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Abstract

How and where are the universal features of language specified?
We consider language users as situated agents acting as conduits for
the cultural transmission of language. Using multi-agent computa-
tional models we show that certain hallmarks of language are adap-
tive in the context of cultural transmission. This observation requires
us to reconsider the role of innateness in explaining the characteristic
structure of language. The relationship between innate bias and the
universal features of language becomes opaque when we consider that
significant linguistic evolution can occur as result of cultural transmis-
sion.

1 Introduction

There must be a biological basis for language. Animals cannot be taught
language. Now imagine having a thorough knowledge of this capacity: a
detailed explanation of whatever cognitive processes are relevant to learn-
ing, understanding, and producing language. Would this understanding be
sufficient for us to predict universal features of language? Human languages



exhibit only a limited degree of variation. Those aspects of language that do
not vary are termed language universals. The assumption of contemporary
linguistics and cognitive science is that these hallmarks can shed light on the
cognitive processes underlying language. In the discussion that follows we
reflect on the reverse implication, and argue that language universals can-
not be fully explained by understanding biologically determined aspects of
cognition. The relationship between the two is opaque, and mediated by a
cultural dynamic in which some linguistic forms are adaptive (Kirby, 1999).

In addressing this question one must reconsider the traditional practice
in cognitive science of, first, isolating a competence from its cultural con-
text and then, secondly, attempting to understand that competence such
that its behaviour can be fully explained. This practice is questioned by
the proponents of embodied cognitive science (Dreyfus, 1972; Winograd &
Flores, 1986; Clancy, 1997; Brooks, 1999; Pfeifer & Scheier, 1999). We ex-
amine the claims of embodied cognitive science, specifically the principle of
situatedness, and relate this enterprise to recent work in the field of compu-
tational evolutionary linguistics. We note that these two approaches share
a methodological assumption, one that singles out cultural context as being
a theoretically significant consideration. In the discussion that follows we
show how this notion of cultural context can be modeled using multi-agent
computational models. In short, we aim to show how multi-agent systems
can be used to shed light on some fundamental issues in linguistics, but also
cognitive science in general.

First we discuss alternative standpoints in explaining why, as a cognitive
process, language exhibits certain designs. We argue that situatedness must
form part of any explanation — a thorough understanding of linguistic com-
petence cannot lead to a thorough explanation for the universal aspects of
language structure. To flesh this claim out we present work on an agent-based
framework for studying the evolution of language: the iterated learning model.
In particular, we focus on compositionality in language. Insights gained from
these models suggest that language designs cannot be explained by under-
standing language in terms of a detached individual’s knowledge of language.
An argument for this stance is presented Section 4 where we make explicit
the foundational principles that underly our approach to understanding the
characteristic structure of language.

2 Explaining universal features of language

Take all the world’s languages and note the structural features they have in
common. On the basis of these universal features of language, we can propose



a universal grammar, a hypothesis that circumscribes the core features of all
possible human languages (Chomsky, 1965). On accepting this hypothesis,
we should ask: Why is linguistic form subject to this set of universal prop-
erties? More precisely, how and where are these restricted set of structures
specified? The discussion that follows will address the manner in which this
question is answered.

The hunt for an explanation of universal features is traditionally mounted
by arguing that universal grammar is an innate biological predisposition that
partially defines the manner in which language is learned by a child. The
linguistic stimulus a child faces, be it Chinese or Spanish, through the pro-
cess of learning, results in a knowledge of language. For Chomsky learning
is “better understood as the growth of cognitive structures along an inter-
nally directed course under the triggering and partially shaping effect of the
environment” (Chomsky, 1980, p34). So an innate basis for language, along
with the ability to learn, permits the child to arrive at a knowledge of lan-
guage. The degree to which language is specified innately is a matter of
heated debate. At one extreme, we can imagine a highly specialised “lan-
guage instinct” (Pinker, 1994) and at the other, we can imagine a domain
general learning competence which serves language as well other cognitive
tasks (Elman et al., 1996).

2.1 The object of study

For a moment, let us stand back from this debate and examine the vocabu-
lary of explanation we have employed to answer the original question: How
and where are universal features of language specified? We notice that an
explanation of a population level phenomena — language — has been reduced
to the problem of an individual’s knowledge of language. Languages vary
greatly, but we are specifically interested in the features common to all lan-
guages. Universal properties of language, to a greater or lesser extent, are
specified innately in each human. This de-emphasis of context, culture and
history is recurring theme in cognitive science, as Howard Gardner notes:
“Though mainstream cognitive scientists do not necessarily bear any animus
[...] against historical or cultural analyses, in practice they attempt to factor
out these elements to the maximum extent possible.” (Gardner, 1985, p41).
Taking this standpoint helps in mounting a practical investigation into a pos-
sible answer to the question. The universal aspects of language we see in the
world are strongly correlated with an individual’s act of cognition, which is
taken to be biologically determined. Now we have isolated the real object of
study. Understanding the innate linguistic knowledge of humans will lead us
to an understanding of why language is the way it is. For the purposes of



this study, let us characterise this position.

