
1 Introduction

Language is transmitted from generation to generation
within a speech community. The precise nature of the
intergenerational transmission remains a contentious
issue. The transmission of language from generation to
generation involves at least some cultural trans-
mission—under normal circumstances children learn
the language of their speech community through expo-
sure to the linguistic behavior of that community. The
most influential linguistic theories of modern times
assume genetic transmission of the language faculty
between generations in addition to this cultural trans-
mission—language learners come to the language
acquisition task equipped with some genetically
encoded language acquisition device (Chomsky,
1987). The research outlined in this article represents
an attempt to understand the types of interactions that

may occur between cultural transmission and genetic
transmission of communication systems within a com-
municating population. Specifically, in this article I
argue that cultural selection resulting from learning
biases is key in determining the structure of communi-
cation systems, such as language, which are both
genetically and culturally transmitted. 

In Section 2, the literature on the evolution of
communication and language is reviewed. This review
reveals a paucity of models on gene–culture inter-
actions that are simple enough to be easily understood
yet detailed enough to test hypotheses regarding the
evolution of communication or language in the real
world. In Section 3 such a model is proposed. Sections
4 and 5 present results generated by this model. These
results suggest that cultural selection resulting from
the biases inherent in the model of the learner is
crucial in determining the structure of the emergent
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communication systems, and that natural selection is
unable to override these biases. In Section 6 the learn-
ing biases of the model are examined in detail and
related both to other agent-based models of the evolu-
tion of communication and to the communication-
specific learning biases observed in humans. Finally,
in the concluding section it is suggested that much
of the structure of language may be best explained
in terms of cultural evolution resulting from a pre-
adapted learning mechanism. 

2 The Literature

The literature on the evolution of communication
and language can be roughly divided into two main
areas—that which addresses the question “when
should we expect to see communication or language?”
and that which addresses the question “what structure
should we expect communication or language to
exhibit?”.

The first question has typically been addressed by
theoretical biologists but has recently been tackled by
researchers using agent-based modeling techniques.
Researchers in this area are concerned with the inter-
locking issues of signal costs and honesty (e.g. from
biology see Zahavi, 1975, 1977; Krebs & Dawkins,
1984; and Grafen, 1990; from agent-based modeling
see Wheeler & de Bourcier, 1995; Bullock, 1997; and
Noble 1998), and altruism (from agent-based model-
ing see Ackley & Littman, 1994; Oliphant, 1996; and
Reggia, Schulz, Wilkinson, & Uriagereka, 2001).
These important issues will not concern us in this arti-
cle, other than to say that the presence of honest com-
munication has been identified as a possibility in at
least some circumstances by some researchers. 

The second question can be viewed as consisting
of three subquestions: “What structure would we
expect communication or language to exhibit if it were
shaped by purely biological processes?”, “What struc-
ture would we expect communication or language to
exhibit if it were shaped by purely cultural processes?”,
and “what structure would we expect communication
or language to exhibit if it were shaped by both biologi-
cal and cultural processes?”

There has been some research on the first ques-
tion, both by biologists (see Hauser, 1996) and agent-
based modelers. For example, Werner and Dyer
(1992), Levin (1995), and Di Paolo (1997) show that

agents can coordinate their actions or internal states
optimally or near optimally using innate communica-
tion systems given selection pressure for that coordi-
nation. Werner and Todd (1997) show that the reverse
can also be true—agents can violate the innate expec-
tations of receivers given innate signaling behavior
and selection pressure for such violation. Cangelosi
and Parisi (1998) show that an efficient biologically
transmitted communication system can emerge even
without direct selection pressure, effectively due to
evolution of internal representations and genetic drift
of a communication system on top of this evolved
substrate. However, human language, our ultimate
object of study, consists of at least some learned
component and these models are therefore of limited
utility in understanding it.

