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Abstract

A recent large-scale wug-task study found that non-native
speakers of English tend to produce fewer regular past-tense
-ed inflections than native speakers (Cuskley et al., 2015). In
this paper we present a model that can account for this dif-
ference in behaviour as resulting from a difference in input
amounts and distributions. This model attends to both fre-
quency, using Bayesian non-parametric methods, and phono-
logical similarity between words, using a neural model of word
forms, and unifies these factors within a single probabilistic
framework. We show that the general pattern of over-use of
irregular inflections in non-native speakers can result simply
from exposure to a smaller amount of input and does not re-
quire any model-internal distinction of native and non-native
speakers. Our model also captures the interaction between
class frequency and phonological similarity that was evident
across all participant productions.
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Introduction
For decades the English past-tense has been the “fruit fly”
of linguistic research on how morphological rules and excep-
tions are learned from limited exposure (see e.g., (Seidenberg
& Plaut, 2014) for a review). The past tense wug-task (Berko,
1958), in which participants are asked to provide a past tense
form of a novel verb, is the archetypal experiment for probing
the ability of learners to generalise morphological patterns
to new forms. It has classically been used to test children’s
knowledge of productive morphological patterns, but has also
been applied to adults (Bybee & Moder, 1983; Prasada &
Pinker, 1993; Albright & Hayes, 2003; Cuskley et al., 2015).
Two factors have emerged as being crucial to patterns of mor-
phological generalisation: frequency and phonology.

English regular and irregular verbs have different fre-
quency distributions: irregular verbs tend to be more fre-
quent than regular ones. This early observation (Bybee, 1985)
has been confirmed and quantified by corpus studies: high
frequency verbs are much more likely to have an irregu-
lar past tense form, and lower frequency irregular verbs are
more likely to become regular (Lieberman, Michel, Jackson,
Tang, & Nowak, 2007; Cuskley et al., 2014; Newberry, Ah-
ern, Clark, & Plotkin, 2017). This pattern is not limited to
English: across languages, morphological irregularities are
more frequently found among high frequency forms (Wu,
Cotterell, & O’Donnell, 2019). As a result, language learners
may thus initially be exposed to a disproportionate amount of

irregularity early on in learning, compared to proficient learn-
ers who have access to a fuller picture of the language.

Phonology is also an important factor in morphological
regularisation and generalisation. New verbs (e.g. novel
forms in the context of a wug task) that are phonologically
similar to existing irregulars are more likely to be inflected
using a non-regular pattern (Bybee & Moder, 1983; Prasada
& Pinker, 1993; Albright & Hayes, 2003). Phonology also
interacts with frequency. The marked relationship between
frequency and regularity exists alongside the presence of
“phonological gangs” of irregular verbs (Bybee, 2003), such
as cling, fling, sling, and sting, which all form the irreg-
ular past-tense in the same way. These “gangs” of lower
frequency irregulars form higher frequency blocks of quasi-
regularity, which then have the bulk to sustain irregularity
over time (Bybee, 2003; Cuskley et al., 2014).

This quasi-regularity is also productive under certain con-
ditions: participants in experimental contexts are willing to
extend membership to novel forms, if they have sufficient
phonological similarity to existing irregulars. In a recent
large-scale study investigating phonological effects, Cuskley
et al. (2015) asked adult native and non-native English speak-
ers to inflect novel verbs in a wug-style task. The novel verbs
were designed to be either phonologically close to existing ir-
regulars, close to existing regulars, or equidistant from both.
In both native and non-native speakers, the phonology of the
novel verbs had a marked effect: participants were signifi-
cantly more likely to provide non-ed forms for novel verbs
that were phonologically close to existing irregular verbs than
to frequent regulars. However, non-native speakers were sig-
nificantly more likely than native speakers to produce non-
ed forms across all novel verb types. Furthermore, among
non-natives, age of acquisition and self-rated proficiency pre-
dicted irregularization rates: later and less proficient learners
were more likely to provide non-ed forms.

