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Linguistic adaptation through iterated learning

Simon Kirby, Kenny Smith and Henry Brighton
University of Edinburgh

What constitutes linguistic evidence for Universal Grammar (UG)? The
principal approach to this question equates UG on the one hand with lan-
guage universals on the other. Parsimonious and general characterizations of
linguistic variation are assumed to uncover features of UG. This paper re-
views a recently developed evolutionary approach to language that casts
doubt on this assumption: the Iterated Learning Model (ILM). We treat UG
as a model of our prior learning bias, and consider how languages may adapt
in response to this bias. By dealing directly with populations of linguistic
agents, the ILM allows us to study the adaptive landscape that particular
learning biases result in. The key result from this work is that the relation-
ship between UG and language structure is non-trivial.

1. Introduction

A fundamental goal for linguistics is to understand why languages are the way they
are and not some other way. In other words, we seek to explain the particular
universal properties of human language. This requires both a characterisation of
what these universals are, and an account of what determines the specific nature of
these universals. In this paper we examine a particular strategy for linguistic
explanation, one which makes a direct link between language universals and an
innate Universal Grammar (UG). It seems reasonable to assume that, if UG
determines language universals, then language universals can be used as evidence
for the structure of UG. However, we will argue that this assumption is potentially
dangerous. Our central message is that we can seek linguistic evidence for UG only
if we have a clear understanding of the mechanisms that link properties of language
acquisition on the one hand and language universals on the other.

In the following section we will discuss what is actually meant by the term UG.
There are a number of differing senses of the term, but a neutral definition can be
given in terms of prior learning bias. We will then sketch an account of the universal
properties of language in terms of this bias.
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In Section 3, we will compare this kind of explanation to an alternative
approach, linguistic functionalism, which focuses on the use of language. A well-
recognised difficulty with this approach is the problem of linkage�: what is the
mechanism that links universals to linguistic functions? We claim that not only does
the UG-approach suffer exactly the same problem, but the solution is the same in
both cases.

Section 4 sets out this solution in terms of Iterated Learning, an idealised model
of the process of linguistic transmission. We survey some of the results of modelling
iterated learning to show how it can help solve the problem of linkage.

Finally, in the closing sections of the paper we argue that language universals,
and linguistic structure more generally, should be viewed as adaptations that arise
from the fundamentally evolutionary nature of linguistic transmission.

2. What is Universal Grammar?

Before we discuss the role of UG in explaining language universals, we need to be
clear what we mean. Unfortunately, there is some variation in how the term is used
(see Jackendoff 2002 for an excellent review of the literature):

<LINK "kir-r15">

i. UG as the features that all languages have in common.
Clearly, this equates UG exactly with universals. This is not the sense of UG
that we will be concerning ourselves with in this paper. Initially, it may seem
absurd to imply that a characterisation of UG in this sense could possibly be an
explanation of the universal characteristics of human language. Rather, it may
appear only to be a description of the properties of language. However, we
should be careful about dismissing the explanatory significance of a theory of
UG that ‘merely’ sets out the constraints on cross-linguistic variation.

In fact, it is conceivable that a truly explanatory theory of language could
consist of an account of UG in this sense. Chomsky (2002) gives an illuminat-

<LINK "kir-r5">

ing analogy that makes clear there is more than one way to explanatory
adequacy in science. Consider, he suggests, the case of the discovery of the
Periodic Table in late 19th century chemistry. To simplify somewhat, chemists,
through careful experimental observations of the elements, were able to
uncover a range of regularities that made sense of the behaviour of those
elements. Repeating, periodic patterns could be seen if the elements were
arranged in a particular way — approximately, as a table made up of rows of a
fixed length.

In one sense we could see the periodic table as being merely a description
of the behaviour of matter. We could claim that the discovery of the periodic
table does nothing to explain the mass of experimental data that chemists have
collected. This seems wrong. Surely such a concise and elegant generalisation is,
in some sense, explanatory. See Eckman (this special issue) for an extended
discussion of the relationship between generalisation and explanation. The
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periodic table itself can now be explained by physicists with reference to more
fundamental constituents of matter, but this does not alter the status of the
table in chemistry itself.

Are linguists in the process of discovering an equivalent of the periodic
table? Is there a model of UG ‘out there’ that has the same combination of
formal simplicity and predictive power? It is a worthy research goal, and one
that is being pursued by many, but we may be chasing phantoms. As we will
argue in this paper, UG should be considered as only part of an explanatory
framework for language.

ii. UG as the initial state of the language learning child.
This sense of UG is very closely related to the previous sense. Jackendoff (2002)

<LINK "kir-r15">

notes that Chomsky (1972) uses the term UG to denote the configuration of a

<LINK "kir-r5">

language-ready child’s brain that sets the stage for language acquisition. This
‘state-zero’ can, in fact, be thought of as specifying the complete range of
possible grammars from which a maturation process ‘picks’ a target grammar
in response to linguistic data. It is natural to equate the space of languages
specified in state-zero with the range of possible languages characterised by
language universals. The main difference between this sense of UG and the
previous one is that it gives UG an explicit psychological reality.

iii. UG as initial state and Language Acquisition Device.
Jackendoff (2002) points out that in its most common usage, UG is taken to

<LINK "kir-r15">

correspond to the knowledge of language that the child is born with. This consists
not only of the initial state, but also the machinery to move from this state to
the final target grammar. Chomsky refers to this machinery as the Language
Acquisition Device or LAD. For convenience, we will consider this device to
encapsulate the initial state as well as the machinery of acquisition. This means
that we will treat this sense of UG as simply a description of the LAD.

