word. This sampling is assumed

to be independent in each episode (i.e., a given incidental meaning has the same probability

of appearing whenever an associated target is presented). The target word itself is also

selected at random from all possible words in the lexicon, but not necessarily uniformly. To

this end we introduce the probability /i that word i is presented in a given episode. Again,

each presentation is a statistically independent event: Bursts and lulls in the temporal distri-

bution of words that have been reported elsewhere (Altmann, Pierrehumbert, & Motter,

2009) are not included in this first model.

Note that we do not assume any relationship between the sets of M incidental meanings

associated with different target words. There may be complete overlap between some sets of

incidental meanings (for example, when the targets are very similar) or no overlap at all.

The results we obtain below are independent of such considerations. Moreover, our discus-

sion of meanings as unstructured, atomic entities is purely for ease of exposition. Within this

model, meanings could equally be interpreted as existing in a hierarchically and similarity-

structured space. This structure would be reflected in the set of incidental meanings associ-

ated with each target meaning and the distribution from which those incidental meanings

are drawn, such that similar meanings tend to occur in one another’s incidental meaning sets

and more similar and more general meanings tend to be selected as distractors more

frequently.

The final assumption we make is that words are learned independently. That is, once the

meaning of one word has been established, that knowledge is not then used by the learner to

make inferences about possible meanings of other words: for example, we do not assume

that learners apply a mutual exclusivity constraint (Markman & Wachtel, 1988). This

assumption of independence implies that the learning time for a lexicon can be determined

from the learning time for a single word (see below).2 While we return to this issue in the

discussion, for the moment we merely reemphasize that this model is intended as a simple

sketch, rather than a realistic, exhaustive treatment.

3.3. Learning times for the model lexicon

We now calculate the time taken for a learner to acquire the lexicon of W words under

the conditions described above using three, progressively weaker, word-learning strategies.

3.3.1. Lexicon learning times for a one-shot word learner
Let us first take the case of a learner who can identify the target meaning for a word on

his or her first encounter with that word—the most powerful form of fast mapping possible.

In order to achieve this, all incidental meanings must be eliminated by the learner’s
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heuristics, and C ¼ 0. In order for this learner to learn the entire lexicon, each of the W
words must have been presented at least once. In principle this could be achieved in t ¼ W
episodes, but this will in general not happen: Given each word could be repeated arbitrarily

many times, there is some probability that at any finite time t, at least one word in the lexi-

con has never been presented to the learner and therefore has not been learned. Our defini-

tion of a lexicon learning time must therefore be probabilistic. We thus introduce PW(t), the

probability that all W words have been learned by time t. We deem the lexicon to be learned

when this probability is sufficiently close to unity, that is, when PW(t) ¼ 1 ) � with � a

small parameter. The time at which this occurs we denote as t*. For example, � ¼ 0.01

means that the lexicon has been learned with 99% probability; or equivalently, that if 100

agents are learning the lexicon in parallel, but from different sequences of exposures, all but

one of them are expected to have learned all W words by time t*.

A quick way to estimate the learning time t* when each word is equally likely to be pre-

sented in each episode is as follows. Let u(t) be the expected number of words that remain

to be learned at episode t. This number decreases at a rate equal to the probability that a pre-

viously unheard word is exposed in the next episode. Since all words appear in each episode

with equal probability, this probability is u(t)/W. Hence,

duðtÞ
dt
¼ � uðtÞ

W
: ð1Þ

This differential equation has the solution

uðtÞ ¼We�t=W; ð2Þ

given that at t ¼ 0, all W words remain to be learned. If W is large, the learning time t* will

also be large (since we know t* ‡ W). At very large times, the most likely number of words

that remain to be learned is either zero or one; hence, at these times the expected number of

unlearned words equals the probability the lexicon has not been learned, that is,

� ¼ 1� PWðt�Þ � uðt�Þ ¼We�t
�=W: ð3Þ

Rearranging this expression gives an estimate for t* for a one-shot, fast-mapping learner as

t�FMð�Þ �W ln
W

�

� �
: ð4Þ

That is, the typical number of episodes required until the lexicon is learned is far greater

than the size of the lexicon, purely as a consequence of having to wait for unseen words to

appear. For example, in the case � ¼ 0.01, a lexicon of the size typical for a human adult,

W � 60,000, and a uniform word distribution, requires about 940,000 exposures to be

learned by a learner capable of learning each word after just one exposure. While the

required number of exposures is large relative to the size of the lexicon, it is extremely small

relative to the number of words children are likely to encounter in a day. For instance, this

amounts to a modest 142 learning episodes (i.e., encounters with words) per day for

18 years, well below the 600–2,100 words per hour likely to be spoken by parents to
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children (Hart & Risley, 2003). In other words, one-shot learning is far more powerful than

required to learn a lexicon in a practicable timescale, suggesting that lexicon learning times

for less powerful learning strategies should be quantified.