Principle 1 (Principle of detachment) A total explanation of the innate
basis for language, along with an explanation of the role played by the lin-
guistic stimulus during the language acquisition process, would be sufficient
for a thorough explanation for the universal properties of language.

Now the problem is to account for a device that relates input (linguistic
stimulus) to output (knowledge of language). For example, Chomsky dis-
cusses a language acquisition device (LAD) in which the output takes the
form of a grammatical system of rules. He states that “An engineer faced
with the problem of designing a device for meeting the given input-output
conditions would naturally conclude that the basic properties of the output
are a consequence of the design of the device. Nor is there any plausible
alternative to this assumption, so far as I can see” (Chomsky, 1967). In
other words, if we want to know how and where the universal design fea-
tures of language are specified, we need look no further than an individual’s
competence derived from primary linguistic data via the LAD. This posi-
tion, which we have termed the principle of detachment, runs right through
cognitive science and amounts to a general approach to studying cognitive
processes. For example, in his classic work on vision, Marr makes a con-
vincing case for examining visual processing as a competence understood
entirely by considering a series of transformations of visual stimulus (Marr,
1977, 1982). We will now consider two bodies of work that suggest that the
principle of detachment is questionable!.

2.1.1 Explanation via synthetic construction

One of the aims of cognitive science, and in particular, artificial intelligence
(AI), is to explain human, animal, and alien cognition by building work-
ing computational models. Those working in the field of Al often isolate
a single competence, such as reasoning, planning, learning, or natural lan-
guage processing. This competence is then investigated in concordance with
the principle of detachment, more often than not, in conjunction with a
simplified model of the environment (a micro-world). These simplifying as-
sumptions, given the difficulty of the task, are quite understandable. So the
traditional approach is centred around the belief that investigating a com-
petence with respect to a simplified micro-world will yield results that, by
and large, hold true when that agent is placed in the real world. General

!There are other arguments for questioning the principle of detachment, for example,
those presented by Winograd and Flores (1986), but we omit them for the sake of brevity.



theories that underly intelligent action can therefore be proposed by treating
the agent as a detached entity operating with respect to an environment.
Crucially, this environment is presumed to contain the intrinsic properties
found in the environment that “real” agents encounter.

This is a very broad characterisation of cognitive science and Al. Nev-
ertheless, many within cognitive science see this approach as misguided and
divisive, for a number of reasons. For example, we could draw on the wealth of
problems and lack of progress traditional Al is accused of (Pfeifer & Scheier,
1999, p59-78). Some within AI have drawn on this history of perceived fail-
ure to justify a new set of principles collectively termed Embodied Cognitive
Science (Pfeifer & Scheier, 1999), and occasionally New AI (Brooks, 1999).
Many of these principles can be traced back to Hubert Dreyfus’ critique of
Al 20 years earlier (Dreyfus, 1972). The stance proposed by advocates of
embodied cognitive science is important because they refine Dreyfus’ stance,
build on it, and crucially cite examples of successful engineering projects.
This recasting of the problem proposes, among others, situatedness as a the-
oretical maxim (Clancy, 1997). Taking the principle of situatedness to its
extreme, the exact nature of the environment is to be taken as primary and
theoretically significant. For example, the environment may be partly con-
structed by the participation of other agents (Bullock & Todd, 1999). In
other words, certain aspects of cognition can only be fully understood when
viewed in the context of participation (Winograd & Flores, 1986; Brooks,
1999). It is important to note that this “new orientation” is seen by many
as opposing the branches of mainstream Al or at least the branches of Al
that claim to explain cognition.

If, for a moment, we believe the advocates of embodied cognitive science,
they are telling us that any explanation for a cognitive capacity must be
tightly coupled with an understanding of the environment. What impact
does this discussion have on our questions about language universals? First,
it provides a source of insights into investigating cognition through building
computational models. A theory faces a different set of constraints when
implemented as a computational model. An explanation that is grounded
by a synthetic artifact can act as a sanity check for theory. Second, this dis-
cussion admits the possibility that investigating cognition without assuming
the principle of detachment can be fruitful. In the context of language and
communication, the work of Luc Steels is good example of this approach.
Steels investigates the construction of perceptual distinctions and signal lex-
icons in visually grounded communicating robots (Steels, 1997, 1998). In this
work signals and the meanings associated with signals emerge as a result of
self-organisation.