In summary, there are a number of different ways we can think about what
Universal Grammar actually is. This may seem like terminological confusion, but
really all these senses have something fundamental in common: they all appear to
relate UG directly with universals. The different senses we have surveyed differ
primarily with respect to how UG is situated in a wider theory of cognition. The
picture is something like the one shown in Figure 1. The broadly Chomskyan
program for linguistics is to uncover the properties of UG. Since UG and language
universals are coextensive, then the evidence for UG can be derived directly from a
careful characterisation of the (universal) properties of linguistic structure.

A sensible question is how we can characterise UG/LAD in such a way that
there is a clear relationship between the theory and constraints on linguistic
variation (i.e., universals). Various approaches are possible. For example, in
Principles and Parameters theory (Chomsky 1981) there is a direct relationship

<LINK "kir-r5">

between cross-linguistic parametric variation and the elements of the model,
parameters, that are set in response to input data.1 Similarly, in Optimality Theory
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(Grimshaw 1997) variation arises from the constraint ranking that is arrived at

PRIMARY
LINGUISTIC

DATA

LANGUAGE
ACQUISITION

DEVICE

GRAMMATICAL
COMPETENCE

UNIVERSAL
GRAMMAR

Defines/constrains

Figure 1.�The language acquisition device (LAD) takes primary linguistic data and
generates the adult grammatical competence of a language. Universal grammar defines
or constrains the operation of the LAD.
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through the acquisition process.
The literature on machine learning (e.g., Mitchell 1997) suggests a general way

<LINK "kir-r21">

of characterising the relationship between language learning and linguistic varia-
tion. We can think of the learning task for language to be the identification of the
most probable grammar that generates the data observed. More formally, given a set
of data D and a space of hypotheses about the target grammar H, we wish to pick
the hypothesis h ŒH that maximises the probability Pr(h |D), in other words, the
probability of h given D. From Bayes law, we have:

Pr( | )
Pr( | )Pr( )

Pr( )
h D

D h h

D
=

The task of the learner is to find:

arg maxh ŒH Pr(h |D) = arg maxh ŒH Pr(D |h)Pr(h)

(We can ignore the term Pr(D) since this is constant for all hypotheses).
What is the contribution of UG/LAD in this framework? It is simply the prior

bias of the learner. This bias is everything2 that the learner brings to the task
independent of the data. In other words, it is the probability Pr(h) assigned to each
hypothesis h ŒH.

One of the interesting things about this Bayesian formulation is that it allows us
to see the classic problem of induction in a new light (Li & Vitanyi 1993). Consider
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what a completely ‘general purpose’ learner would look like. Such a learner would
not be biased a priori in favour of any one hypothesis over another. In other words,
Pr(h) would be equal for all hypotheses. Such a learner would then simply pick the
hypothesis that maximised Pr(D |h). In other words, the best a learner can do is
pick the hypothesis that recreates the data exactly. Such a learner cannot, therefore,
generalise. Since language learning involves generalisation, then any theory of
language learning must have a model of prior bias. Where does this prior bias come
from? An obvious answer is that it is innate.
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Note, however, that we have said nothing about domain specificity. It is crucial
that the issues of innateness and domain specificity are kept separate. It is a
fascinating but difficult challenge to discover which features of the child’s prior bias
(if any) are there for language. We note here only that an approach to this problem
must be based on a theory of the relationship between the structure of innate
mechanisms and the functions to which they are put (e.g., language learning). In
other words, answers to questions about domain-specificity will come from a better
understanding of the biological evolution of the human brain.

To summarise, a central goal for linguistics is to discover the properties of UG. We
argue that, in general, this amounts to a characterisation of the prior learning bias
that children bring to bear on the task of language acquisition. Since it is Universal
Grammar that leads to universal properties of human languages, a sensible strategy
seems to be to use observable properties of languages to infer the content of UG.

In the next section, we will show that this argument suffers from a problem that
has been identified with a quite different approach to linguistic explanation:
functionalism.