Cuskley et al. (2015) suggested that the varying rates of ir-
regularization may reflect differences in input: less proficient
learners have had less exposure to the language. Compar-
ing their performance to native speakers and corpora statistics
indicated that non-natives may be over-estimating the pro-
ductivity of quasi-regularity in English, generalising from the
highly frequent irregular words in their limited input (see Fig-
ure 1). While there was considerable variety in the exact non-
ed forms the participants provided, the forms were far from
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Figure 1: Reproduction of Figure 12 from Exp 2 in Cuskley
et al. (2015), showing the distribution of past-tense forms
produced by native and non-native English speakers, com-
pared to the distribution of past-tense forms within a corpus
(CoHA, Davies, 2010). (CC BY-NC-ND 4.0)

random, and could generally be tied to one of eight exist-
ing quasi-regular classes, shown in Figure 1, such as ‘vowel
change’ (spit–spat) or ‘level’ (cut–cut).

These findings amount to a hypothesis not explicitly tested
in the original study: learners with less input (later acquir-
ing, lower proficiency non-natives) rely disproportionately on
quasi-regularity found in non-ed forms with high token fre-
quency. On the other hand, learners with more comprehen-
sive input are influenced by the greater overall number of reg-
ular (-ed inflected) types.

In this paper we introduce a model of a Bayesian learner
that aims to explicitly test this hypothesis. This model con-
siders both frequency and phonological similarity as interact-
ing but separable factors. Phonological similarity is evaluated
using a neural network, allowing us to leverage their ability to
detect patterns in high-dimensional spaces. This is somewhat
reminiscent of the classic past-tense network of Rumelhart
and McClelland (1986) and more recent versions (Kirov &
Cotterell, 2018; Corkery, Matusevych, & Goldwater, 2019).
However, those models generate past tense words forms di-
rectly, across the full vocabulary, while the neural networks
here are used to generate probability distributions over forms
within a given verb class, which are then incorporated within
the Bayesian model.

We introduce the model incrementally, first describing the
frequency component that assesses the relative importance of
type and token frequency in verb class distributions. We then
move on to describe the neural component responsible for es-
timating phonological similarity within a class. Finally, we
evaluate the full model with both components against the pat-
terns in the results from Exp 2 in Cuskley et al. (2015). The
model captures the pattern of interaction between the amount
of exposure (of which nativeness was a proxy in the original

study), frequency, and phonology.

Modelling the Lexicon
Are type or token statistics more relevant to inferring the dis-
tribution of past tense forms in English? Arguably a cogni-
tive model should capture both types of statistics, allowing
the data, rather than the modeller, to indicate the relative im-
portance of each. In this section we describe the Pitman-Yor
process (PYP) (Buntine & Hutter, 2010; Goldwater, Griffiths,
& Johnson, 2011), which can interpolate between types and
tokens, depending on a particular parameter value: a learner
who uses token vs. type-sensitive representations is thus, un-
der such a model, merely tuning a continuous parameter, no
different from all the other parameters that are updated as the
learner sees data.

In a PYP model over the vocabulary, each token is gener-
ated either directly from an existing cached value or by gen-
erating from the base distribution, responsible for the gener-
ation of individual types (which may, however, be repeatedly
drawn). We will discuss the general effects of caching within
the PYP first and then go on to describe the concrete base
distribution we use in more detail.

Formally, the probability of token wi taking on value v
(i.e., being of type v), given seen data www, hyperparameters
a and b, and a base distribution G over word types, depends
on K, the number of slots in the cache, each corresponding to
a draw from the base distribution, and the number of tokens
generated from that cached item, nk:

p(wi = v|w1 . . .wN ,a,b,G) =
b+Ka
b+N

G(v)+
K

∑
k=1

nk−a
b+N

[k = v]

The number of cached items is bounded by the number of
types V and tokens N in the data (V ≤ K ≤ N). Impor-
tantly, as a non-parametric process, the vocabulary size is
not predetermined: V is potentially as large as the number
of unique draws from the base distribution, which may be in-
finite. However, for a given dataset, V (and K and N) is finite.

The degree of caching is governed by the model-level pa-
rameter 0 ≤ a < 1: lower values of a lead to more caching,
resulting in fewer draws from the base distribution, whereas
values of a near one result in very little caching, meaning
nearly every token is independently generated from the base
distribution. The posterior statistics of the base distribution
will reflect these different usages. Identifying the base distri-
bution with the ‘mental lexicon’, the no-caching setting re-
sults in a lexicon based on token statistics, while a heavy
caching setting results in a lexicon reflecting type statistics
(since at minimum each type must be drawn from the base
distribution once, in order to be added to the cache). The opti-
mal level of caching depends on the data distribution. Instead
of fixing a, a is inferred together with the other parameters of
the model (the cache behaviour, e.g. K). The other parameter
b has relatively little influence and we set b = 1 throughout.