3.3.2. Developing a general formulation for lexicon learning time
Similar expressions to (4) are obtained for more general word distributions, and for val-

ues of C > 0 (i.e., when the target meaning cannot be identified on a word’s first exposure).

The reason for this is that in each case, the probability that the lexicon has not been learned

decays exponentially to zero at large times; rearranging this exponential then results in an

expression of the form (4), albeit with different constants appearing that depend on the

learning strategy, degree of referential uncertainty, and word distribution.

More precisely, we show in Appendix A how to relate PW(t), the probability that all W
words have been learned after t exposures, to P1(t), the corresponding quantity for a single
word. It turns out that all the learning strategies we consider below can be analyzed through

a generic expression for the single-word learning function

P1ðtÞ ¼
0 if t ¼ 0
1� að1� qÞt þ rðtÞ for t > 0

�
ð5Þ

that contains two parameters a and q that depend on the strategy and will be related to

M and C below for specific strategies. The general features of this function are as

follows. (i) The learner always learns the correct meaning of a word given enough

exposures: as t fi ¥, P1(t) fi 1. (ii) The parameter q quantifies the late-time behav-

iour of the learning algorithm: It is the rate at which the word is learned after many

exposures given that it has not yet been learned (e.g., due to the presence of many con-

founding meanings). (iii) Meanwhile, the early-time behaviour of the algorithm is rolled

into the single parameter a. If a is small, the word is likely to have been learned in

the first few episodes; by contrast if it is large, it is unlikely to have been learned

quickly. Note that the early-time shape of the single-word learning function may be

very complicated: Its details turn out to be irrelevant to the overall learning time for a

large lexicon, as long as a technical assumption on the remainder term r(t) is satisfied,

namely that limt fi ¥r(t)(1)q¢))t fi 0 for some q¢ > q. This assumption is valid for all

the cases we consider here.

The result derived in Appendix A is that, for sufficiently large t,

PWðtÞ �
YW
i¼1
½1� ae�/iqt�; ð6Þ

where we recall that /i is the exposure frequency of word i. For the simple case of a uniform

distribution, /i ¼ 1/W, we find

PWðtÞ � ½1� ae�qt=W�W: ð7Þ

Setting this equal to 1 ) � and inverting, we obtain an estimate for the lexicon learning

time:
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½1� ae�qt
�=W�W ¼ 1� � ð8Þ

¼)1� ae�qt
�=W ¼ ð1� �Þ1=W ð9Þ

¼)e�qt
�=W ¼ a

1� ð1� �Þ1=W
ð10Þ

so then, after taking the logarithm on both sides, we find

t� �W

q
ln

a

1� ð1� �Þ1=W

 !
�W

q
ln

aW

�

� �
: ð11Þ

The second approximate equality holds if � is small or W is large (both of which correspond

to regimes of interest).

Let us return to the previous example of fast mapping. Here the appropriate choice for the

parameters a and q are a ¼ q ¼ 1. Then, we have from (5) that P1(0) ¼ 0 and P1(t) ¼ 1 for

t > 0 if r(t) ¼ 0. That is, (5) gives the single word learning probability function exactly, since

in this case we assume that the word is learned immediately on its first exposure. Substituting

these values into (11) recovers the expression (4) previously obtained by other means.

3.3.3. Lexicon learning times for a proficient cross-situational learner
We are now equipped with the tools needed to examine the performance of a pure cross-

situational learner, that is, an agent who admits only those meanings that have appeared in

all previous episodes involving the target word as possible candidates for its true meaning.

Over time, the size of the set of candidate (but incorrect) meanings decreases to zero: As

soon as an incidental meaning fails to appear, it can be excluded as a candidate meaning.