3. The problem of linkage

The functionalist approach to explaining language universals (see e.g., Hawkins
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1988) seems at first blush to be incompatible with explanations that appeal to UG.
A functionalist explanation for some aspect of language structure will relate it to
some feature of language use. This runs completely counter to the generativist
program, which focuses on explaining linguistic structure on its own terms,
explicitly denying a place for language use ‘inside’ a theory of UG. If chemistry is a
good analogy for the generativist enterprise, then perhaps biology is the equivalent
for functionalists. The central idea is that we can only make sense of structure in
light of an understanding of what it is used for. (See Newmeyer (1998) and Kirby
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(1999) for further discussion of functionalism and the generativist tradition.)
A particularly ambitious attempt to explain a wide range of data in terms of

language use is Hawkins’ (1994) processing theory. Hawkins’ main target is an
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explanation of the universal patterns of word-order variation. For example, he notes
that there is a constraint on possible ordering in noun-phrases — a universal he
calls the prepositional noun-modifier hierarchy�: In prepositional languages, within
the noun-phrase, if the noun precedes the adjective, then the noun precedes the
genitive. Furthermore, if the noun precedes the genitive, then the noun precedes the
relative clause.

This hierarchy predicts that, if a language has structure n in the following list,
then it will have all structures less than n�:

1. PP[P NP[N S¢]]
2. PP[P NP[N NP]]
3. PP[P NP[N Adj]]
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Hawkins’ explanation rests on the idea that when processing such structures, stress
on our working memory increases as the distance between the preposition and the
noun increases. He argues that the NP node in the parse-tree is only constructed
once the head noun is processed. This means that the immediate daughters of the
PP are only available for attachment to the PP node when both the preposition and
noun have been heard. Since relative clauses are typically longer than noun-phrases,
which are usually longer than adjectives, the difficulty in processing each of these
structures increases down the list.

Assuming this account is correct, does the relative processing difficulty of each
structure actually explain the language universal? Kirby (1999) points out that the

<LINK "kir-r17">

identification of a processing asymmetry that corresponds to an asymmetry in the
distribution of languages is not quite enough to count as an explanation. What is
missing is something to connect working-memory on the one hand with numbers
of languages in the world on the other.

The problem of linkage: Given a set of observed constraints on cross-linguistic
variation, and a corresponding pattern of functional preference, an explanation
of this fit will solve the problem: how does the latter give rise to the former?
(Kirby 1999:20)

<LINK "kir-r17">

Kirby (1999) sets out an agent-based model of linguistic transmission to tackle this
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problem. Agent-based modelling is a computational simulation technique used
extensively in the field of artificial life (see Kirby 2002b for a review of the way this field
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has approached language evolution). ‘Agents’ in these simulations are simple, idealised
models of individuals, in this case language users. The details of the simulation are
not important, but the basic idea is that variant word-orders are transmitted over
time from agent to agent through a cycle of production, parsing, and acquisition. In
the simulations, different word-order variants appear to compete for survival, with
universal patterns of cross-linguistic variation emerging out of this competition.

These models show that for some functional explanations, processing asymme-
tries do indeed result in equivalent language universals. However, this is not always
the case. In general, hierarchical universals cannot be explained using only one set
of functional asymmetries. The particular details are not relevant here,3 but the
moral should be clear: without an explicit mechanism linking explanans and
explanandum we cannot be sure that the explanation really works.

At this point we might ask what relevance this discussion has for the generative
type of explanation, which treats language universals as being encoded in Universal
Grammar. In fact, we would argue that there is very little difference between these
two modes of explanation, and as such the same problem of linkage applies.

In Hawkins’ approach to functional explanation, a direct link is made between
a feature of the language user’s psychology (such as working memory) and the
universal properties of language. Similarly, the generative approach makes a direct
link between another feature of the language user’s psychology (this time, learning
bias) and language universals.
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The problem of linkage holds for both functionalist and generative explana-
tions for language universals. In the next section, we look at a development of the
model put forward in Kirby (1999) that demonstrates the rather subtle connections

<LINK "kir-r17">

between language learning and language structure arising out of the process of
linguistic transmission.

4. Iterated learning

Over the last few years there has been a growing interest in modelling a type of
cultural information transmission we call Iterated Learning (Kirby & Hurford 2002).

<LINK "kir-r17">

The central idea underlying the iterated learning framework is that behaviour can
be transmitted culturally by agents learning from other agents’ behaviour which was
itself the result of the same learning process. Human language is an obvious example
of a behaviour that is transmitted through iterated learning.4 The linguistic
behaviour that an individual exhibits is both a result of exposure to the behaviour
of others and a source of data that other learners may be exposed to.

The Iterated Learning Model (ILM) gives us a tool with which we can explore
the properties of systems that are transmitted in this way. In this section we will
briefly review some of the ways the ILM has been used to look at systems for
mapping meanings to signals that are transmitted through repeated learning and
use. The main message we hope to convey is that the relationship between learning
and the structure of what is being learned is non-trivial. Hence, when we look at the
‘real’ system of human language, we should expect the relationship between UG and
universals to be similarly complex.

A simple ILM

Consider a system where there are a number of meanings that agents want to
express. They are able to do this by drawing on a set of possible signals. The way in
which they relate signals and meanings is by using some internal grammar. The
means by which they arrive at this grammar is through observation of particular
instances of other agents’ expression of meanings.