2.1.2 The evolutionary explanation

Only humans have language. How did language evolve? The communication
systems used by animals do not even approach the sophistication of human
language, so the question must concern the evolution of humans over the
past 5 million years, since our last non-linguistic ancestor, Australopithecus
(Jones, Martin, & Pilbeam, 1992). Unfortunately, there is no fossil evidence
offering concrete insights into the evolution of language in humans. We can,
for example, analyse the evolution of the vocal tract, or examine skulls and
trace a path through the skeletal evolution of hominids, but the kind of
conclusions we can draw from such evidence can only go so far (Lieberman,
1984; Wilkins & Wakefield, 1995).

Over the past 15 years computational evolutionary linguistics has emerged
as a source of alternative answers. This approach uses computational mod-
els to try and shed light on the very complex problem of the evolution of
language in humans (Hurford, 1989; Kirby, 2002). One source of complexity
is the interaction between two substrates, each one operating on a differ-
ent time-scale. More precisely, linguistic information is transmitted on two
evolutionary substrates: the biological and the cultural. For example, you
are born with some innate predisposition for language which evolved over
millions of years. The linguistic forms you inherit from your culture have
evolved over hundreds of years, and your linguistic competence emerges over
tens of years.

Much of the work on the evolution of language, particularly in the con-
text of computational modeling, has analysed this interaction. By modeling
linguistic agents as learners and producers of language, and then investigat-
ing how communication systems evolve in the presence of both biological
and cultural transmission, computational evolutionary linguistics attempts
to shed light on how language could evolve from non-linguistic communi-
ties. This approach draws on disciplines such as cognitive science, artificial
life, complexity, and theoretical biology. Recent work in this field has fo-
cussed on how certain hallmarks of human language can arise in the absence
of biological change. This observation must lead us to consider how far a
biological explanation for language can take us. For example, the very possi-
bility of trademark features of language not being fully explained in terms of
an individual’s (biologically determined) cognitive capacity raises important
questions.

We detail this work in the next section, but raise the issue here as it
impacts on the current discussion. In explaining how and why language
has its characteristic structure, the evolutionary approach is in line with
the claims made by proponents of embodied cognitive science. A thorough



explanation for language universals may lie outside the traditional vocabulary
of explanation, in which case the principle of detachment will need to be
breached.

2.2 Summary

This discussion has outlined the basis for asking two questions. First, what
kind of explanatory vocabulary should be invoked when explaining universal
features of language? Secondly, can situatedness shed light on this problem?

Building multi-agent computational models allows us to analyse how cog-
nitive agents interact, specifically, what role this interaction plays in explain-
ing the behaviour we observe in nature. This approach serves an important
purpose for cognitive science generally, which traditionally views the individ-
ual as the locus of study. For linguistics, being subfield of cognitive science,
a multi-agent approach to understanding cognition, one which takes situat-
edness as theoretically significant, is an untapped resource.

We aim to fully investigate how relevant multi-agent systems are to the
question of explaining universal features of language. This is a timely in-
vestigation. For example, on the validity of artificial intelligence Chomsky
notes “in principle simulation certainly can provide much insight” (Chomsky,
1993, p30). Perhaps more relevant is the remark made by another promi-
nent linguist, Ray Jackendoff: “If some aspects of linguistic behaviour can be
predicted from more general considerations of the dynamics of communica-
tion in a community, rather than from the linguistic capacities of individual
speakers, then they should be.” (Jackendoff, 2002, p101). Taking these two
observations together we should at least consider the role of situatedness
in explaining the universal features of language. The next section presents
recent work on exploring precisely this question.

3 Language Evolution and Iterated Learning

The iterated learning model (ILM) is a general framework for modeling the
cultural transmission of language (Kirby, 2001; Brighton, 2002), and is based
on Hurford’s conception of the expression/induction model (Hurford, 1989,
1990). The basis of an iterated learning model is a series of generations.
Each generation consists of a population of agents which learn language from
utterances produced by the previous generation. Each agent represents a
language user, and begins life as an infant observing the language of adult
agents in the previous generation. The agent learns from these observations
and induces a knowledge of language. After doing so, the infant becomes



an adult. Once an adult, an agent will be prompted to form utterances
which infant agents, in the next generation, observe. This process, depicted
in Figure 1, is repeated for some number of generations, typically in the
thousands.
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Figure 1: The agents in the ILM produce utterances. These utterances are
used by the agents in the next generation to induce a knowledge of language.
By repeating this process, the language evolves.

In this article we will concentrate on models which have one agent in each
generation. This simplification is important, and is discussed later. In brief,
the iterated learning model allows us to see how a language evolves over
time, as it passes through a repeated cycle of induction and production. The
agents themselves act as a conduit for language, with the bias inherent in
the processes of learning and generalisation defining, in part, how language
will evolve from one generation to the next.

