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Abstract
Systematicity is a basic property of language and other cul-

turally transmitted behaviours. Utilising a novel experimental

task consisting of initially independent sequence learning tri-

als, we demonstrate that systematicity can unfold gradually via

the process of cultural transmission.
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Introduction
Language, like many other culturally-transmitted aspects of

human behaviour, works as a system: individual words or

phrases do not behave independently of one another but in-

stead form part of a mutually reinforcing system of conven-

tions. This is at the heart of what we mean when we talk about

the grammar of language - grammar exists only to the extent

that individual utterances are non-independent, and related to

one another in systematic ways. This is so obviously true of

language, and other cultural systems such as music, that it

hardly seems to stand in need of explanation. But where does

this basic fundamental property come from? Why are individ-

ual utterances not independent? After all, they arguably are

for all other systems of communication in nature. Even when

we discount the fact that non-human animals can only convey

a finite set of meanings, many animal communication signals

are gradable and related to one another only as much as they

are produced by the same vocal apparatus (Fitch, 2010). This

stands in stark contrast to human language, resting as it does

on a system of infinitely reusable discrete signals
1

.

We propose that the answer lies in the nature of cultural

transmission. In systems like language which are transmit-

ted by iterated learning2

, the most transmissible behaviours

are those that are most learnable (Smith, Kirby, & Brighton,

2003). Cultural evolution tends therefore to maximise learn-

ability (Christiansen & Chater, 2008; Kirby, Cornish, &

Smith, 2008). One way to increase learnability of a set of be-

haviours is for those behaviours to behave systematically, so

1

An obvious exception to this are species capable of vocal learn-

ing - particularly song-birds and cetaceans. We suspect it is no coin-

cidence that these species (a) have combinatorial signalling systems,

and (b) make use of cultural transmission. See Feher et al. (2009)

for an example of the important role culture has in bird-song.

2

This refers to a particular type of learning where a behaviour is

acquired by observing another who also acquired that behaviour the

same way (Kirby & Hurford, 2002).

that learning one will increase the ease with which others will

be learned. In other words, we should expect cultural evo-

lution to create systems of dependence between previously

independent learned behaviours.

In this paper we present an experimental paradigm in

which we can observe the cultural evolution of such sys-

tematicity in a task which involves many initially indepen-

dent learning trials. Our task is purposefully non-linguistic,

but designed to have relevant similarities with language.

Specifically, it is a simple immediate sequence-recall task

based around the Simon Game. This was a children’s elec-

tronic game developed by Milton-Bradely in 1978 with four

coloured illuminated buttons arranged on its surface in a cir-

cle. These buttons lit up to display a random sequence and the

player’s goal was to repeat this sequence back immediately.

This task has a number of useful properties for our purposes.

Firstly, although it is clearly non-linguistic, thereby making it

unlikely that participants will bring any language-specific bi-

ases to it, the task nevertheless involves sequence learning,

which is highly relevant to the linguistic domain (Misyak,

Christiansen, & Tomblin, 2010; Christiansen, Conway, & On-

nis, 2012). Secondly, the task is overtly one in which each se-

quence acts as an independent task. The player can be scored

on their learning of each sequence immediately after recall.

This is in contrast to a typical artificial language learning task

(e.g., Gomez & Gerken, 2000) which might involve learning

a set of sequences for recall at a later stage.

Our question is the following: given this kind of simple

independent sequence recall task, will cultural transmission

nevertheless lead to the evolution of systematicity in the set

of sequences? In effect, can an implicit system-wide learning

effect exert influence on the evolution of the set of sequences?

To test this, we create an iterated version of the Simon Game

in which the sequences produced by one participant in the

task become the sequences that the next participant in the ex-

periment is exposed to. We start with a set of 60 random se-

quences, and observe whether these sets evolve in such a way

to make learning easier, and whether they do so by becoming

more systematically structured.

Methods
The experiment utilises a diffusion chain paradigm, a tech-

nique used widely amongst researchers investigating cultural
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transmission (e.g., Mesoudi & Whiten, 2008), whereby all

learners (apart from those in the initial generation) are trained

on the output of previous learners.

Participants
In total, 40 participants (mean age 21y, 11m; females = 25)

were recruited from the University of Edinburgh’s graduate

employment service, to take part in a visual memory exper-

iment involving sequences of flashing coloured lights. Each

participant was allocated at random into one of four different

chains (A, B, C, D), consisting of ten generations each. All

learners received £7 remuneration for taking part.