We can imagine systems like this with large populations of agents interacting
and learning from each other, with the possibility for various kinds of population
turnover (i.e., how the population changes over time). The simplest possible
population model is shown in Figure 2. Here there are only two agents at any one
time: an adult and a learner. The adult will be prompted with a randomly chosen
meaning and, using its grammar, will generate a signal. This signal-meaning pair
will then form part of the input data to the learner. From a set of the adult’s signal-
meaning pairs (the size of the set being a parameter in the simulation) the learner
will try and induce the adult’s grammar.
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We are interested in what happens when a language (conceived of as a mapping

Figure 2.�A simple population model for iterated learning. Each generation has only
one agent, A. This agent observes utterances produced by the previous generation’s
agent. The learner forms a hypothesis, H, based on these utterances. In other words, the
agent aims to acquire the same language as that of the previous generation. Prompted
by a random set of meanings, M, this agent goes on to produce new utterances for the
learner in the next generation. Note that, crucially, these utterances will not simply be
a reiteration of those the agent has heard because the particular meanings chosen will
not be the same.

H0

A0

Generation 1

M0

H1

A1

Generation 2

M1

H2

A2

Generation 3

M2

produce produce

observe observe

Linguistic evolution

between meanings and signals) is transmitted in this way. Will the language change?
If so, are there any stable states? What do stable languages look like and what
determines their stability?

Ultimately, we can only begin to find answers to these questions by actually
implementing the ILM in simulation. To do this we need to implement a model agent,
decide what the set of meanings and signals will look like, and also the structure and
dynamics of the population. In an ILM, the particular learning algorithm used
determines the prior bias of the agents. We can think of the learning algorithm as
essentially a model of UG. A wide range of designs of ILM simulations have been
employed in the literature. The following is a partial list (there has also been further
work looking at models of language that do not treat it as a mapping from meanings
to signals, such as Jäger 2003, Teal & Taylor 1999, and Zuidema 2001):

<LINK "kir-r16"><LINK "kir-r27"><LINK "kir-r32">

– (Batali 1998). Models a population of simple recurrent networks (Elman 1990).

<LINK "kir-r2"><LINK "kir-r11">

Meanings are bit-vectors with some internal structure. There is no population
turnover in this simulation.

– (Kirby 2000). Agents learn using a heuristically-driven grammar inducer. Mean-

<LINK "kir-r17">

ings are simple feature-structures, and the population has gradual turnover.
– (Kirby 2002a). Similar learning algorithms, but with recursively structured
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meaning representation. Described in more detail below.
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– (Kirby 2001). Same learning algorithm. Meanings are coordinates in a two-
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dimensional space, with a non-uniform frequency distribution.
– (Batali 2002). Population of agents using instance-based learning techniques.
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Meanings are flat lists of predicates with argument variables.
– (Brighton & Kirby 2001). Agents acquire a form of finite-state transducer using
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Minimum Description Length learning. Many runs of the simulation are
carried out with different meaning-spaces.

– (Tonkes 2002). Along with a number of other models, Tonkes implements an
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ILM with a population of simple recurrent networks with a continuous
meaning space (each meaning is a number between 0.0 and 1.0).

– (Smith, Brighton & Kirby, forthcoming). Uses associative networks to map
between strings and feature-vectors.

– (Vogt 2003). Implements a simulation of a robotics experiment — the ‘Talking
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Heads’ model of Steels (1999). The agents communicate about objects of
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various shapes, colours and locations. This is part of a broader research effort
to get round the problem that the ILM requires a pre-existing model of
meanings. By grounding the ILM in a real environment, both signals and
meanings can be seen to emerge.

These simulations are typically seeded with an initial population that behaves
randomly — in other words, agents simply invent random signals (usually strings
of characters) for each meaning that they wish to produce. This idiosyncratic,
unstructured language is learned by other agents as they are exposed to these
utterances, and in turn these learners go on to produce utterances based on their
own experience. The remarkable thing is that, despite their very different approach-
es to modelling learning (i.e., models of UG) the same kind of behaviour is seen in
all these models. The initial random language is highly unstable and changes
rapidly, but over time stability begins to increase and some structure in the
mapping between meanings and signals emerges. Eventually, a stable language
evolves in which something like syntactic structure is apparent.

For example, Kirby (2002a) uses the ILM to explore how recursive compo-
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sitionality could have evolved. In this model, the population structure is as in Figure 2.
The agents’ model of language is represented as a form of context-free grammar,
and a heuristic-based induction algorithm is used to acquire a grammar from a set
of example utterances. The signals are simply strings of characters, and the mean-
ings take the form of simple predicate logic expressions. (This is not the place to go
into the technical details of the model — these are given in the original article.)

Here are a few of the sentences produced by an agent early on in the simulation
run. The meaning of each sentence is glossed in English. (Note that the letters that
make up these strings are chosen at random — there is no role for phonetics or
phonology in this simulation):

(1) ldg
‘Mary admires John’
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(2) xkq
‘Mary loves John’

(3) gj
‘Mary admires Gavin’

(4) axk
‘John admires Gavin’

(5) gb
‘John knows that Mary knows that John admires Gavin’

In this early stage, the language of the population is unstructured. Each meaning is
simply given a completely idiosyncratic, unstructured string of symbols. There is no
compositionality or recursion here, and it is better to think of the language as a
vocabulary where a word for every possible meaning has to be individually listed.