In the ILM a language is defined as a mapping from meanings to signals.
Meanings are regarded as abstract structured entities, and modeled here as
feature vectors. Signals differ from meanings in that they are of variable
length. Signals are built by concatenating abstract symbols drawn from
some alphabet. These idealisations are consistent with Pinker and Bloom’s
characterisation of language as the “transmission of propositional structures
over a serial channel” (Pinker & Bloom, 1990). One of the hallmarks of



human language, which we will be considering in detail, is the property of
compositionality (Montague, 1974):

The meaning of a signal is a function of the meaning of its parts,
and how they are put together.

Compositional languages are those exhibiting the property of composi-
tionality. We can contrast these with holistic languages, where parts of the
meaning do not correspond to parts of the signal — the only association
that exists is one that relates the whole meaning to the whole signal. Before
going into the details of the ILM, it is worth considering three examples of
communication systems found in nature:

1. The alarm calls of Vervet monkeys provide us with the classic example
of a largely innate holistic communication system (Cheney & Seyfarth,
1990).

2. Bird song has learned signals with elaborate structure, but the meaning
the song conveys is believed to be holistic — a structured song refers to
the meaning as whole (Hauser, 1996).

3. Honey bees do have a compositional communication system, but it is
innate (von Frisch, 1974).

Significantly, the only communication system that is learned and exhibits
compositionality is human language. Both compositional and holistic utter-
ances occur in human language. For example, the idiom “kicked the bucket”
is a holistic utterance which means died. Contrast this utterance with “large
green caterpillar” for which the meaning is a function of the meaning of its
parts: “large”, “green”, and “caterpillar”.

A simple? example of a holistic language, using the formalisation of lan-
guage in the ILM, might be set of meaning signal pairs Lpo;ssic:

Lholistic = {({la 2, 2}5 San% <{1: 1, 1}: ac}, <{2: 2, 2}: CCX)a
({2,1,1}, ), ({1, 2,1}, pols), ({1, 1, 2}, monkey) }
No relation exists between the signals and the meanings, other than the

whole signal standing for the whole meaning. In contrast, an example of a
compositional language is the set:

2The languages used in the simulations we discuss are usually larger than the examples
presented here.



Leompositionar = {{{1,2,2},adf), ({1, 1,1}, ace), ({2, 2, 2}, bdf),
({2,1,1}, bee), ({1,2,1}, ade), ({1, 1, 2}, acf) }

Notice that each signal is built from symbols that map directly onto
feature values. Therefore, this is a compositional language; the meaning
associated with each signal is a function of the meaning of the parts of that
signal.

Now, at some point in evolutionary history, we presume that a transition
from a holistic to a compositional communication system occurred (Wray,
1998). This transition formed part of what has been termed the eighth
major transition in evolution — from an animal communication system to a
full blown human language (Maynard Smith & Szathmary, 1995). Using the
ILM, we can try and shed light on this transition. In other words, how and
why might a holistic language such as Lpgist:c Spontaneously pass through a
transition to a compositional language like Leompositional”

3.1 Technicalities of the ILM

Agents in the ILM learn a language on the basis of a set of observed mean-
ing/signal pairs L'. This set L' is some random subset of the language which
could have been spoken in the previous generation, denoted as L. That is,
L' is the set of utterances of L that were produced. Humans are placed in
precisely this position. First, we hear signals and then we somehow asso-
ciate a meaning to that signal. Second, we suffer from the the poverty of the
stimulus (Pullum & Scholz, 2002) — we learn language in light of remarkably
little evidence. For example, there is no way any human language can ever
be externalised as a set of utterances. Languages are just too large, in fact,
they are ostensibly infinite. This restriction on the degree of linguistic stim-
ulus available during the language learning process we term the transmission
bottleneck. This process is illustrated in Figure 2.

Once an agent observes the set of utterances L', it forms a hypothesis, h,
for this observed language using a learning mechanism. In our experiments
we draw on a number of machine learning approaches to achieve this task.
Once an appropriate hypothesis has been induced, the agent is considered an
adult, and can now form utterances of its own. By interrogating the hypoth-
esis, signals can be produced for any given meaning. Sometimes the agent
will be called to produce for a meaning it has never observed in conjunction
with a signal, and it therefore might not be able to postulate a signal by any
principled means. In this situation some form of invention is required. Inven-
tion is a last resort, and introduces randomness into the language. However,
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Figure 2: The hypothesis of agent 1, h;, represents a mapping between mean-
ings and signals, Ly,. On the basis of some subset of this language, L}, , the
agent in the next generation induces a new hypothesis hy. This process
of utterance observation, hypothesis induction, and production, is repeated
generation after generation.

if structure is present in the language, there is the possibility of generalisa-
tion. In such a situation, the hypothesis induced could lead to an ability to
produce signals for all meanings, without recourse to invention, even though
all the meaning/signal pairs have not been observed.