The second question, concerning the structure of
communication given purely cultural transmission
processes, has received a considerable amount of
attention in recent years. It appears that such processes
may only be relevant to the study of communication in
humans, given that Hauser (1996) states that “although
call structure [in nonhuman primates] changes ontoge-
netically, no study has provided convincing evidence
that acoustic experience is causally related to such
changes” (p. 315). Consequently, much of the research
into this area has been carried out by linguists or
cognitive scientists using agent-based modeling tech-
niques to explain the cultural evolution of features
of human language such as syntax (e.g., Batali, 1998,
2002; Hurford, 2000; Kirby, 2000, 2002; Brighton &
Kirby, 2001; see Hurford, 2002; Kirby & Hurford,
2002, for an overview), regularity and irregularity
(e.g., Kirby, 2001; Worden, 2002) and other language
universals (e.g., Christiansen & Devlin, 1997; Kirby,
1998). Less work has been carried out on the more
basic issue of the cultural evolution of nonsyntactic
communication systems. However, agent-based
models directed at this issue can be found in Hutchins
and Hazlehurst (1995), Oliphant and Batali (1997),
Oliphant (1999) and Steels (1999).

This substantial body of literature presents a
persuasive argument that the features of communica-
tion and language can be explained in terms of cultural
processes. However, this work does have its weak-
nesses. Typically each article considers a single model
of learning. This lack of comparison between learning
mechanisms makes it difficult to identify the biases of
the chosen model of learning. Secondly, these models
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assume a degree of preexisting mental apparatus,
including a learning mechanism. This mental appara-
tus presumably evolved, although not necessarily for
its later role in language processing. But how might
the evolution of learning mechanisms interact with the
resulting cultural processes? Such models are not
designed to address this question.

Finally, there is a small body of literature investi-
gating the question of the structure of communication
systems emerging through a mixture of genetic and
cultural processes. Pinker and Bloom (1990) and Dor and
Jablonka (2000) introduce hypothetical scenarios under
which positive interactions between natural selection and
cultural transmission lead to language. However, human
intuitions regarding the behavior of such complex
adaptive processes are notoriously poor and a formal
model is desirable. 

In an early paper, MacLennan and Burghardt
(1994) considered how reinforcement learning might
interact with natural selection in the evolution of vocab-
ulary-like systems. However, given that “a series of
studies beginning with Brown & Hanlon (1970) have
demonstrated that there is little reliable correlation
between the grammaticality of children’s utterances and
the sorts of responses to these that their parents give”
(Bloom & Gleitman, 2001), the relevance of models
involving reinforcement learning to our understanding
of language, our ultimate object of study, is doubtful.
Batali (1994) considered interactions between selec-
tion and learning in populations of neural networks.
The languages Batali’s networks attempt to learn are
externally determined, rather than emerging from the
populations of agents themselves, and are therefore
not truly culturally transmitted. This makes the rele-
vance of this model to the field of human language less
clear. Cangelosi (1999) used neural networks to inves-
tigate gene–culture interactions in the evolution of
symbolic communication systems. However, as in an
earlier model (Cangelosi & Parisi, 1998), the structure
of the communication system was determined by
genetic factors with learning playing little role. Kirby
and Hurford (1997), Turkel (2002), and Yamauchi
(2001) consider possible interactions between natural
selection and learning in the evolution of an innate
language acquisition device and a language. However,
their representations of language and learning are
so abstract, that they make any claims about the struc-
ture of human language difficult. Finally, in a recent
paper Kvasnic∨ka and Pospíchal (1999) have modeled

interactions between natural selection and learning of
culturally emergent communication systems in a
population of neural networks. This model is a step in
the right direction, detailed enough to allow hypo-
theses to be formed about the structure of communica-
tion systems in the real world, abstract enough to be
analyzable. However, the model suffers from two
defects. Firstly, only one learning mechanism is con-
sidered. Secondly, only one level of selection pressure
is considered. This means that the relationship
between the learning bias of the learning mechanism
and the forces of natural selection remain unclear.

This article presents a model of the interactions
between processes of biological transmission and
cultural transmission in the evolution of simple
communication. The model avoids defects of earlier
models in investigating, in detail, the relationship
between different selection pressures, different learn-
ing biases, and different strengths of learning bias.
This allows us to address the hypothesis, suggested by
previous models, that natural selection and learning
will interact positively to create optimal communica-
tion systems. The ability to manipulate the various
pressures proves to be essential in understanding the
key determinants of the behavior of the system. The
model is simple enough to be analyzed but detailed
enough to provide a starting point in understanding
how these issues might apply to the evolution of com-
munication and, ultimately, language in the real world. 

3 The Model

The model consists of a simple model of communica-
tion (Section 3.1), a model of a communicative agent
(Section 3.2), and a model of genetic and cultural
transmission (Section 3.3). 