This type of syntax-free language, which Wray (1998) refers to as a holistic
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protolanguage, may have been a very early stage in the evolution of human language.
It can be compared with animal communication systems inasmuch as they typically
exhibit no compositional structure.5 Wray suggests that living fossils of this proto-
language still exist today in our use of formulaic utterances and holistic processing.

The hallmark of these early languages in the ILM is instability. The pairing of
meanings and strings changes rapidly and as a result the communicative ability of
the agents is poor. It is easy to see why this is. The learners are only exposed to a
subset of the range of possible meanings (which, strictly speaking, are infinite in this
model because the meanings are defined recursively). This means each learner can
only accurately reproduce the language of the adult for meanings that it has seen.
Given the five sentences listed above, how would you generalise to another mean-
ing, say ‘Mary loves Gavin’? The best you could do would be to either say nothing,
or produce a string of random syllables of approximately the same length as the
ones you have seen. This is precisely the challenge agents early in the simulation are
faced with (although the number of sentences they are exposed to is much higher).

Thousands of generations later, however, and the language looks very different
(note that the speakers do not actually generate spaces within the signals — these
are included here for clarity only):

(6) gj h f tej m
 John  Mary admires
‘Mary admires John’

(7) gj h f tej wp
 John  Mary loves
‘Mary loves John’

(8) gj qp f tej m
 Gavin  Mary admires
‘Mary admires Gavin’
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(9) gj qp f h m
 Gavin  John admires
‘John admires Gavin’

(10) i h u i tej u gj qp f h m
 John knows  Mary knows  Gavin  John admires
‘John knows that Mary knows that John admires Gavin’

This is clearly a compositional language. The meaning of the whole string is a
function of the meanings of parts of the string. The compositional structure is also
recursive as can be seen in the last example. What is interesting is that this language
is completely stable. It is successfully learned by generation after generation of
agents. The grammar of this language is also completely expressive. There is perfect
communication between agents.

Again, it is easy to see why this is so. If you were asked the same question as
before — how to express the meaning ‘Mary loves Gavin’ — you would probably
give the answer gjqpftejwp. What is happening here is that you, just like the agents,
are able to generalise successfully from this small sample of sentences, by uncover-
ing substrings that refer to individual meanings, and ways to put these substrings
together. There is no need for recourse to random invention. Because of this, the
language is stable. All agents will (barring some unfortunate training set) converge
on the same set of generalisations. They will all be able to communicate successfully
about the full range of meanings (which are infinite in this case).

To summarise: in the ILM, not all languages are equally stable. A language’s
stability is directly related to its generalisability. If the language is such that generali-
sation to unseen meanings is difficult, then noise will be introduced to the transmis-
sion process. A crucial feature of the process of iterated learning is that if a learner
makes a generalisation, even if that is an over-generalisation, the utterances that the
learner produces will themselves be evidence for that generalisation. In other words,
generalisations propagate. As the language comes to exhibit more and more
generalisability, the level of noise in the transmission process declines, leading
finally to a completely stable and highly regular linguistic system.6 A similar process
is seen in every simulation run although the particular words used, and their word-
order is different each time.

It is important to realise that this is not an idiosyncratic feature of this particu-
lar model. For example, with a quite different learning model (simple recurrent
networks), meaning space (bit-vectors), and population model, Batali (1998) also
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observed a similar movement from unstructured holism to regular compositional-
ity. There seems to be a universal principle at work here. As Hurford (2000) puts it,
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social transmission favours linguistic generalisation.
There appear to be two crucial parameters in these models that determine the

types of language that are stable through iterated learning: the size of the training
set the learners are exposed to, and the structure of the space of possible meanings.

Hurford (2002) refers to the size of the training data as the ‘bottleneck’ on
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linguistic transmission. The bottleneck is the expected proportion of the space of
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possible meanings that the learners will be exposed to. When the bottleneck is too
tight, no language is stable — the learners do not have enough data to reconstruct
even a perfectly compositional system. If, on the other hand, the bottleneck is very
wide then unstructured, holistic languages are as stable as compositional ones. This
is because there is no pressure to generalise.

It is possible in these models to vary the frequency with which different
meanings are expressed. This means that the bottleneck will not be equal for all
meanings. In this case, we should expect frequent meanings to tend to exhibit less
regularity than infrequent ones — a result that matches what we find in the
morphology of many languages. This result is exactly what we find in simulation
(Kirby 2001) which confirms the central role of the bottleneck in driving the
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evolution of linguistic structure.
The result also demonstrates that the particular choice of meanings that the

agents are to communicate about is important.7 Brighton (2002) examines the
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relationship between stability in the ILM and the particular structure of each meaning.
In this study, meanings are treated as feature vectors. Different results are obtained
depending on the number of features and the number of values each feature can take.
Using both simulation and mathematical models of the iterated learning process,
the relationship between feature structure and the relative stability of compositional
languages can be determined. This approach is extended by Smith (2003) in a set of
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simulations where only some meanings are actually used by the agents. In both
cases it can be shown that there is a complex relationship between meanings and the
types of language that will emerge. The broad conclusion that can be drawn is that
compositional structure evolves when the environment is richly structured and the
meanings that the agents communicate about reflect this structure.