With a transmission bottleneck in place, a new dynamic is introduced into
the ILM. Because learners are learning a mapping by only observing a subset
of that mapping, through the process of invention, they might make “mis-
takes” when asked to convey parts of that mapping to the next generation.
This means that the mapping will change from generation to generation. In
other words, the language evolves. How the language evolves, and the pos-
sibility and nature of steady states, are the principle objects of study within

11



the ILM. We now consider these two questions.

3.2 The evolution of compositional structure

Recall that, from an initially holistic language, we are interested in the evo-
lution of compositional language. Specifically, we would like to know which
parameters lead to the evolution of compositional structure. The parameters
we consider in the discussion that follows are:

1. The severity of the transmission bottleneck, b (0 < b < 1), which
represents the proportion of the language utterable by the previous
generation that is actually observed by the learner. The poverty of the
stimulus corresponds to the situation when b < 1.0.

2. The structure of the meaning space. Meanings are feature vectors of
length F'. Each feature can take one of V' values. The space from which
meanings are drawn can be varied from unstructured (scalar) entities
(F = 1) to highly structured entities with multiple dimensions.

3. The learning and production bias present in each agent. The learn-
ing bias defines a probability distribution over hypotheses, given some
observed data. The production bias defines, given a hypothesis and a
meaning, a probability distribution over signals.

To illustrate how compositional language can evolve from holistic lan-
guage we present the results of two experiments. The first experiment
is based on a mathematical model identifying steady states in the ILM
(Brighton & Kirby, 2001; Brighton, 2002), and the second considers the dy-
namics of an ILM in which neural networks are used as a model of learning
(Smith, 2002a). We refer the reader to these articles if they require a more
detailed discussion.

3.2.1 Compositional structure is an attractor in language space

Using a mathematical model we show that, under certain conditions, compo-
sitional language structure is a steady state in the ILM. In these experiments
the processes of learning and generalisation are modeled using the Minimum
Description Length Principle (Li & Vitdnyi, 1997) with respect to a hy-
pothesis space consisting of finite state transducers. These transducers map
meanings to signals, and as a result of compression, can permit generalisa-
tion so that utterances can be produced for meanings which have never been
observed.

12



Primarily we are interested in steady states. A steady state corresponds
to a language which repeatedly survives the communication bottleneck: It
is stable within the ILM. We can define language stability as the degree to
which the hypotheses induced by subsequent agents agree on the mapping
between meanings and signals. When a bottleneck is in place, the initial lan-
guage, that produced by the first agent, will be unstable because it is holistic
and therefore uncompressable. Note that when there is no communication
bottleneck in place, all languages are stable because an agent will have ob-
served the whole language, and could therefore just construct a lookup table
that associates every meaning with a signal.

A stable language is one that can be compressed, and therefore pass
through the communication bottleneck. Compression can only occur when
structure is present in a language, so compression can be thought of as ex-
ploiting structure to yield a smaller description of the data. This is why
holistic language cannot fit through the bottleneck — it has no structure.

Ultimately, we are interested in the degree of stability advantage conferred
by compositional language over holistic language. Such a measure will reflect
the probability of the system staying in a stable (compositional) region in
language space. More formally, we define the expressivity, F of a language
L as the number of meanings that the hypothesis induced on the basis of L,
which we term h, can express without recourse to invention.

Given a compositional language L., and a holistic language Lj, we use
a mathematical model to calculate the expected expressivity of the trans-
ducer induced for each of these language types. We denote these measures
of expressivity E. and Ej, respectively. These expressivity values tell us how
likely the transducer is to be able to express an arbitrary meaning, and there-
fore, how stable that language will be in the context of the ILM. Finally, the
value we are really interested in is that of relative stability, S:

—_— E’c
 E.+E,

This tells us how much more stable compositional language is than holistic
language. In short, the model relates relative stability, S, to the parameters
b (severity of the communication bottleneck), F', and V' (the structure of the
meaning space). Figure 3(a)-(d) illustrates how these three variables interact.
Each surface represents, for a different bottleneck value, how the meaning
space structure impacts on the relative stability, S, of compositional language
over holistic language. We now analyse these results from two perspectives.

S

Tight bottleneck. The most striking result depicted in Figure 3 is that
for low bottleneck values, where the linguistic stimulus is minimal, there is a

13
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Figure 3: The bottleneck size has a strong impact on the relative stability
of compositionality, S. In (a), b = 0.9 and little advantage is conferred
by compositionality. In (b)-(d) the bottleneck is tightened to 0.5, 0.2, and
0.1, respectively. The tighter the bottleneck, the more stability advantage
compositionality offers. For low bottleneck sizes, a sweet spot exists were
highly structured meanings lead to increased stability.

high stability payoff for compositional language. For large bottleneck values
(0.9), compositionality offers a negligible advantage. This makes sense, as
we noted above, because without a bottleneck in place all language types are
equally stable. But why exactly is compositional language so advantageous
when a tight bottleneck is in place? When faced with a holistic language
we cannot really talk of learning, but rather memorisation. Without any
structure in the data, the best a learner can do is memorise: generalisation
is not an option. For this reason, the expressivity of an agent faced with a
holistic language is the number of distinct utterances observed.