In the model, verb types are represented as a tuple of (class,
form): v = (c, f ), where verb classes correspond to the inflec-
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tion classes in the experimental data from Exp 2 in Cuskley
et al. (2015), e.g. ‘Regular’ or ‘Vowel Change’, and the form
is represented by the phonological form, as given by the
CMU pronunciation dictionary. We use the frequencies of
past tense verbs but represent them using their lemma/present
tense form because the final goal is to estimate P(c|‘wug’),
i.e., to make predictions based on the lemma form. In the
training phase, the verb classes are known, as are the under-
lying lemmas. This corresponds to estimating the state of the
mental lexicon of a learner who knows the set of past tense
forms, and thus can classify lemmas into the correct classes.

During testing, the model sees a novel verb form
(e.g ‘splink’) without an accompanying class assignment,
and the task is to calculate the probability distributions over
classes given the form and the state of the Pitman-Yor process
lexicon after training. Since the verb form is novel, it by def-
inition has not been cached, and so it has to be generated by
the base distribution directly. We define the base distribution
over verb classes and forms as G(c, f ) = P(c)P( f |c), i.e. the
form is conditioned on the verb class, while the class is gener-
ated independently. The first factor P(c) captures the effect of
relative frequency across classes, described in the section be-
low, while P( f |c) can capture phonological similarity within
classes, described in the section thereafter.

The role of frequency
In this section we use the model described above to test the
role of frequency across learners with differing amounts of
experience. To do so, we estimate lexicons over different
amounts of data, where the key parameters being inferred are
a, controlling the degree of caching, and the base probability
distribution, which depends on the degree of caching.

The distribution over classes P(c) in the base distribution
is modelled as a Dirichlet-Categorical, c ∼ DirCat(α). Use-
fully, the posterior predictive probability of this compound
distribution given data kkk, needed for the wug task, has a
closed form:

P(c|kkk) =
∫

θ

P(c|θ)P(θ|kkk)dθ =
nc +α

N +Cα
,

where nc is the number of occurrences of c in kkk, N is the total
number of items in kkk, and C is the number of categories. Im-
portantly, since P(c) is part of the base distribution, the data
kkk consist only of the tokens drawn from the base distribution,
not the cached tokens. In a setting in which tokens are cached
aggressively, the base distribution will generate once for each
type (in order to add it to the cache); kkk then consists of the
set of types in the original data www and P(c) is a (smoothed)
estimator of class frequency in the vocabulary. Conversely, if
tokens are not cached and instead always drawn from the base
distribution, kkk will be identical to www and P(c) is an estimator
of token class frequency.

For now we set P( f |c) to a simple distribution in which a
form is generated as a draw from a uniform distribution over
forms, f ∼ 1

F , where F is the number of unique forms in the
dataset. Note that this distribution is not dependent on class:

a form will have the same probability regardless of c. We will
change this in the next section, and the full model includes a
distinct distribution over forms for each class.

Inference We use Gibbs sampling to infer table configura-
tions and slice sampling to infer values of a after every two
iterations of Gibbs sampling. Forms and classes are observed
in the data and not inferred. The hyperparameters apart from
a are set to fixed values: b = 1 and α = 0.1, implying a mod-
erately sparse prior distribution over classes in the base dis-
tribution. The sampler is run for 100 iterations and converges
quickly, after approximately 30 iterations in most cases; re-
sults are from the final sample.

Data Following Cuskley et al. (2015), we use the 1980s
section of the Corpus of Historical American English (CoHA-
1980) (Davies, 2010). We select the past tense verbs (tagged
with vvd), filtering out suppletive verbs (forms of be, do,
have, and go) and any types which occur fewer than three
times in the entire CoHA-1980 corpus. Input datasets for the
simulations are generated by sampling a given number of to-
kens from the set of remaining verbs according to their fre-
quency. All samples will thus follow Zipf’s law, with many
tokens of high-frequency (possibly irregular) verbs, but also
containing a large number of lower-frequency (possibly reg-
ular) forms. Each sample corresponds to a learner at a dif-
ferent stage of learning, under the simplifying assumption
that learners are exposed to a non-biased sample of the lan-
guage/corpus. (This clearly does not hold for child learners,
inasmuch as child-directed speech is different from the writ-
ten texts in CoHA; it may be a more valid assumption for
literate adult language learners.)