This work on iterated learning is at a very early stage. There is a huge gulf
between the elements of these models and their real counterparts. Obviously,
neither feature vectors nor simple predicate logic formulae are particularly realistic
models of how we see the world. The learning algorithms the agents use and their
internal representations of linguistic knowledge are not adequate for capturing the
rich structure of real human languages. Does this render the results of the modelling
work irrelevant?

Unsurprisingly, we would argue to the contrary. Just as simulation modelling
has proved invaluable in psycholinguistics and cognitive science more generally
(Elman et al. 1996), we feel that it can be used as a way of testing hypotheses about
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the relationship between individuals, the environment, and language universals. We
know that language is transmitted over time through a process of iterated learning,
but as yet we do not have a complete understanding of what this implies. We gain
insights from idealised models which can be brought to bear on fundamental
questions in linguistics.

In this section, we have put forward a general solution to the problem of
linkage. UG, instantiated in individuals as prior learning bias, impacts on the
transmission of language through iterated learning. This results in a dynamical
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system — some languages are inherently unstable and communicatively dysfunc-
tional. These could never be viable human languages. Nevertheless, this fact may
not be recoverable purely through examination of the biases of the learner. In other
words, universals (such as compositionality) are derived in part by prior learning
biases, but are not built into the learner directly. Through the iterated learning
process, these languages evolve towards regions of relative stability in this dynamic
landscape. The implication is clear: UG and universals cannot be directly equated.
Rather, the connection is mediated by the dynamics of iterated learning. From this
we can conclude that we must be very cautious in setting out a theory of UG on the
basis of the observed structure of human languages — we may unwittingly be
setting up a situation that results in a hidden prediction of other universals. In
general, the languages that are stable through iterated learning will be a subset of
those that appear to be predicted by the model of learning used.

5. Universals as emergent adaptations

The models we described in the previous section looked at how recursive composit-
ionality, perhaps the most fundamental property of human language, can evolve
through the iterated learning process. Why does this happen, and can this result
help us understand language universals more generally? Earlier, we discussed what
happens in the ILM from the point of view of the learner, but to answer these
questions it helps to take a quite different perspective.

We are used to thinking about language from the individual’s point of view. For
example, we are keen to understand what the structure of the language acquisition
mechanism needs to be in order for children to acquire language. Similarly, we
think about language processing in terms of a challenge posed to the user of
language. For many linguists, implicit in this thinking is the view that humans are
adapted to the task of acquiring and using language. If language is the problem,
individual human psychology is the solution.

What if we turn this round? In the context of iterated learning, it is languages
not language users that are adapting.

Let us imagine some linguistic rule, or set of rules, that mediates the mapping
between a set of meanings and their corresponding signals. For that rule to survive
through iterated learning it must be repeatedly used and acquired. Consider first the
case of an early-stage holistic language. Here, each rule in the language covers only
a single meaning. In the example given in the last section, there was a rule that maps
the meaning for ‘Mary loves John’ onto the string xkq. That is all the rule does, it is
not involved in any other points in the meaning-space. For this rule to survive into
the next generation, a learner must hear it being used to express ‘Mary loves John’.

Now we consider the case of the perfectly compositional language. Here things
are more complex because there are a number of rules used to map the meaning
‘Mary loves John’ onto the string gjhftejwp. However, the important point is that all
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of these rules are used in the expression of many more than this single meaning.
These rules therefore produce more evidence for themselves than the idiosyncratic
rule in the previous example.

The challenge for rules or regularities in a language is to survive being repeated-
ly squeezed through the transmission bottleneck. As Deacon (1997) puts it,
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“language structures that are poorly adapted to this niche simply will not persist for
long” (p.110). To put it simply, sets of rules that have general, rather than specific,
application are better adapted to this challenge. In this case, recursive composition-
ality is a linguistic adaptation to iterated learning.

In this view, language universals can be seen as adaptations that emerge from
the process of linguistic transmission. They are adaptive with respect to the primary
pressure on language itself — its successful social transmission from individual to
individual. Taking this perspective on the structure of language shows how
compatible the generativist and functionalist approaches actually are. Figure 3
shows how adapting to innate learning bias is only one of the many problems
language faces. Every step in the chain that links the speaker’s knowledge of
language to the hearer’s knowledge of language will impact on the set of viable,
stable human languages (see, for example, Kirby & Hurford 1997 for a model that
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combines processing pressures and a parameter-setting learner).