Note that when agents are prompted to produce utterances, the meanings
are drawn at random from the meaning space. A meaning can therefore be
expressed more than once. Expressivity is precisely the number of distinct
utterances observed. When there is structure in the language, expressivity is

14



no longer a function of the number of utterances observed, but rather some
function, say f, of the number of distinct feature values observed, as these
are the structural entities that generalisation exploits. Whenever a mean-
ing is observed in conjunction with a signal, F' features values are observed
while only a single meaning is observed. The mathematical model we have
developed proposes a function f on the basis of the MDL principle. Recall
the parallel between the communication bottleneck and the the situation
known as the poverty of the stimulus: all humans are placed in the situation
where they have to learn a highly expressive language with relatively little
linguistic stimulus. These results suggest that for compositionality to take
hold the poverty of the stimulus is a requirement. Traditionally, poverty of
stimulus, introduced in Section 3.1, is seen as evidence for the view that we
have innate linguistic knowledge. Because a language learner is faced with an
impoverished body of linguistic evidence, innate language specific knowledge
is one way of explaining how language is learned so reliably (Chomsky, 1965;
Pinker, 1994; Pullum & Scholz, 2002). The results presented here suggest an
alternative viewpoint: stimulus poverty introduces an adaptive pressure for
structured, learnable languages.

Structured meaning spaces Certain meaning spaces lead to a higher
stability payoff for compositionality. Consider one extreme, where there is
one dimension (F' = 1). Here, only one feature value is observed when one
meaning is observed. Compositionality is not an option in such a situa-
tion, as there is no structure in the meaning space. When we have a highly
structured meaning space, the payoff in compositionality decreases. This
is because feature values are likely to co-occur infrequently as the meaning
space becomes vast. Somewhere in between these extremes sits a point of
maximum stability payoff for compositionality.

3.2.2 An agent-based model

The results presented above tell us something fundamental about the rela-
tion between expressivity and learning. The model, stripped bare, relates
language expressivity to two different learning models by considering the
combinatorics of entity observation. We compare two extremes of language
structure: fully structured compositional languages and structureless holis-
tic languages. In this respect, the model is lacking because human language
exhibits a mixture of both. Some utterances we use are holistic, some are
compositional (Wray, 1998). We also skirt round the question of dynamics.
The model is an analysis of Lyapounov stable states: places in language space
that, if we start near, we stay near (Glendinning, 1994).
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We now briefly discuss a second experiment that addresses both these
issues. In this experiment, the dynamics of language evolution are mod-
eled explicitly using an agent-based simulation. Agents in this experiment
are associative neural networks. This model is an extension of a model of
simple learned vocabulary (Smith, 2002b). Using an associative network in
conjunction with learning rules based on Hebbian learning, the mapping be-
tween meanings and signals is coded using a meaning layer, two intermediate
layers, and a signal layer. Languages exhibiting all degrees of composition-
ality, holistic to compositional, and all gradations in between, are learnable
by this network (Smith, 2002a).

The first generation of the ILM starts with a network consisting of weighted
connections, all of which are initialised to zero. The network is then called
to express meanings drawn from an enwvironment which we define as some
subset of the meaning space. One dimension of variation over environments
is dense to sparse. This means that the set of possible meanings to be com-
municated are drawn from a large proportion of the space (dense) or a small
proportion of the space (sparse). The second dimension of variation concerns
structured and unstructured environments. A structured environment is one
where the average inter-meaning hamming distance is low, so that meanings
in the environment are clustered. Unstructured environments have a high
inter-meaning hamming distance.

Once again, the bottleneck parameter, the proportion of the environment
used as learning data, is varied. First, let us consider the case where no
bottleneck is present — a hypothesis is chosen on the basis of a complete
exposure to the language of the previous generation. Figure 4(a) depicts,
for 1000 independent ILM runs, the frequency of the resultant (stable) lan-
guages as a function of compositionality. Compositionality is measured as
the degree of correlation between the distance between pairs of meanings
and distance between the corresponding pairs of signals. We see that few
compositional languages evolve. Contrast this behaviour with Figure 4(b),
where a bottleneck of 0.4 is imposed. Compositional languages are now by
far the most frequent end-states of the ILM. The presence of a bottleneck
makes compositionality adaptive in the ILM. We also note that structured
environments lead reliably to compositional language.

This experiment, when considered in more detail, illustrates the role of
clustering in the meaning space, and the impact of different network learning
mechanisms (Smith, 2002b). But for the purposes of this discussion, the key
illustration is that the bottleneck plays an important role in the evolution of
compositional languages. In short, these results validate those of the previous
section.
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Figure 4: In (a) we see how the lack of a bottleneck results in little pressure
for compositional languages. In (b), where a bottleneck of 0.4 is imposed,
compositional languages reliably evolve, especially when the environment is
structured.