The rate of this decrease is controlled by the parameters C and M: If C is small relative to

M, meanings are excluded rapidly. We showed in a previous work (Smith, Smith, Blythe, &

Vogt, 2006) that the probability that this set comprises k meanings after t exposures of the

target is

RkðtÞ ¼
C

k

� �XW
r¼k
ð�1Þk�r C� r

k� r

� �
pt�1r ð12Þ

where

pr ¼
M�r
C�r
� �

M
C

� � : ð13Þ

If forced to guess the correct meaning of the word, the only rational behaviour for the

agent is to choose at random from the set of k + 1 meanings that have always appeared

alongside the word. If we use the probability of a correct guess after episode t to define the

probability of having learned the word, we find that
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P1ðtÞ ¼
XC
k¼0

1

kþ 1
RkðtÞ ¼

XC
r¼0

ð�1Þr

rþ 1

C

r

� �
pt�1r ; ð14Þ

where the second equality emerges after some manipulation. We remark that if agents

employ the ‘‘guess-and-test’’ strategy that we have observed in word-learning experiments

(K. Smith, A.D.M. Smith, & R.A. Blythe, unpublished data), whereby they form a hypo-

thesis for the target meaning by choosing from the k + 1 candidate meanings and maintain
that hypothesis until such time as that meaning is absent, P1(t) corresponds exactly to the

probability that the agent holds the correct hypothesis after t episodes.3

Comparing this expression with (5), we identify a ¼ M/2 and q ¼ 1 ) (C/M), and hence

that the time needed to learn a large lexicon under cross-situational learning (XSL) is

t�XSLð�Þ �W
1

1� C
M

ln
MW

2�

� �
; ð15Þ

when target words are selected according to a uniform distribution.

We can see from Fig. 2 that, for example, the cross-situational learning time for the case C
17 and M ¼ 100 is only 50% longer than that of a fast mapping learner, and at 214 learning

episodes per day still represents only a tiny fraction of the words heard every day by the aver-

Fig. 2. Cross-situational learning times as a function of C/M, for a uniform target word distribution and various

values of M, as a proportion of time taken by a fast-mapping learner (t�XSL=t
�
FM), with � ¼ 0.01; the correspond-

ing curves for a Zipfian target word distribution are indistinguishable. Points show the time required for a

proportion 1 ) � of learners to learn the whole lexicon for a sample of 2,000 Monte Carlo simulations of the

learning process (see Appendix B).
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age child, according to the figures provided by Hart and Risley (2003). While comparison to

this real-world estimate is of limited utility unless we know the real values of parameters C
and M (an issue we return to in the discussion), the important point is that the increase in learn-

ing times associated with cross-situational learning is (under a large portion of the parameter

space) rather modest relative to the learning times provided by one-shot learning.

It is also useful to relate our findings to Siskind’s (1996) more limited analysis. For exam-

ple, Siskind’s conclusion that the lexicon learning time increases approximately linearly with

lexicon size is confirmed by our calculation: The time grows generically as W ln W, which

empirically is almost indistinguishable from a linear growth. While the conclusion that degree

of referential uncertainty (C/M in our model) and conceptual complexity (M in our model)

have no impact on lexicon learning times is not supported, their impact is certainly small, par-

ticularly at the low levels that Siskind explored in his sensitivity analysis. Only when C/M
approaches 1 do lexicon learning times for efficient cross-situational learners explode.

It is worth highlighting the limitations of this approximate formula. A comparison of

our formula with the results from Monte Carlo simulations of the learning strategies

(which are exact, up to sampling errors) reveals that the learning time is overestimated

at small C/M. This can be seen from Fig. 2, where the crosses obtained by simulation

lie just below the curves as C/M fi 0. The reason for this discrepancy is that the cor-

rection term r(t) in Eq. 5 can no longer be neglected (see Appendix A). We note in

particular that the result is invalid for the case C ¼ 0, where we have shown that Eq.

4 is the correct expression.

3.3.4 Lexicon learning times for a limited cross-situational learner
In this previous calculation, we have assumed that learners can make maximum use of

cross-situational information, that is, they can maintain an accurate set of candidate mean-

ings for each word (those meanings that consistently occur with the word), as well as their

preferred candidate hypothesis from this set. We can also identify a strategy that makes

minimal use of cross-situational information, that is, where only one candidate hypothesis

for the word’s meaning is taken forward from one exposure to the next. We assume, as with

the ‘‘guess-and-test’’ strategy previously described, that this hypothesis is changed when

the meaning in question fails to appear with the target word, at which point a new candidate

meaning is selected at random from the set of meanings co-occurring with the target word,

and without reference to any earlier exposures to that word. This new hypothesis is subse-

quently maintained until such times as it too is proven to be incorrect, and so on.

Let Q1(t) ¼ 1 ) P1(t) be the probability that the agent holds an incorrect hypothesis after

t exposures. Under the conditions we have described, it is impossible to switch away from

the correct hypothesis. On the other hand, a switch from an incorrect hypothesis to the cor-

rect one is possible, and indeed, the probability of this event is the same in each episode.