3.1 The Communication System 

For the purposes of this model, communication systems
are mappings between a set of unstructured meanings m
and a set of unstructured signals s. A communication sys-
tem consists of a production function, p(m), mapping from
m to s, and a reception function, r(s), mapping from s to m. 

3.1.1 Communicative Accuracy A measure of
communicative accuracy can be defined for such
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communication systems. Given a signaler, P, producing
signals using the function p(m) and a receiver, R, inter-
preting signals using the function r(s), the accuracy of
communicating the meaning mi ∈ m between the two
individuals, ca (P, R, mi), is:

When ca (P,R,mi) = 1 the communication is
successful.1 A population’s communicative accuracy
can be estimated by taking the average ca(P, R, mi) for
a random sample of P, R, and mi. In a population pos-
sessing an optimal communication system ca(P, R, mi )
= 1 for any choice of P, R and mi . 

3.1.2 Ambiguity Such communication systems can
be classified in terms of the degree of ambiguity they
exhibit in the mapping from meanings to signals.
Ambiguity arises when signals that are perceptually
indistinguishable are associated with distinct mean-
ings. A communication system of the type outlined
above will be termed

• Unambiguous if every meaning is associated with
a distinct signal or signals.

• Partially ambiguous if some, but not all meanings
are associated with identical signals.

• Fully ambiguous if all meanings are associated
with identical signals.

These terms are formally defined below.

3.2 The Communicative Agent 

Feed-forward neural networks are used to model commu-
nicative agents. The structure of the network used is shown
in Figure 1. Networks with this configuration will be
referred to as imitator networks. The input to the imitator
network is considered to be the meaning to be communi-
cated and the imitator’s output is considered to be the signal
used by that agent to communicate the input meaning, with
the precise nature of the meaning–signal mapping being
determined by the connection weights in the network.

Communication systems therefore map from three-
dimensional meaning vectors to three-dimensional

signal vectors. Binary vectors are used, giving 23

possible meanings and 23 possible signals. A subset of
the set of possible meaning vectors are considered to
be communicatively relevant situations, where “com-
municatively relevant” means that agents receive a
fitness payoff for communicating about those
situations. For all simulations outlined in this article,
the set of communicatively relevant situations, m,
consists of the unit vectors (1 0 0), (0 1 0), and (0 0 1).
The set of available signals, s, consists of all 23 possi-
ble binary signal vectors. 

Neural networks were chosen to model commu-
nicative agents for several reasons. Firstly, there is a
tradition of using neural networks in research on the
evolution of communication—neural networks of
some form are used by Batali (1994, 1998), Hutchins
and Hazlehurst (1995), Cangelosi and Parisi (1998),
Cangelosi (1999), Livingstone and Fyfe (1999), and
Kirby and Hurford (2002). Continuing this tradition
provides several benefits. In particular, using a similar
model allows the results of this research to be more
easily related to previous research and the generality
of the results of earlier simulations to be tested.

Secondly, well-established mechanisms exist for
training neural networks to learn input–output map-
pings (i.e., backpropagation). Using an established
learning mechanism reduces the amount of novel
elements contained in the model, as well as allowing
our understanding of that mechanism to be expanded. 
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Figure 1 The structure of the neural network.

ca (P, R, mi) =
1 if r (p(mi)) = mi

0 otherwise

{



Finally, using neural networks allows both
genetically transmitted and culturally transmitted
information to influence, in principle, the eventual
behavior of agents in the model. Some of the assump-
tions arising from the choice of neural networks are
somewhat dubious—for example, the assumptions that
there is a one-to-one correspondence between geno-
type and phenotype and that genetic information
merely provides a starting point for unconstrained
learning in the phenotype. Two points can be raised in
defense of these assumptions. Firstly, these assump-
tions are not unprecedented in the computational mod-
eling literature—see, for example, the models
described in Belew, McInerney, and Schraudolph
(1992), Nolfi, Elman, and Parisi (1994), Batali (1994),
and Rolls and Stringer (2000). Secondly, using this
approach avoids some even more arbitrary assump-
tions that would be required to model combined influ-
ences of genes and culture in a more abstract model.
These assumptions will, however, be returned to in the
concluding section.