3.3 Using the ILM to explain language structure

The learning bias and hypothesis space of each agent is taken to be innately
specified. Each generation of the ILM results in the transfer of examples of
language use only. In the absence of a bottleneck, compositionality offers
little advantage, but as soon as a bottleneck is imposed, compositional lan-
guage becomes an attractor in language space. So even though agents have
an innate ability to learn and produce compositional language, it is the dy-
namics of transmission that result in compositionality occurring in the ILM.
We must reject the idea that an innate ability to carry out some particu-
lar behaviour necessarily implies its occurrence. We aim to strengthen this
claim, and refine it.

Previous work investigating the ILM has shown that linguistic features
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such as recursive syntax (Kirby, in press), and regular/irregular forms (Kirby,
2001) can also be framed in this context. The idea that we can map innate
properties such as, for example, the learning and generalisation process, the
coding of environmental factors, and the fidelity of utterance creation di-
rectly onto a properties of evolved languages is not wholly justifiable. This
approach should be seen as building on the Kirby’s analysis of language uni-
versals (Kirby, 1999) in which issues such as, for example, constraints on
representation and processing are shown to bring about functional pressures
that restrict language variation. Here, we also note that the relationship be-
tween innate bias and universal features of language is not transparent, but
concentrate on the constraints introduced by cultural transmission. These
constraints result in certain linguistic forms being adaptive; we can think
of language evolving such that it maximises its chances of survival. For a
linguistic feature to persist in culture, it must accommodate the constraints
imposed by transmission pressures. Compositionality is one example of an
adaptive feature of language.

If we want to set about explaining the characteristic structure of lan-
guage, then an understanding of the biological machinery forms only part of
the explanation. The details of these results, such as meaning space structure
and the configuration of the environment, are not important in the argument
that follows. Nevertheless, factors relating to the increase in semantic com-
plexity have been cited as necessary for the evolution of syntactic language
(Schoenemann, 1999). We believe that the scope of the ILM as a means to
explain and shed light on language evolution is wider than we have suggested
so far.

To summarise, by taking compositionality as an example, we argue that
its existence in all the world’s languages is due to the fact that compositional
systems are learnable, generalisable, and therefore are adaptive in the context
of human cultural transmission. This explanation cannot be arrived at when
we see the individual as the sole source of explanation. Viewing individuals
engaged in a cultural activity allows us to form explanations like these.

4 Underlying Principles

We began by considering explanations for the hallmarks of language. So far
we have investigated an agent’s role in the context of cultural transmission.
In this section we aim to tie up the discussion by making explicit a set of
underlying principles. We start by noting that any conclusions we draw will
be contingent on an innateness hypothesis:
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Principle 2 (Innateness hypothesis) Humans must have an biologically
determined predisposition to learn and produce language. The degree to which
this capacity is language specific is not known.

Here we are stating the obvious — the ability to process language must
have a biological basis. However, the degree to which this basis is specific to
language is unclear. We have no definitive answer to the question of innately
specified features of language (Pullum & Scholz, 2002). Next, we must con-
sider the innateness hypothesis with respect to two positions. First, assuming
the principle of detachment, the innateness hypothesis must lead us to be-
lieve that there is a clear relation between patterns we observe in language
and some biological correlate. If we extend the vocabulary of explanation by
rejecting the principle of detachment, then the question of innateness is less
clear cut. We can now talk of a biological basis for a feature of language,
but with respect to a cultural dynamic. Here, a cultural process will mediate
between a biological basis and the occurrence of that feature in language.
This discussion centres around recasting the question of innateness. This
observation leads us to accepting that situatedness plays a role.

Principle 3 (Situatedness hypothesis) A thorough explanation of lan-
guage competence would not amount to a total explanation of language struc-
ture. A thorough explanation of language competence in conjunction with an
explanation of the trajectory of language adaption would amount to a total
explanation of language structure.

The degree of correlation between a biological basis and the observed lan-
guage universal is hard to quantify. However, Figure 5 illustrates the general
point. A biological basis will admit the possibility of some set of communi-
cation systems Cpyssinie. A detached understanding of language can tell us
little about which members of Cpssinie Will be adaptive and therefore ob-
served. The situatedness hypothesis changes the state of play by considering
which communication systems are adaptive, Cyggptive, On a cultural substrate.