First, a change of hypothesis occurs if the previous hypothesis failed to appear; this happens

with probability M�C
M . Secondly, the new, randomly chosen, hypothesis is correct with prob-

ability 1
Cþ1. The total probability of identifying the correct hypothesis on an episode given

that the current hypothesis is incorrect is thus the product of these two probabilities, M�C
MðCþ1Þ;

the probability that the hypothesis is still false at time t + 1 is thus
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Q1ðtþ 1Þ ¼ 1�M� C

M

1

Cþ 1

� �
Q1ðtÞ ¼

Mþ 1

M

C

Cþ 1
Q1ðtÞ; ð16Þ

where the second equality follows after rearrangement. This reveals that the probability of

holding a false hypothesis decreases by the same factor in each episode. Hence,

Q1ðtÞ ¼
Mþ 1

M

C

Cþ 1

� �t�1
Q1ð1Þ: ð17Þ

The probability of being incorrect after the first exposure, Q1(1) is C
Cþ1 (since C of the

C + 1 choices are incorrect). Therefore,

Q1ðtÞ ¼
Mþ 1

M

C

Cþ 1

� �t�1
C

Cþ 1
¼ M

Mþ 1

Mþ 1

M

C

Cþ 1

� �t
: ð18Þ

By using the fact that P1(t) ¼ 1 ) Q1(t) we find an expression that is once again of the

standard form (5):

P1ðtÞ ¼ 1� M

Mþ 1

Mþ 1

M

C

Cþ 1

� �t
: ð19Þ

The parameters a and q are a¼M/(M+1) and q¼(1)C/M)/(C+1). From (11), we find that

this minimally cross-situational strategy (‘‘min’’) leads to the learning time

t�min �
WðCþ 1Þ
1� C

M

ln
MW

ðMþ 1Þ�

� �
ð20Þ

that is approximately C + 1 times longer than that for pure cross-situational learning. This

highlights the extent to which good use of cross-situational information can accelerate lexi-

con learning.

3.3.5. Lexicon learning times for a frequentist cross-situational learner
Any strategy that is more effective than the minimal strategy presented in the preceding

section (which we dub Minimal XSL), but less effective than the fully eliminative cross-

situational behaviour described in Section 3.3.3. (Pure XSL), will necessarily have

P1(t) greater than that for Minimal XSL, but less than that for Pure XSL, for any t.
Translated into learning times, this implies that

t�XSL � t� � t�min ð21Þ

for any intermediate strategy that is consistent with the assumptions of the previous

section. In particular, this includes a refinement of the minimal strategy in which agents

select a hypothesis meaning not uniformly at random from all meanings present, but

with a probability proportional to the number of times it has appeared alongside all

exposures of the target word to date. We have found this probabilistic strategy

(Approximate XSL) to provide a good fit to experimental data (K. Smith, A.D.M.
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Smith, & R.A. Blythe, unpublished data). In the absence of an exact formula for P1(t)
for this strategy, we have estimated its associated lexicon learning times by means of

Monte Carlo simulations. The results, along with the bounds imposed by the Pure and

Minimal XSL strategies, are shown in Fig. 3. As expected, Approximate XSL falls

between Pure and Minimal XSL. As we can see, even the weaker forms of cross-situa-

tional learning still allow the acquisition of large vocabularies in practicable timescales

despite considerable uncertainty (perhaps even up to C/M�0.7) at each exposure.

3.3.6. Additional observations
We conclude this section with two further observations. First, Eq. 7 gives an expression

for the lexicon learning probability for nonuniform word distributions. In particular, we may

consider the Zipfian distribution (Zipf, 1949), in which the frequency of the nth most

common target word is proportional to 1/n (note, however, that the C coincidental meanings

are still assumed to be uniformly sampled from the M possibilities, a point we return to in

the discussion). If t >> 1/(/minq) we may legitimately write that

Fig. 3. Learning time as a function of C, for pure cross-situational learners (solid line) and Minimal XSL (chain

line), for � ¼ 0.01, M ¼ 100, W ¼ 60,000. These two strategies give lower and upper bounds, respectively, on

cross-situational learning time—all XSL strategies will fall within the shaded region (e.g., Approximate XSL,

given by points). The blue horizontal line gives an extrapolation from the number of exposures suggested by

Hart and Risley (2003): 2,100 words per hour, 14 h of exposure per day for 18 years—this probably represents

an upper bound on the true figure. The hatched region indicates values of C that would render a lexicon of