Indeed, there may be cases where the boundary between explanations based on
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Figure 3.�Many factors impinge on linguistic transmission. Language adapts in response
to these pressures.

acquisition, and explanations based on processing is very hard to draw. We
mentioned Hawkins’ (1994) approach to word-order universals in Section 2. This
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has been applied to the general universal tendency for languages to order their
heads consistently at either left-edge or right-edge of phrases throughout their
grammars. This is argued to reflect a preference of the parser to keep the overall
distance between heads as short as possible to reduce working-memory load. Kirby
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(1999) implements this preference in a very simple ILM of the transmission of
word-order variants to show how the head-ordering universal emerges.

It seems clear in this case that we are talking about a quintessentially functional-
ist explanation — an explanation couched in terms of the use of language. However,
Christiansen & Devlin (1997) explain the same facts in terms of language learning,
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using a general model of sequential learning: the Simple Recurrent Network (Elman
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1990). The networks exhibit errors in learning in precisely those languages that are
rare cross-linguistically. This seems a completely different explanation to Hawkins’.
But do we really know what it is that causes the network errors? To test how well
these networks have learned a language, the experimenter must give them example
sentences to process. As a result, we do not know if the problem with the languages
exhibiting unusual word-order arises from processing or acquisition. Perhaps we
should collapse this distinction entirely. In some sense, when we acquire language
we are acquiring an ability to use that language.8

The purpose of this discussion is to show that the distinction between function-
alist approaches to typology and generativist explanations of language structure is
not as clear as it might appear. UG and language function both play a role rather
like the environment of adaptation does in evolutionary biology. Natural selection
predicts that organisms will be fit. They will show the appearance of being designed
for successful survival and replication. Similarly, linguistic structure will reflect
properties of the bottleneck in linguistic transmission.

Once this analogy is made, it is tempting to try and apply it further. Could we
explain the emergence of linguistic structure in terms of a kind of natural selection
applied to cultural evolution? There have been many attempts to do just this both
in general (Blackmore 1999) and in the case of language (e.g., Croft 2000; and Kirby
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1999). We would like to sound a note of caution, however. There are important
differences between iterated learning and biological replication (see Figure 4). In
biology, there is direct copying of genetic material during reproduction. The central
dogma of molecular biology (Crick 1970) states that transformation from DNA to
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organism is one-way only. In iterated learning, however, there is repeated transfor-
mation from internal representation to external behaviour and back again. The
function of learning is to try and reconstruct the other agent’s internal representa-
tion on the basis of their behaviour. This disanalogy with the process of selective
replication in biology must be taken into account in any theory of linguistic
transmission based on selection. This is not to say that an explanatory model that
utilises selection is impossible. Much depends on exactly how the model is formulated.
For example, Croft’s (2000) model focuses on the replication of constructions (as
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opposed to induced grammatical competence). By identifying the construction as
the locus of replication, Croft’s model has a more natural selectionist interpretation.

A final comment should be made about the notion of adaptation we are
appealing to. The simulations discussed in the previous section exhibited a universal
tendency for a movement from inexpressive holistic languages to maximally
expressive compositional ones. It is obvious that agents at the end of the simulation
are capable of far more successful communication than those early on. In some
models they are capable of infinite expressivity that can be reliably acquired from
sparse evidence — a defining hallmark of human language.

These late-stage agents are using a far more communicatively functional
language than those earlier in the simulation run. However strange it sounds, this
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is merely a happy bi-product of the adaptive mechanism at work. Languages are not

Figure 4.�Similarities and differences between linguistic and genetic transmission. The
central dogma of molecular biology states that there is no reverse translation from
phenotype (i.e., proteins) to genotype (i.e., DNA). Genetic information persists by
direct copying of the DNA. The only influence of the phenotype is in determining
whether or not the organism has a chance of replication (hence, selection). In linguistic
transmission, there is a far more complex mechanism — learning — that attempts to
reconstruct grammatical competence (GC) by “reverse engineering” the primary
linguistic data (PLD).

GC
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productionproduction
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productionproductionlearninglearning

DNA
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translationtranslation

DNA

translationtranslation
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transmission
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adapting to be more useful for the agents (at least not directly). Rather, they are
simply adapting to aid their own transmission fidelity. In practice, this will usually
be the same thing.

If this idea is correct, then it would be interesting to try and find examples
where the needs of language (to survive from generation to generation) and the
needs of its users (to communicate easily and successfully) diverge. In other words,
can we find apparently disfunctional aspects of language that are nevertheless stable,
and furthermore can we give these a natural explanation in terms of iterated
learning? This is a challenging research goal, but there may be places we can start to
look. For example, there are constructions that are notoriously hard to parse, such
as centre-embedded relative clauses that are nevertheless clearly part of everyone’s
linguistic competence. Why are we burdened with these apparently suboptimal
aspects of grammar? Perhaps the answer will lie in understanding the relative
stability through iterated learning of a language with centre-embedding and a
minimally different one that ruled-out the difficult constructions.
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6. Conclusion

In this paper, we have explored the relationship between Universal Grammar and
universal properties of language structure in the light of recent computational
models of linguistic transmission. In summary:

– We treat Universal Grammar as a theory of what the language learner brings to
the task of language acquisition that is independent of the linguistic data. In
other words, UG is determined by the initial state of the child in addition to the
Language Acquisition Device.