Rejecting the situatedness hypothesis must lead us to consider the issue
of representation. The only way a thorough knowledge of language universals
can be arrived at, while at the same time accepting the principle of detach-
ment, is that universal features are somehow “represented” explicitly. How
else could we understand a universal feature of language by understanding
a piece of biological machinery? An acceptance of the situatedness hypoth-
esis allows us to explain a feature of language in terms of a biological trait
realised as a bias which, in combination with the adaptive properties of this
bias over repeated cultural transmission, leads to that feature being observed.
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Figure 5: In (a), which assumes the principle of detachment, we can only
make a claim about possible communication systems. In (b), assuming the
situatedness hypothesis, an explanation accounts for the resulting communi-
cation systems which are adaptive over cultural transmission.

However, if one accepts cultural transmission as playing a pivotal role in de-
termining language structure, then one must also consider the impact of
other factors effecting adaptive properties. But as a first cut, we need to
understand how much can be explained without resorting to any functional
properties of language:

Principle 4 (Language function hypothesis) Language structure can be
explained independently of language function.

A defence of this hypothesis is less clear cut. However, the models we have
discussed make no claims about, nor explicitly model, any notion of language
function. Agents simply observe the result of generalisation. The fact that
compositional structure results without a model of language function suggests
that this is a fruitful line of enquiry to pursue. The treatment of language in
discussions on embodied cognitive science often assume language function is
salient (Winograd & Flores, 1986), but we must initially assume it is not. The
kind of cognitive processes that we consider are processes such as memory
limitations and learning bias.
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4.1 The role of modeling

The previous section we examined the basis for explaining language univer-
sals. The claims we made are partly informed by modeling. Is this method-
ology valid? Many issues relating to language processing are not modeled.
For example, those involved in the study of language acquisition will note
that our learners are highly implausible: the language acquisition process
is an immensely complex and incremental activity (Elman, 1993). It must
be stressed that our models of learning and generalisation should be seen as
abstracting the learning process . We are interested in the justifiable kind of
generalisations that can be made from data, not a plausible route detailing
how these generalisations are arrived at. The output of a cognitively plausi-
ble models of learning is generalisation, just as it is in our models. Rather
than modeling the language acquisition process, we are modeling the result
(or output) of the language acquisition process. We make no claims about
the state of learners during the act of learning. We also have not addressed
the role of population dynamics. The models presented here represent a spe-
cial case of the ILM, one where there is a single agent in each population.
We regard this simplification as a necessary first step. Extending the models
to contain multiple agents in each generation is a current research project.

5 Conclusions

Cognitive science has traditionally restricted the object of study by examin-
ing cognitive agents as detached individuals. For some aspects of cognition
this emphasis might be justifiable. But this assumption has become less
appealing, and many have taken to the idea that notions of situatedness,
embeddedness, and embodiment should be regarded as theoretically signif-
icant and should play an active role in any investigation of cognition. Our
aim is to consider this claim by building multi-agent models, where agents
are learners and producers of language. Specifically, we aim to investigate
how multi-agent models can shed light on the problem of explaining the
characteristic structure of language.

When explaining universal features of language, the traditional stand-
point, which we characterised in Principle 1, assumes that cultural context is
not a theoretically significant consideration. We attempt to shed light on the
question of how and where the universal features of language are specified.
The approach we take is in line with the intuitions of embodied cognitive
science. By examining the role of the cultural transmission of language over
many generations, we show that certain features of language are adaptive:
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significant evolution of language structure can occur on the cultural sub-
strate.

Taking the example of compositionality in language, we illustrate this
point using two models. The first model identifies compositionality as an
Lyapounov stable attractor in language space when a transmission bottleneck
is place. The second model offers additional evidence by demonstrating that
compositionality evolves from holistic language. The upshot of these two
experiments is that cultural transmission in populations of agents endowed
with a general ability to learn and generalise can lead to the spontaneous
evolution of compositional syntax. Related work has shown that recursive
syntax and regular/irregular forms are also adaptive in the context of cultural
transmission. The implications of this work lead us to reconsider how features
of language should be explained. More precisely, the relationship between
any innate (but not necessarily language-specific) basis for a language feature,
and the resulting feature, is opaque.

We place the discussion in the context of three principles that need to
be considered when explaining features of language. First, Principle 2 lays
down an innateness hypothesis, which makes clear that language must have
a biological basis. What form this biological basis takes is very much an open
question. Secondly, we propose Principle 3, a situatedness hypothesis which
makes explicit the claim that understanding the biological machinery behind
language alone is not enough to explain universal features of language. This
claim constitutes the core of the argument. Principle 4 identifies a hypothesis
relating to the relationship between language function and language struc-
ture. The idea that language function, such as issues of communicability, has
an impact on language universals is unclear.

By rejecting Principle 1 and pursuing a line of enquiry guided by Prin-
ciples 2-4 we have shown that multi-agent models can provide important
insights into some fundamental questions in linguistics and cognitive science.
The work presented here should be seen as the first steps towards a more
thorough explanation of the evolution of linguistic structure. We believe
that multi-agent models will become an increasingly important tool in the
study of language.
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