60,000 words unlearnable via any of our cross-situational technique in this time limit.
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lnPWðtÞ �
XW
i¼1

ln 1� ae�/iqt
	 


� �a
Z W

1

dx exp � qt

lx

� �
ð22Þ

where l ¼
PW

i¼1 1=i. One can rewrite this expression in terms of exponential integral func-

tions whose asymptotic behavior for large argument is known (Abramowitz & Stegun,

1965). Keeping the largest terms in the asymptotic expansions finally leads to

lnPWðtÞ �
�alW2e�qt=lW

q1t
: ð23Þ

Setting PW(t) equal to 1 ) � and inverting, as before, leads to the formula

t� �Wl
q

W0 �
aW

lnð1� �Þ

� �
ð24Þ

in which W0 is the principal branch of Lambert’s W function (Corless, Gonnet, Hare,

Jeffrey, & Knuth, 1996).

The main thing to be aware of is that this function behaves for large argument as a loga-

rithm. Thus, for small �, the only real difference between this expression and (11) is the fac-

tor l. For the lexicon size W ¼ 60,000, we find that l ¼ 11.579…, and hence for all

strategies whose single-learning function can be expressed in the form (5), we expect the

learning time for a Zipf-distributed lexicon is increased by a factor of l over that for a uni-

formly distributed lexicon. Note in particular that this increase in learning time is predicted

to be independent of C and M. This prediction is confirmed by the Monte Carlo simulation

data, shown in Fig. 4. Furthermore, this implies that the performance of cross-situational

learning relative to one-shot learning is therefore the same for both uniform and Zipfian

distributions of target words. We remark that the absolute increase in learning times for

the Zipfian distribution is very modest, given that the rarest word is uttered 60,000 times

less frequently than the most common.

Our second observation is that this general approach to deriving lexicon learning times

from an account of individual word learning is not restricted to cross-situational learning. In

principle, we can provide equivalent expressions for any theory that specifies the speed of

individual word learning. More generally, all theories of word learning contain an implicit

prediction regarding the number of exposures required to learn a large lexicon, which can

be made explicit by instantiating that theory in a model and calculating lexicon learning

times under that model. This potentially provides an additional means of evaluating such

theories: Our calculations suggest that cross-situational learning cannot be rejected on the

basis that it predicts unreasonably long learning times for large lexicons.

4. Discussion

In the previous section we have shown that, under rather idealized conditions, cross-

situational information allows a learner to achieve learning rates comparable to those
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obtained in the absence of referential uncertainty (when it becomes possible to learn each

word after a single encounter), even in the presence of a large degree of uncertainty at

every exposure to each word. Unsurprisingly, lexicon learning is fastest when word

learning heuristics are strong enough to eliminate all uncertainty as to word meaning.

However, cross-situational learning is still possible when these heuristics are weaker and

admit a far greater degree of uncertainty as to word meaning. In other words, there is no
necessary link between the ability to rapidly learn individual words and the ability to

acquire large vocabularies: Vocabularies on the human scale can be acquired relatively

rapidly by a proficient cross-situational learner. We note further that, given that learning

words rapidly requires the elimination of all uncertainty as to word meaning, which is

likely to require sophisticated and cognitively demanding processes of inference, cross-

situational learning could offer a less taxing means of learning the meaning of words.

While this result only pertains to the limited set of circumstances embodied in our model,

it seems to be a promising finding: There is no inherent combinatorial barrier preventing

cross-situational learning from scaling up from small lexicons to full-size lexicons under

massive referential uncertainty. As such, there is no a priori reason to think that the types

of models presented by Yu et al. (2005) and Frank et al. (2009) will necessarily run into

difficulty as they move to larger lexicons and increasingly sophisticated corpora.

We now discuss in more detail some of the strengths and weaknesses of the current

model, and what modifications could be made to improve it.

Fig. 4. Cross-situational learning time as a function of C, for a lexicon of 60,000 words (W ¼ 60,000), in which

there are M ¼ 100 incidental meanings for each word, and � ¼ 0.01. The solid line is for a uniform target word

distribution, and the dashed line is for a Zipfian distribution. Points show the time required for a proportion

1 ) � of learners to learn the whole lexicon for a sample of 2,000 Monte Carlo simulations of the learning

process (see Appendix B).
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The main virtue of this model is that it is sufficiently simple that the central quantity of

interest, lexicon learning time, can be calculated exactly. The model reveals that there are

two key parameters that quantify the notion of referential uncertainty: the size of the space

of meanings that could co-occur with the target (M) and the corresponding measure of the

number of meanings that do co-occur (C). As we have seen, the ratio C
M plays a pivotal role

in characterizing the difficulty of the learning task, and hence the lexicon learning time that

arises as a result.