The disadvantage of using feed-forward networks
is that the slightly contorted reversal process outlined
below is required to allow bidirectionality. Why is
bidirectionality desirable when modeling communica-
tion? It is a fundamental assumption of modern
linguistics originating with Chomsky (1965) that pro-
duction and reception depend upon a common under-
lying knowledge of language—an individual’s
linguistic competence. Competence can be distin-
guished from performance, which determines how the
structures underlying competence are accessed during
reception and production. This competence–
performance distinction is maintained here, with an
agent’s competence being encoded in the set of con-
nection weights in their neural network and its perfor-
mance being determined by the production and
reception processes used to access this competence. 

3.2.1 Production and Reception Producing the
signal associated with a given meaning mi ∈ m in such
imitator agents is straightforward—the given meaning
is used as the input to the network and activations are
propagated forward through the network to give a
real-valued output pattern of activation, which is
thresholded at 0.5 to give the binary signal associated
with the given meaning. 

The deterministic nature of the feed-forward net-
work during production means that the definition of

ambiguity for communication systems can be formally
stated. Communication systems used by neural
networks will be termed

• Unambiguous if p(m) is a one-to-one, or an injec-
tive, function.

• Partially ambiguous if p(m) is a many-to-one
function, but the range of p(m) is not a singleton
set.

• Fully ambiguous if the range of p(m) is a single-
ton set. 

Reception is slightly more complex, given that the
networks are not bidirectional. All mi ∈ m are propa-
gated through a given agent’s network to produce a
real-numbered output pattern of activation for each
meaning. Each output pattern is given a confidence
rating, corresponding to how closely that pattern
matches the received signal, sr ∈ s. The meaning that
produces the signal closest to sr, according to the con-
fidence measure, is chosen as the interpretation of sr.
This method is based on the method used by Batali
(1998) and Kirby and Hurford (2002) for producing
outputs for similar networks.

The confidence measure that a given real-
numbered output vector o of length n matches a target
binary vector t of length n is given by C(t | o). C(t | o)
is simply the product of the confidence scores for each
individual node 1…n in the output vector, that is,

where the confidence measure for node i is

(Equations adapted from Kirby and Hurford (2002)). 

3.3 The Transmission of Communication
Systems 

In this section a model of the genetic transmission of
network connection weights and cultural transmission
of communication systems is outlined. A genetic
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C(t[1…n] |o[1…n]) = C(t[i] |o[i])

C(t[i]|o[i]) =
o[i] if t[i] = 1,

(1 − o[i]) if t[i] = 0

{

∏n

i=1



algorithm (Holland, 1975) is used to model the
process of genetic transmission and is combined with
an iterated learning model (Brighton & Kirby, 2001)
that is used to model cultural transmission. 

3.3.1 The Genetic Algorithm The genetic algo-
rithm has four key components:

1. A model of population turnover
2. A model of genotypes, phenotypes, and the map-

ping from genotype to phenotype
3. Breeding based on an evaluation of communica-

tive ability
4. A method of recombination and mutation of genes

during breeding

These four components are described below. 
Population turnover. A generational population

model is used. At every time step of the simulation the
entire population of size p is replaced by a new popu-
lation of size p generated by breeding interactions
between the members of the old population. For all
simulations outlined in this article, p = 100. 

Genotypes and phenotypes. The phenotype com-
municative agent used is as outlined in Section 3.2—a
three-layer, feed-forward neural network mapping
from input meanings to output communicative signals.
Each individual’s initial connection weights are speci-
fied by their genotype—each agent’s genotype con-
sists of a string of real numbers, with each locus in the
genotype mapping to a particular connection in the
phenotype network. The real-numbered allele at a

particular locus in the genotype determines the initial
weight of the associated connection in the phenotype
network. This mapping from genotype to phenotype is
illustrated in Figure 2. The agents in the initial popu-
lation have random alleles in the range [−1, 1]. There
is no restriction on the range of real-numbered alleles
beyond the initial population.

Selective breeding. The probability of an agent
breeding is determined by its success at communicat-
ing with other members of its generation of the popu-
lation. The method of evaluating communicative
success is given below.

For each agent A in the population

1. Remove A from the population.
2. Pick an agent B at random from the population.

2.1. Pick a meaning, ms, at random from the set
of communicatively relevant situations.

2.2. Call A the signaler and B the receiver.

2.2.1. Generate the signal ss, that the sig-
naler associates with ms (via the pro-
duction mechanism outlined in
Section 3.2.1).