Procedure
The task itself was simple: participants were shown a light

sequence on a touch-screen tablet device, and then asked to

immediately reproduce it by tapping the sequence back. The

layout of the Simon Game is shown in Figure 1. Once a com-

plete sequence has been input (Figure 1.a), immediate accu-

racy feedback is given (Figure 1.b). Participants could then

request another sequence.

Friday, 1 February 2013 Friday, 1 February 2013

83% 
correct!

press to 
enter

(a) (b)

Figure 1: A diagram showing the layout of the Simon Game:

(a) participants see a sequence on the screen, and are asked to

immediately reproduce it; (b) feedback is then given on the

task.

In all, participants were trained and tested on 60 different

sequences, seeing each sequence once in each of two rounds

in random order, making 120 exposures in total. In order to

catch obvious mistakes in sequence entry, if any participant

submitted a sequence of length 6 or shorter, this was rejected

by our software, and the target sequence would reappear at

a random point later in the player’s round for them to re-

attempt. The 60 sequences produced in the second round

were collected to be used as training stimuli for the next

learner in the chain.

Initial Sequences
Although subsequent learners were trained on the output of

the previous learner, the four initial participants were trained

on a set of sequences that adhered to the following properties:

(i) the length of each sequence was 12; (ii) each sequence

consisted of 3 flashes of each colour (red, blue, green, yel-

low); (iii) these colours appeared in random order. This re-

sulted in a set of 60 sequences which had no structure.

Results
The sequences were analysed in order to determine (1)

whether the individual sequences would adapt to become eas-

ier to learn over time, and (2) whether individual sequences

would co-evolve together to form a collective system. In or-

der to assess these effects, we look at quantitative measures

of learnability and structure, along with an additional measure

examining the degree of divergence between the four chains

into specific lineages. We also qualitiatively examine some

of the evolved sequences at the ends of the chains, and note

some striking structural regularities.

Learnability
To determine the learnability of a sequence set at a given

moment in time, we first need a measure of how accurately

each sequence is reproduced. For this we calculated the inter-

generational error using the Levenshtein (1966) edit-distance

between each target sequence and response from the partici-

pant, normalised for length of sequence (Kirby et al., 2008)
3

:

we count the minimum number of insertions, deletions and

substitutions required to turn one sequence (input) into an-

other (output), dividing this by the length of the longer se-

quence. From the normalised edit distance of each individual

sequence, we then calculate the average error of the sequence

set. For consistency with our later analysis we converted this

into mean similarity (1-error), shown in Figure 2 below.

Generations
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Figure 2: Graph showing the average mean similarity score of

sequences in each set over generations. Error-bars represent

the 95% confidence intervals across the four chains, here and

throughout.

3

The same metric was used to give feedback to participants, but

was first recast into a similarity score by computing 1-error, and then

given as accuracy by percentage. An error score of 0.17 translates

to a similarity score of 0.83, and appeared to participants as 83%

correct.
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As Figure 2 indicates, the sequence sets become easier to

learn over time: reproduced sequences become more similar

to their targets. In order to determine whether this cumulative

increase in similarity was significant, we ran Page’s (1963)

L trend test. This reveals a significant increase in similarity

over generations, both when including (L=1469, m=4, n=10,

p<.0001) and excluding (L=1074, m=4, n=9, p<.0001) the

initial set of sequences, which had not been produced by par-

ticipants.

Structure
One possible explanation for the increase we see in learn-

ability could simply be that early participants are forgetting

parts of each sequence, leading to the sequences eventually

becoming short enough to be more easily reproduced by later

learners. In order to assess this claim, we examined the av-

erage length of sequences across each chain for any signs of

change. Figure 3 confirms that that there was no significant

reduction in sequence length over the course of the experi-

ment. Given that length is in fact highly stable across each

generation, some other feature of the sequences must be re-

sponsible for their increase in learnability.
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Figure 3: Graph showing the average length of each sequence

by generation. Sequence length remains stable throughout

the experiment, ruling out a simplistic explanation for the im-

provements to performance in Fig. 2.

The other possibility is that the sequences have become

structured in some way. In order to determine whether this

is the case or not, we examined the composition of the se-

quences in each set, using two different metrics. The first is

a measure of dispersion, which looks at how similar each se-

quence is to other sequences within that set. This is calculated

using the same distance metric as before, this time comparing

the distance of each sequence from all other sequences within

that generation, rather than across generations between target

and reproduction. This figure, when averaged over all pairs

of sequences, returns the amount of dispersion within the set

at a given generation. Figure 4 shows that over time, indi-

vidual sequence sets lose variation as the sequences within

them begin to resemble one another (L=1980, m=4, n=11,

p<.0001). This could happen if, for instance, smaller sub-

sequences come to be shared across whole sequences within

the set.
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Figure 4: Graph showing the mean of the normalised disper-

sion score of the four sequence sets over generations. Disper-

sion decreases cumulatively over generations, indicating that

sequence sets are becoming more self-similar over time.