Although we have allowed for arbitrary word frequency distributions (citing uniform and

Zipfian as two specific examples) and arbitrary overlap between different sets of distractor

meanings, it is not clear whether referential uncertainty encountered in reality would be

adequately modeled by just two parameters. Even if these two parameters do suffice, their

correct values are, at present, unknown. Rather than add further complexity, and with it

more unknown parameters to the model, we would advocate determining an empirical esti-

mate of C and M for real-world word learning tasks. For example, the method adopted by

Gillette et al. (1999) offers a means of estimating both C and M. Participants in their experi-

ments were presented with short videos of parent–child interactions, with the soundtrack

removed and an auditory cue (a beep) inserted to indicate the moment at which the target

word is uttered. Participants saw several such videos for each target word, and after viewing

each video, participants were asked to make a guess as to the meaning of that word. In our

terms, the guesses participants produce after seeing the first video for a given word will tend

to be drawn from C. Testing a single video across multiple participants (or asking a single

participant to enumerate all possible word meanings for a single video) will therefore offer

an indication of the likely membership of C for that usage of the word. Testing across

multiple context videos offers some hint as to M for that word: Each video should elicit a

different subset C drawn from M. Unlike in our model, we expect that membership of C will

be graded, with some frequently guessed members of C and some more marginal members.

This would in turn motivate a development of the formal model to include a probabilistic

treatment of incidental meanings that allows calculations of lexicon learning time to be

made given these more graded notions of context.

We finally discuss some aspects of our model lexicon and learning environment that

perhaps oversimplify reality in more serious ways. Despite our lack of knowledge of the true

distribution over the set of nontarget meanings (M), it is quite likely that it will not be uniform,

as assumed here. Nonuniform distributions will degrade the performance of cross-situational

learning relative to one-shot learning, due to the increased likelihood that a frequent nontarget

meaning persistently appears whenever a rare target word is uttered. One way to counter this

slowdown would be for learners to impose a mutual exclusivity bias (Markman & Wachtel,

1988): an interesting hypothesis to explore would be whether nonuniformity in the environ-

ment drives the need for such a bias. Of course, adding constraints like mutual exclusivity to

the model would require us to drop the assumption that words are learned independently,

which is the simplification that allows us to calculate whole lexicon learning times from

single word learning times, perhaps necessitating a different mathematical approach.

We also assume that the lexicon being learned exhibits no ambiguity. Ambiguous words

are challenging for a cross-situational learner because, given enough time, a word with two
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associated meanings will be used in sequences of contexts that have an empty intersection.

Siskind (1996) provides a simple but effective work-around that uses empty intersections to

identify ambiguous words and repair the lexicon—another (technically challenging) exten-

sion to the model would be to calculate how this ambiguity resolution strategy impacts on

lexicon learning times for large lexicons.

A related assumption is that of target inclusion: The target meaning is always included in

the contexts from which word meaning is inferred. If this assumption is relaxed, an unambigu-

ous word may yield a series of contexts with an empty intersection, due to one or more

nonoccurrences of the target meaning—indeed, this is one of the common objections to exclu-

sion-based forms of cross-situational learning (see, e.g, Gleitman, 1990). We note, however,

that all theories of word learning must address this issue, and a cross-situational learning strat-

egy that admits large degrees of uncertainty per exposure actually has a robustness advantage

compared with approaches that attempt to eliminate uncertainty: Cross-situational learners

can include spurious meanings in order to be more sure of including the target meaning and

are therefore less likely to eliminate the target erroneously than learners who are less tolerant

of referential uncertainty. Cross-situational learning therefore provides a built-in means of

dealing with the target elimination problem.4 Furthermore, weaker variants of cross-situa-

tional learning (for example, Approximate XSL) can recover from the occasional nonoccur-

rence of the target, while still facilitating acquisition of large lexicons in reasonable times.

5. Conclusion

We have shown that cross-situational learning allows the learning of large lexicons in the

face of referential uncertainty, at speeds that compare favorably with situations where learn-

ers learn individual words more rapidly (e.g., in a single exposure), while potentially offer-

ing improved tolerance to noise in the learning environment. Indeed, one could question

whether there would be any evolutionary pressure for the powerful heuristics required to

drive down referential uncertainty to levels where one-shot word learning routinely becomes

possible, given that cross-situational learning offers similar lexicon learning power and

requires far weaker constraints. Finally, the techniques we present can be adapted to provide

estimates for lexicon learning times for other theories of slow mapping, in order to quantify

the link between the speed of individual word learning and the size of the lexicon ultimately

attainable. Our calculations suggest that this relationship may be less direct than previously

thought: Slow word learning can allow fast learning of large lexicons.