2.2.2. Identify the meaning, mr, that the
receiver associates with ss (via the
reception process outlined in
Section 3.2.1).

2.2.3. Compare mr with ms and score the
success of the communication. If mr

is identical to ms score the commu-
nication as a success and increment
A’s fitness. Otherwise, the commu-
nication is a failure. 

2.3. Call A the receiver and B the signaler and
repeat steps 2.2.1.–2.2.3.

2.4. Return B to the population.

3. Repeat step 2 f times.2

4. Return A to the population.

This fitness assessment algorithm corresponds to
the measure of communicative accuracy outlined in
Section 3.1.1. Agents receive a reward both for under-
standing and being understood and the rewards for
both are equally weighted. The fittest b individuals in
the population breed with equal probability to produce
the next generation of agents, where 0 < b ≤ p.
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Figure 2 The mapping from genotype (a string of real
numbers) to phenotype (a neural network). Bias node
connection weights are shown in the associated node.



Recombination of genes. Breeding involves
recombination of the genes of two parents, via
crossover, and mutation. Single-point crossover occurs
with probability Pcross.3 Point mutations occur on the
newly formed genotype with probability Pmutation.4

Mutation results in the value at the mutated locus
being increased by a random real number in the range
[−1,1].5

3.3.2 Cultural Transmission Iterated learning
models have been used to examine the cultural evolu-
tion of communication (Oliphant, 1999) and composi-
tional language (Batali, 1998, 2002; Kirby, 1999;
Kirby, 2000; Kirby, 2001; Brighton & Kirby, 2001;
Kirby & Hurford, 2002). In the iterated learning model
(a term introduced by Brighton & Kirby, 2001) sug-
gest “each generation of language user acquires its
linguistic competence by observing the behavior of
the previous generation” (p. 592). This acquired lin-
guistic competence then governs the behavior that is
observed by the subsequent generation. The iterated
learning model resembles the cultural equivalent of
a genetic algorithm, although typically there is no
notion of fitness.

In terms of the current model, individuals at
generation N + 1 observe and learn from the commu-
nicative behavior of generation N individuals. Each
individual at generation N + 1 receives e exposures
to the communication systems of the population at
generation N. These exposures are randomly distrib-
uted among the fittest t members of generation N.
During each exposure, the set of meaning–signal pairs
of the N generation agent is used to train the genera-
tion N + 1 agent. The backpropagation algorithm was
used to implement this learning process,6 with the
starting point for learning being the connection
weights specified in the learning agent’s genotype.
The learning agent’s communication system will
therefore be determined, at least to some extent, by the
interactions between the processes of genetic trans-
mission via breeding and cultural transmission via
learning.

4 Results for Imitators

In this section results generated by the model under
two main parameter settings are presented:

1. Imitation learning and natural selection (p = 100,
20 ≤ b ≤ 100, t = 100, 0 ≤ e ≤ 200) (Section 4.1).

2. Selective imitation learning and natural selection
(p = 100, 20 ≤ b ≤ 100, 20 ≤ t ≤ 100, 0 ≤ e ≤ 200)
(Section 4.2).

Under both general configurations the questions is
asked: Do the populations converge on communica-
tion systems resulting in high levels of communicative
accuracy within the population? This was assessed by
running 10 simulations under each parameter setting
for a fixed number of generations (1,000) and measur-
ing the average communicative accuracy of the popu-
lation, as defined in Section 3.1.1, for the last 10
generations of each run. 

4.1 Imitation Learning and
Natural Selection

In this section we investigate the accuracy of the emer-
gent communication systems in populations of size
p = 100 for various numbers of learning episodes e and
various amounts of selective pressure b; e ranges from
0 (no learning) to 200, and b ranges from 100 (no
selection pressure on breeding) to 20 (very strong
selection pressure on breeding). For all simulations
outlined in this section, t = 100; immature agents
potentially sample and learn from the communicative
behavior of the entire preceding generation, regardless
of fitness.