In order to explore this idea further, the second measure

looks at compression. This is related to the notion of Kol-

mogorov complexity (Kolmogorov, 1963), and is essentially

a measure of how easy it is to compress data into a smaller

representation. If a dataset contains repetitions (redundancy),

then the algorithm can exploit that by creating a shorter repre-

sentation to substitute for the larger one, and thus the size of

the file can be reduced. We tested this directly by computing

the compression ratio (size of the file after compression/size

of the file before compression)
4

in order to assess how much

structure was present in each sequence set (Fig. 5).

Figure 5 demonstrates that there is a decrease in the com-

pression ratio over time (L=1964.5, m=4, n=11, p<.0001).

This shows that the sequences are becoming structured, and

further supports the idea that those sequences produced later

on in the chains have become fractionated into smaller higher-

frequency units which repeat within sequence sets.

4

To do this, we used tools from the Zlib library: www.zlib.net
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Figure 5: A graph showing the mean compression ratio over

generations. Sequence sets become more compressible over

time, indicating that there is more structure in later sequences

than in earlier sequences.

Identifiability
The decrease in dispersion scores and compression ratios

across our four chains could be due to a universal bias pulling

all of the sequences towards a similar (structured) attractor.

If this were the case, we would expect to find that a given

sample of sequences drawn from within a chain, at a cer-

tain generation, would look fairly similar to any other sam-

ple of sequences drawn from any other chain at that same

generation. In order to to determine whether there are in

fact different types of structural patternings in our data, or-

ganised across the different lineages, or just one kind of

structural patterning shared amongst all chains, we used a

measure of lineage divergence (referred to as identifiability)

taken from Matthews, Roberts, and Caldwell (2012). This

determines (for each sequence) the within-group similarity

and the across-group similarity, and then calculates a pro-

portion: [within-group similarity/(within-group similarity +

across-group similarity)]. This returns a value between 0

and 1, where values above 0.5 indicate higher overall within-

group similarity, and values below 0.5 indicate higher across-

group similarity.

Figure 6 shows, the initial sequences (generation 0) are

not identifiable as coming from their particular chain. This

is to be expected due to the fact that they were all randomly

constructed according to the same procedure. However, se-

quences do begin to diverge into separate lineages. A one-

sample Wilcoxen test confirms that the within-group iden-

tifiability of sequences from all chains produced by partic-

ipants (generations 1-10) were significantly higher than our
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Figure 6: Graph showing how the average identifiability of

each sequence increases over time. The dashed line repre-

sents chance levels.

expected chance level of 0.5 (Z=-5.86, N=40, p<.0001). Fur-

thermore, our trend analysis reveals that this effect is cumu-

latively increasing over time (L=1901, m=4, n=11, p<.0001),

such that sequences drawn from later generations are signif-

icantly more likely to resemble sequences from within their

own lineage, than from those of any other lineage.

Qualitiative analysis
The quantitative results all point towards the fact that our in-

dependent sequences are gradually becoming structured as a

collective, and that they do so in ways which are specific to

different lineages. What then might some examples of these

systematic structures look like? Figure 7 shows a sample of

sequences that came from chain A.

As Figure 7.a shows, the initial set of sequences contain

very little obvious structure. By generation 10 however (Fig-

ure 7.b), a common pattern has emerged. In fact, of the 60

sequences in this set, just over half of them begin with an ini-

tial alternation pattern of red-yellow-red-yellow, or red-red-

yellow-yellow. This is frequently followed by a cyclical pat-

tern - moving around the Simon board in either a clock-wise

or anti-clockwise direction from a given starting point (usu-

ally red in this case) - which can itself be repeated to extend

the sequence. This kind of structure lends itself easily to be-

ing analysed into hierarchically arranged sub-parts, contain-

ing non-adjacent dependencies. Figure 7.c shows one such

possible analysis of this kind
5

.

5

This analysis is intended to be illustrative rather than definitive,

and is based on the sample of 6 sequences shown here, not the whole

set. As we can see in Figure 2 the sequence sets are not fully stable

and are still undergoing change, making a more detailed structural

analysis difficult.
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vi    [[[r[ry]y][r[ry]y]][[rgyb][rgyb]]]

 [[[ry][ry]][[rbyg][rbyg]]]

Figure 7: Some examples of sequences from chain A: (a) a

sample of six random sequences at generation 0; (b) those

same sequences at generation 10; (c) sequences at gener-

ation 10 again, bracketed to highlight their nested hierar-

chical structure. This bracketing can be used to generate

tree-structures (as shown in example v) which more clearly

demonstrate the nature of the system.