Results Figure 2 shows the inferred probability distribu-
tions over classes across a set of simulations using datasets
of different sizes, ranging from 100 to 1 million tokens. We
see that distributions estimated on less data place less weight
on the Regular class compared to distributions estimated over
more data; this pattern corresponds to the difference in reg-
ular responses between native and non-natives (and among
more and less proficient non-natives) in Exp 2 in Cuskley et
al. (2015).

The values sampled for a varied with dataset size, with
smaller datasets resulting in higher a: with N = 100, a fluc-
tuated around .90 after convergence, while for the largest
dataset, a was around 0.45. The caching behaviour reflected
a, with proportionally more tokens being drawn from the
cache in larger models. However, as the distributions in Fig-
ure 2 show, this did not lead to the expected type-vs-token
statistics trade-off: all models inferred a distribution over
classes that corresponded to the empirical frequency of word
types in the data sample they were exposed to. However,
smaller samples contained a higher proportion of certain ir-
regular verb types, leading to a relative over-estimation of
those classes (primarily those involving vowel change, ‘VC’).
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Figure 2: Top: Probability distribution over classes after
training on different amounts of data (N_toks). Learners with
more exposure prefer the regular class. (The line correspond-
ing to N = 100 is discontinuous because some classes were
not seen.) Below: Empirical distribution of types and tokens
in differently sized samples. Class labels correspond to those
in Figure 1.

These results support the hypothesis that non-native speak-
ers may be over estimating quasi-regularity on the basis of
their exposure to proportionally more irregular word types,
compared to native speakers. However, it does not seem to be
the case that estimating verb class distributions requires at-
tention to token statistics, counter to the original hypothesis.

Phonological similarity
Inflection patterns are influenced by phonological similarity
as well as frequency patterns investigated in the previous sec-
tion. In this section, we focus on modelling P( f |c), the dis-
tribution of forms within a class. Roughly, forms known to
be within a class should receive high probability, along with
novel forms that are plausible members of that class. Plau-
sibility in this case is based on phonological similarity: does

the novel form contain similar sequences of sounds as other
members of the class?

We structure P( f |c) as a language model, in which the
probability of the form is the product of the probabil-
ity of the characters, generated in sequence: P( f |c) =

∏
| f |
i P( fi| f0...i−1,c). We depart from the Bayesian methodol-

ogy and use a neural network to estimate these distributions.
Neural networks are able to capture rich non-linear patterns in
data that would be hard, if not impossible, to define explicitly:
the potential is that, in order to accurately predict the next
character in a single form, the network will make generalisa-
tions across all the forms in the class. Since forms and classes
are known during the training phase, we only have to train
each class-specific model once, keeping inference tractable.

Within the neural language model, the model predicts each
character in the word based on the history (all preceding
characters in the word). Forms are predicted as a sequence
of characters corresponding to the phonological representa-
tion of the word (i.e., the model predicts pronunciation, not
orthography). Language models are cluster specific, corre-
sponding to P( f |c) = Plmc( f ), and thus capture the proba-
bility distribution over forms in that class. Ideally, this dis-
tribution could capture the phonetic similarity and variabil-
ity of members of the class: intuitively, a distribution over
forms that has seen words like bend, send, lend, and thus as-
signs them high probability, would also give high probability
to similar but unseen words like nend.

Model parameters The architecture of the character lan-
guage models is intentionally kept simple, in order to avoid
overfitting on small datasets. All models have the same ar-
chitecture: input is given to a single LSTM layer with 128
dimensions, followed by a learned linear layer with softmax
normalisation on the output, giving a probability distribution
over the next character. Learning is done using RMSProp
with default parameters. The input to the model is the phono-
logical word form in which each segment is mapped to a fea-
ture vector over 13 phonological features (e.g. the vowel in
wug would be represented as a vector corresponding to fea-
tures such as -consonant, +mid). Output prediction is over the
35 XSampa symbols used to represent pronunciation. Rep-
resenting the input using features enables the model to gen-
eralise over segment types (e.g. vowels) more easily than
with categorical (‘one-hot’) representations; conversely, on
the output side, the model is constrained to producing legal
symbols, instead of potentially generating unattested combi-
nations of features.