Notes

1. An intriguing alternative possibility, suggested by a reviewer, is that the degree of

referential uncertainty experienced by a learner may in part be influenced by the

caregiver—for instance, caregivers might manufacture or exploit situations of reduced

referential uncertainty in order to facilitate word learning.
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2. This assumption also allows us to treat each exposure as involving only a single word:

Multiword utterances are simply multiple exposures to single words. While this obvi-

ously precludes the explicit inclusion of constraints on word meaning arising from co-

occurring words or syntax (as shown to play a key role by, for example, Gleitman,

1990; Gleitman, Cassidy, Nappa, Papafragou, & Trueswell, 2005; Gillette, Gleitman,

Gleitman, & Lederer, 1999), such constraints can be included in the model in a sim-

plistic fashion as one of the battery of heuristics serving to reduce C, in line with our

treatment of other heuristics for reducing referential uncertainty.

3. Note that this guess-and-testing learner does not track or make use of the extent of

their uncertainty as to a word’s meaning—as noted by a reviewer, real-world word

learners might be aware of their own uncertainty, which in turn might influence the

learning strategy applied.

4. Note that, despite their similarities, this approach can never resolve the problem of

homonymous lexical entries, simply because there is no single meaning that is correct

for all homonymous words.
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Appendix A: Mathematical details

In the main text we claimed that once the way the single-word learning function P1(t)
approaches unity at large times has been identified, the learning time for the whole lexicon

PW(t) can be expressed in terms of the two parameters a and q characterizing this approach

and the word frequency distribution /i; see Eqs. 5 and 7. Here, we justify this claim.

First of all, suppose P1(t) is known exactly, and that the word with the index i has been

exposed ti ‡ 0 times. Our central assumption, that all words are learned independently (that

is, knowledge of one word’s meaning does not improve or diminish the chances of another

one being inferred), implies then that, given P1(t) and the set {ti}, the probability all W
words have been learned is

P1ðt1ÞP2ðt2Þ � � �PWðtWÞ;

no matter what order the exposures have occurred in. We then obtain PW(t) by summing

over all possible t1,t2,…,tW consistent with a total learning time t¼t1+t2+� � �+tW. If word i
appears with probability /i in each episode, we find that

PWðtÞ ¼
X
t1

� � �
X
tW�1

t!

t1! � � � tW�1!tW!
/t1
1 P1ðt1Þ � � �/tW�1

W�1P1ðtW�1Þ/tW
WP1ðtWÞ ð25Þ

¼ t!
X
t1

/t1
1

t1!
P1ðt1Þ � � �

X
tW�1

/tW�1
W�1

tW�1!
P1ðtW�1Þ

/tW
W

tW!
P1ðtWÞ ð26Þ

where the value of tW is implied by the constraint
PW

i¼1 ti ¼ t.
The standard way to handle this constraint, and which allows us to approximate this

exact expression, is by transforming the functions Pn(t) to their generating functions
PnðzÞ. The key property of a generating function is that it contains the same information

as the original function: The coefficients of the tth power of z is equal to Pn(t), so inverting

the generating function is a case of reading off the desired coefficient. We will be particu-

larly interested how the coefficients behave as t fi ¥, information that can be obtained

using a range of analytical techniques (such as Hayman’s method) that are described in

pedagogical detail in Wilf (2006). We overview the main steps as they apply to the present

problem here.

We make use of the exponential generating function that is defined as

PnðzÞ ¼
X1
t¼0

PnðtÞzt
t!

: ð27Þ
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Then (26) can be expressed equivalently in the extremely compact form

PWðzÞ ¼
YW
i¼1

P1ð/izÞ ð28Þ

which is what allows the different learning strategies to be analyzed.

As t fi ¥, we necessarily have that P1(t) fi 1, and hence that to leading order,

P1ðzÞ � ez. Hence, the leading term in (28) is e(
P

i/i)z. Since
P

i/i ¼ 1, we find after invert-

ing the generating function that PW(t) fi 1 as t fi ¥, as one would expect since P1(t)
fi 1 for all W words independently. What is of interest, then, is the next-leading term in

PWðzÞ. This we can read off from the form of P1(t) common to all the strategies discussed

in the main text:

P1ðtÞ ¼
0 t ¼ 0
1� að1� qÞt þ rðtÞ t > 0

�
ð29Þ

where the remainder term is assumed to have the property that, for some q ¢ > q,

lim
t!1
ð1� q0ÞtrðtÞ ¼ 0: ð30Þ

In the following, it is useful to keep in mind the largest value of D ¼ q ¢ ) q for which this

limit holds: This gives an indication of when the next-next-leading term becomes relevant,

and the approximation that P1(t) is completely characterized by the two parameters a and q
breaks down.