As to be expected from the identifiability results however,

the way in which the other chains are organised is noticeably

different, both to the statistical measures employed earlier,

and to the human eye. These different styles can be easily

contrasted visually in Figure 8, again by drawing a sample of

six strings from the set to illustrate general structural regular-

ities in the final generations.
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Chain B Chain C Chain D

Figure 8: Some examples of sequences from the final gener-

ations of chains B, C and D. There are clear qualitative dif-

ferences between the sequences across these different chains,

and from chain A in Figure 7 above.

In contrast to the distinctive alternation found in chain A,

chain B favours the more cyclical patterns, and shows a very

dominant tendency to begin all sequences with a red (92%).

Chain C also places restrictions on the identity of the first

colour: green is most common (48%), followed by yellow

(30%) and red (22%), but never blue. It also contained the

highest proportion of sequences with two or more of the same

colour adjacent to one another (58%: as compared to A 28%,

B 35% and D 23%). Finally, Chain D seems to prefer triplets

and alternations as reusable sub-sequences.

In summary, the qualitative analysis of the chains reveals

that sequence-sets can become systematic in multiple ways.

Some commonalities do exist across lineages - for instance, a

strategy of repeated alternation of two colours was present

in all chains. However, (i) the frequency with which a

given strategy was employed, (ii) where it was employed

(sequence-initially, sequence-medially, or sequence-finally),

and (iii) with what particular colour combinations it was

employed, all varied, contributing to the development of a

unique ‘profile’ for each lineage.

Discussion
We have presented an experiment in which participants at-

tempt to immediately recall visually presented sequences.

The sequences that participants produce become the se-

quences which subsequent participants try to recall. In this

way, we create lineages of sequences in an experimental sim-

ulation of cultural evolution. These lineages are potentially

independent of each other, since the initial set of sequences

are generated at random and participant responses are gath-

ered immediately after each sequence.

The effect of cultural evolution in the experiment is that the

sequences become easier to recall correctly. In other words,

errors introduced by participants are in the direction of eas-

ier sequences. How is this achieved? We see that the set of

sequences at each generation becomes self-similar, suggest-

ing that the sequences are not operating independently any

more. This conclusion is confirmed if we look across sepa-

rate chains in the experiment: the sequences are more similar

within a chain, and less similar across chains. Additionally,

the set of sequences at each generation in the experiment be-

comes more compressible, as system-wide structure starts to

emerge.

The systematic structure in sequences shows tantalising ev-

idence of hierarchy, although a deeper analysis will have to

await further analytic tools being applied. For example, in

some chains we see the emergence of pairs of pairs of colours.

We also see a pattern in which some sequences are “doubled”

versions of others in the set. So, for example, the sequence

prefix “rryyrryy” in chain A matches the prefix “ryry”. It is

tempting to suggest that this provides evidence of a grammar

with centre embedding of the form (AnBn)m
, although such

an analysis is premature without further probing of the way

in which these sequences are processed. Building on work

such as Christiansen and Ellefson (2002), recent attempts

have been made to tease apart the different cognitive mech-

anisms at work when processing non-adjacent dependencies

resembling these sequences in language (Vries et al., 2012;

Christiansen et al., 2012). This may provide further clues as

to why these particular structures emerge in this study. Like-

wise, studying the process of emergence itself, using iterated

sequence learning tasks in the laboratory as we have done,

may help us better understand the way these learning and pro-

cessing biases shape behaviour at the population level.

Conclusion
A hallmark of complex culturally transmitted behaviours in

humans, such as language and music, is their systematic
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structure. Instances of behaviour do not behave indepen-

dently, but form part of a system of mutually reinforcing con-

ventions. Here we show that such systematic structure can

emerge in an experimental task through the process of cul-

tural transmission even when the task is designed to minimise

the influence of domain specific biases and with no explicit

reward for treating behaviours as co-dependent. We propose

that this result is suggestive of a similar process operating in

the origins of behaviours like language in humans. Cultural

evolution favours transmissible behaviours. A solution to the

challenge of becoming more transmissible is for behaviours

to form part of a system, thus increasing their learnability.

Language, our most systematic suite of behaviours, bears the

hallmark of just such a process of cultural optimisation.
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