Training All training is done over word types, not tokens.
First, a general English character language model is trained
using early stopping on a validation set. The training data for
this dataset is sampled from the set of words in CoHA-1980s
that are not tagged as a verb (any tag not starting with v) and
are shorter than a maximum length of 10. The dataset is ten
times the size of corresponding verb dataset, roughly approxi-
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mating the fact that speaker’s vocabularies contain more non-
verbs than verbs, and that small-N learners will have smaller
vocabularies. The validation dataset includes only word types
that do not appear in training. For each class, the initial model
is further fine-tuned for another 50 epochs on the word types
in the class (most classes do not have enough types to do
early stopping on a separate validation set.) As before, verbs
are represented with the present tense/lemma form from the
CMU pronunciation dictionary.

We leave more comprehensive testing of the full model
for the next section, but we first confirm that the model is
working as a similarity metric, assigning higher probability to
members of its class than to members of other classes. Note
that during training there is no pressure for the model to be
discriminative between classes: each class language model
is trained on positive evidence only, and never sees negative
evidence in the form of examples from other classes.

As an initial check that the language models assign more
probability to verbs within their class over verbs outside
their class, we separately test held-out verb forms from the
two classes that are sufficiently large: ‘Regular’ and ‘Vowel
Change’ (VC). For each class, we train a language model as
described above, on the approximately 100 verb types found
when sampling 200 tokens (systematically slightly fewer
types for VC than Regular). We separately take 30 unseen
verb forms from each class as a test set. We can then com-
pare within-class probability (testing on the same verb class
as the model was trained on) against across-class probability
(the probability assigned by the class-specific model to words
from a different class). Over ten repetitions, the Regular lan-
guage models on average assigned probability to Regular test
verbs that was 1.5 times as high as that assigned to VC test
items; the difference was even higher for VC language mod-
els, with within-class (but unseen) VC verbs assigned 2.9
times higher probabilities than outside-class Regular verbs.
The fact that the VC class has fewer types compared to Regu-
lar seems to have led to a tighter distribution, but it is striking
that even the quite diverse Regular class assigns lower prob-
ability to the (relatively short and common) forms in the VC
class than unseen Regulars.

The Full Model
In this section we evaluate the complete model, where we use
the character language model from the previous section as the
distribution over forms P( f |c) within the base distribution of
the PYP model introduced earlier. This model incorporates
both class frequency biases and biases towards phonological
similarity: the model prefers high-(type)-frequency classes,
due to P(c), but this preference can be overruled by similarity,
if another class assigns higher probability to the particular
form being assessed in P( f |c).

We test the full model on the set of 15 nonce words used
in Exp 2 in Cuskley et al. (2015), in order to evaluate whether
it is sensitive to the same factors (frequency and phonology)
as human participants. We also again examine the effect of
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Figure 3: A comparison of the model’s predictions of irreg-
ular classes (top) to the irregularisation rates of participants
in Exp 2 in Cuskley et al. (2015) for the same stimuli (bot-
tom). The bottom sub-figure replicates Figure 6 in Cuskley
et al. (2015), in which all non-regular forms are counted to-
gether. The different models correspond to different dataset
sizes: values of N_toks are the number of tokens sampled for
training. Model results show an average of ten runs for each
setting; error bars show 95% CIs. StimType corresponds to
the verb type of the nearest neighbour of the novel verb: I:
Irrregular, R: Regular, IR: novel verb is equidistant between a
regular and irregular verb.

learning from different amounts of data. Our evaluation as-
sesses two hypotheses, corresponding to the factors of fre-
quency and similarity:

• That differences between full models trained on small
amounts of data and larger amounts of data will quali-
tatively correspond to the differences between non-native
and native speakers;

• That the full model will be sensitive to differences in
phonological similarity of test words, in the same way as
participants were.