Given these definitions, we find that

P1ðzÞ � ez 1� ae�qz þOðe�ðqþDÞzÞ
h i

: ð31Þ

Evaluating now the saddle-point (Riley, Hobson, & Bence, 2006) of the inversion integral

(which is what is involved in the application of Hayman’s method; Wilf, 2006),

PWðtÞ ¼
1

2pi

I
dz

ztþ1
PWðtÞ; ð32Þ

we ultimately find that

PWðtÞ ¼
YW
i¼1
½1� ae�q/it þOðe�ðqþDÞ/itÞ�: ð33Þ

Truncating each multiplicand after the second term—which is what is done to arrive at

(7)—is valid if D/it* >> 1 for any i; hence, we arrive at the criterion t* >> 1/(/minD) for

the validity of the learning time t* obtained from (7).

For the fast mapping strategy, this truncation involves no approximation (D is effectively

infinite in this case). For the Minimal XSL strategy, D ¼ C
Cþ1

Mþ1
M and for the Pure XSL

strategy, D ¼ C
M�1 ð1� C

MÞ. We thus find that the result for the Minimal XSL strategy given

in the main text holds if C exceeds [ ln W/�])1, which is always true if W/� is larger than

about 3 (and therefore certainly valid when W is large and � small, which is the range of
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interest). Meanwhile, the result for Pure XSL holds if C/M is larger than [ ln W/�])1. For the

values of W ¼ 60,000, � ¼ 0.01, and M ¼ 100 used in the main text, this corresponds to C
being larger than about 6. We see in Fig. 2 that the theoretical prediction does indeed differ

from the values obtained from the Monte Carlo simulation in this regime. Note that these

conditions hold both for the uniform and the Zipfian distributions.

Appendix B: Monte Carlo methods

Since a number of approximations were made in deriving the learning time formulæ, it is

worthwhile to compare these predictions with data obtained from Monte Carlo simulations

of the model learning tasks discussed. Furthermore, in the absence of analytical predictions

for the Approximate XSL strategy described in the main text, simulation is the only means

we have at our disposal to obtain the requisite data for Fig. 3.

In principle, the simulation proceeds as follows. A random number generator (specifically

a Mersenne twister) is used to generate a sequence of target meanings, drawn at random

from the set of W available targets according to the appropriate distribution (uniform or

Zipf). In each of these episodes, C distinct nontarget meanings are also selected from the M
possibilities. If the target meaning has never been presented before, one of the C + 1 mean-

ings present is chosen at random as the current hypothesis for that meaning. If this hypothe-

sis is correct, the word is marked as learned, as all further exposures will confirm the correct

hypothesis. On subsequent exposures of unlearned words, the hypothesis is retained if it

coincides with one of the meanings present, or a new hypothesis is chosen either uniformly

from the scene (Minimal XSL), frequency-weighted from the scene (Approximate XSL), or

from the set of confounding meanings (XSL). In the Approximate XSL case, it is necessary

to keep track of the number of times each meaning has appeared alongside a given target,

and in the full XSL case the set of confounding meanings must be tracked. The simulation

stops when all words have been learned and the number of episodes needed to reach that

point is output. To obtain the learning times shown in the figures, a sample of N ¼ 2,000

learning times was generated for each, and the time t*(�) obtained by dividing this sample

into two sets, one containing the largest N�( ¼ 20 for � ¼ 0.01) learning times, and the

other containing the rest. The numerical value of t*(�) was then taken to be the midway

point between the smallest element of the former set and the largest of the latter.

In practice, a more optimized version of the above was actually used to generate the data

shown in Figs. 2 and 3. For example, in the Minimal XSL case we can notionally maintain

all possible false hypotheses in parallel, switching with probability 1 ) C/M in each episode

whereupon a correct hypothesis is then chosen with probability 1/(C + 1). Each possible

learning time is still generated with the desired probability, but this approach allows for bet-

ter statistics from fewer samples. A similar optimization was employed in the other two

cases.

In all cases we found the Monte Carlo results to be in excellent agreement with the theo-

retical predictions where the latter were available. The only exception to this is for the full

XSL strategy in the small C/M regime for the reasons we have discussed above.

642 R. A. Blythe, K. Smith, A. D. M. Smith ⁄ Cognitive Science 34 (2010)