– UG in this sense can be equated to prior learning bias in a general Bayesian
approach to learning. This prior bias is innately coded.

– It is fruitless to search for a bias-free model of language acquisition. In other
words, there will always be a role for innateness in understanding language
acquisition.

– The degree to which our innate bias is language specific is an open question —
one that will probably require an evolutionary approach to answer.

– Both functionalist explanations for language universals and explanations in
terms of UG suffer from the problem of linking an individual-level phenome-
non (e.g., learning bias, processing pressures, social factors, etc.) with a global
property of linguistic distribution.

– Language is a particular kind of cultural adaptive system that arises from
information being transmitted by iterated learning.

– Computational models have been employed to uncover properties of iterated
learning. For example, where the language model is a mapping between
structured meanings and structured signals, compositionality emerges.

– One way of understanding language universals in the light of iterated learning
is as adaptive solutions to the problem language faces of being successfully
transmitted.

Because the connection between UG and universal properties of linguistic structure
is not direct, we need to be cautious about how we use linguistic evidence. As
Niyogi & Berwick (1997) show in their work on the link between acquisition and
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language change, a theory of acquisition that is explicitly designed to account for
syntactic variation may actually make the wrong predictions once linguistic
transmission is taken into account.

On the other hand, iterated learning can lift some of the burden of explanation
from our theories of universal grammar. Jäger (2003) examines a model of
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variation in case-systems based on functional Optimality Theory. To account for
the known facts a rather unsatisfying extra piece of theoretical machinery — the
case hierarchy of Aissen (2003) — has been proposed. Using simulations of iterated
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learning, in combination with a model of the linguistic environment based on
corpora, Jäger demonstrates that this hierarchy emerges ‘for free’ from the iterated
learning process.
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We hope that future research will continue to discover general, universal
properties of iterated learning as well as relating these to questions of genuine
interest to linguistics. In some ways these goals are orthogonal. The most idealised
models of linguistic transmission tend to have questionable relevance to linguistics.
For example, the ‘language dynamical equation’ developed by Nowak, Komarova &
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Niyogi (2001) treats language acquisition simply as a matrix of transition probabilities,
and combines this with a model of reproductive fitness of speakers in a population.
This leads to mathematically tractable solutions for a very limited subset of possible
models of acquisition, but it is far from clear that these results correspond to
anything in the real world (for example, it seems implausible that language change
is driven primarily by the number of offspring a particular speaker has).

Nevertheless, we do need idealised models such as those we have presented; but
crucially, models that can help us to understand how the real linguistic system
adapts. Getting the balance right between tractable idealisation, and relevant realism
is likely to be the biggest challenge facing future research.

Notes

1.  Note however that Newmeyer (this special issue) argues that, in practice, parametric
theories of UG are poor explanations for implicational and statistical universals.

2.  This is actually a slight simplification. For a given hypothesis, h, that is not learnable, we
can treat this as being excluded from the set H (giving us a second type of information the
learner brings to the learning task), or by including it in the set and assigning it a prior
probability of zero.

3.  A key component of explanations for universals that license different types in an
asymmetrical markedness relationship is the existence of ‘competing motivations’ that create
complex dynamics — see Kirby (1999) for details.
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4.  Music might be another example. Miranda, Kirby & Todd (in press) use simulations of
iterated learning to explore new compositional techniques which reflect the cultural
evolution of musical form.

5.  We should be a little cautious of this comparison, however. The holistic protolanguage in
the simulation is learned, whereas most animal communication systems are innately coded
— although there appear to be some exceptions to this generalisation.

6.  This process bears some similarity to an optimisation technique in computer science
called ‘simulated annealing’ (Kirkpatrick & Vecchi 1983). The search-space is explored over
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a wide area initially, but as the solution is approached, the search focuses in more closely on
the region of the relevant region of space. It is interesting that this kind of optimisation arises
naturally out of iterated learning without it being explicitly coded anywhere in the model.

7.  The frequency of meaning expression is presumably driven largely by the environment
(although Tullo & Hurford 2003 look at a model where ongoing dialog determines meaning-
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choice in deriving the Zipfian distribution). Grounded models from robotics give us
increasingly sophisticated ways of relating meanings and environment (e.g., Vogt 2002).
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8.  There is another possible way of explaining why languages typically exhibit these word-
order patterns. Dryer (1992) and Christiansen & Devlin (1997) refer to consistent branching
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direction rather than head-ordering, although these are nearly equivalent. Consistently left-
or right-branching languages are more common than mixed types. Brighton (2003) shows
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that a general property of stable languages in the ILM is the simplicity of their grammatical
representation, where simplicity is defined in terms of the number of bits the learners use for
storage. A topic for ongoing research is whether the commonly occurring word-order
patterns are those that result in maximally compressible representations.
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