For each word, we calculate P(c| f ) = P(c)P( f |c)
∑c′ P(c

′)P( f |c′) using
the posterior predictive base distributions from the PYP. We
compare the total model irregularization probability (i.e., the
probability of assigning a given form to a non-Reg class)
against irregularization rates in Exp 2 in Cuskley et al. (2015),
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in Figure 3. The test forms are grouped into one of three
classes, depending on their phonological nearest neighbour:
I forms are closest to an existing irregular, R forms are closest
to a regular, and IR are midway between a regular and irreg-
ular form. Nearest neighbours were matched for frequency;
see Cuskley et al. (2015) for details on stimuli construction.

Figure 3 shows that firstly, all models are sensitive to
phonological similarity in the same way as the human partici-
pants were: forms that are phonologically closer to irregulars
assigned more probability of belonging to irregular classes,
while test forms more similar to existing regulars have higher
probability of belonging to the Reg class (i.e., lower proba-
bility of being irregular).

Secondly, like non-native speakers, models trained on a
smaller sample of data assign relatively higher probability
to irregular classes, compared to models trained on larger
datasets. This is the effect of P(c): the distribution over
classes is more weighted towards irregular forms in a small-
data model (recall Figure 2) for each of the stimuli types.

Conceivably, phonological similarity and dataset size
could also interact, since smaller models estimate phono-
logical similarity on a different vocabulary than larger mod-
els, containing fewer low-frequency forms. If these low-
frequency forms are systematically distributed (e.g., they are
likely to be longer) then the presence or absence of these
forms in the dataset could affect phonological similarity
judgements. We found that larger models generally judged
the stimuli to have lower phonological similarity to the Reg-
ular class than smaller models, that is, P( f |Reg) was larger
in models trained on smaller dataset than in models trained
on more word forms. However, differences in phonological
similarity were very small compared to differences in cluster
probability across models trained on different dataset sizes.

Conclusion
Frequency and phonological similarity are the key factors in
morphological generalisation to new forms, and the model
presented in this paper captures them in a single framework.
In doing so, it is able to capture the three-fold interaction
between language proficiency (or exposure), class frequency,
and phonological similarity to existing verbs that was present
in the data from Cuskley et al. (2015). Remember that this
model was not fit to participant productions, and even the in-
put data (sampled from a large corpus) is a very rough approx-
imation of what learners of English are likely to be exposed
to. Nevertheless, we found that the model displayed the same
pattern of behaviour as participants, indicating both that the
interacting phenomena are quite robust and that model can
reliably capture them.

We find that our small-data learners behave similarly to
non-native speakers, in that they are more likely (than large-
data models and native speakers) to generate irregular forms,
due to the proportionately higher frequency of irregular verb
types in their limited input. A question remains of whether
this model can also explain the behaviour of native-speaker

child learners, who famously go through a phase of regular-
ising irregular forms (e.g., ‘goed’, Marcus et al., 1992). In-
vestigating child acquisition would require training the model
on varying amounts of child-directed speech input and evalu-
ating against age-appropriate nonce-word productions. Note
that this model is able to assign a known word form to a class
other than the one seen in training (i.e., by generating a new
entry in the PYP and assigning higher probability to a differ-
ent class than the training class); this would allow for over-
regularisation behaviour.

The combination of a non-parametric process and neu-
ral models presented here is powerful, since it allows us to
make use of the different strengths of each methodology.
However, it also comes with limitations. It is currently not
tractable to infer the set of verb classes, i.e., to do unsuper-
vised clustering of the verbs, in the current framework, which
would also require additional learning algorithms (e.g. to
sample class membership). Moreover the likelihood P( f |c)
given by the neural network is a point estimate dependent
on network parameters, instead of the posterior marginalised
over parameters that a full Bayesian approach would require.
Bayesian neural networks could remedy this issue in the fu-
ture (e.g. Fortunato, Blundell, & Vinyals, 2017).

This model is structured to support multiple productive
verb classes. Since irregularization rates of novel verbs in
English are non-zero (and occasionally quite high) in exper-
imental settings, a model should be able to predict produc-
tive use of non-regular verb inflection. However, it remains a
fact that the English past tense is extremely biased towards a
single regular form, and the set of irregular verbs is limited.
Many other languages have much richer inflection systems,
with multiple productive high-frequency classes. In future
work we plan to test the model on data from such a language
(e.g. Polish noun inflection, Dąbrowska, 2008), in order to
test the cross-linguistic viability of the model’s underlying
assumptions about the importance of frequency and phono-
logical similarity.
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