The average communicative accuracy of the
populations for the full range of values of e are shown
in Figure 3. Figure 4 shows the communicative accu-
racy of populations where 0 ≤ e ≤ 25. For extremely
low values of e optimal communication systems can
emerge given selection pressure on breeding (b <
100). Average communicative accuracy rapidly tails
off as e increases. For e > 5 there is little difference
between simulations where breeding is random
(b = 100) and breeding is nonrandom (b < 100) and for
e > 25 there is no difference, with all populations
converging on communication systems resulting in
average communicative accuracy of 0.33. This
corresponds to the chance level of performance of a
population attempting to communicate three meanings
with a fully ambiguous communication system. How
can the emergence of these suboptimal communica-
tion systems be explained? 
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Table 1 shows the success of imitator networks at
acquiring systems of differing levels of ambiguity for
a given number of exposures, e. The Table shows that
systems exhibiting a higher degree of ambiguity are
easier to acquire than systems exhibiting a lower
degree of ambiguity, for all values of e. The learning
bias of imitator agents results from the imitator
network architecture, as is discussed in Section 6.1. It
should be noted that systems exhibiting a higher
degree of ambiguity have an additional advantage, in
that every exposure to an ambiguous system contains
multiple exposures to the ambiguous signal. However,
this is not the key factor, as can be seen by comparing
success rates for fully ambiguous systems with low

values of e to success rates for unambiguous systems
with higher values of e. For example, 5 exposures to a
fully ambiguous system (15 exposures to the ambiguous
signal) gives a rate of success which can only be
matched by 150 exposures to an unambiguous system,
which gives 150 exposures to each of the three unam-
biguous signals.

As shown in Table 1, for extremely low e (e < 5)
even fully ambiguous systems can not be reliably
acquired. Figure 4 shows that levels of communicative
accuracy significantly above the random level are only
observed given e < 5 and selection pressure on breed-
ing. In these circumstances learning is effectively dis-
abled and natural selection is free to evolve the
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Figure 3 Average communicative accuracy in
populations of imitator agents after 1,000 generations, for
various values of e and b. Each point represents the
average of 10 simulations.

Figure 4 Average communicative accuracy in imitator
populations, for small values of e.

Table 1 Percentage success at acquiring various types of system with various values of e. These results were
empirically derived by generating 100 random communication systems of each type and training 100 networks with
small random initial weights in the range [−1, 1] on each system 

System type

e Fully ambiguous Partially ambiguous Unambiguous

1 24.9 0.4 0
2 50.1 0.6 0
3 76.0 1.6 0
4 90.9 1.8 0
5 97.9 1.4 0
10 100 0.4 0
25 100 1.5 0
50 100 32.9 13.3
100 100 93.1 82.8
150 100 99.5 97.9
200 100 100 99.8



population’s communication systems, resulting in
levels of communicative accuracy above the chance
level, with optimal communication for e ≤ 2. 

These optimal communication systems disappear
given e > 5. Why is natural selection not develop-
ing optimal communication systems under these
circumstances? It appears that the process of cultural
transmission is overriding the process of natural
selection. Fully ambiguous systems are always the
easiest class of system to learn, and are therefore more
likely to pass intact through the learning process.
Repeated cultural transmission results in the elimina-
tion of communication systems that do not conform to
the learning biases of the agents—there is cultural
selection in favor of systems that conform to the
learner biases. In the case of imitator agents, the learn-
ing bias happens to be in favor of communication
systems that are extremely poor in terms of commu-
nicative accuracy. As we will see in Section 5, a dif-
ferent agent model leads to a different learning bias.

The learning bias of the agents in favor of ambigu-
ous systems is a property of the imitator architecture
(see Section 6.1), rather than the learning rate, which
merely determines the strength of the bias for a
particular value of e. Therefore the precise value of e
at which cultural transmission overrides natural selec-
tion is dependent on the particular learning rate used—
for example, if a lower learning rate was used then we
would observe cultural transmission disabling natural
selection only at larger values of e. Importantly,
however, natural selection would still be overridden by
cultural selection at some point.

Why does natural selection not counteract the
cultural adaptation of the communication systems to
the learner biases and weed out poor communicators?
Learning in the phenotype masks an individual’s
genetic makeup—with e > 5, no matter how good an
agent’s genes are, their effects are likely to be over-
taken by learning, which almost fully determines an
agent’s communicative behavior. Shielding (Ackley &
Littman, 1992) prevents natural selection from identi-
fying good gene combinations and weeding out bad
gene combinations. Only when e < 5 is natural selec-
tion not disabled by shielding of the genotype. 

There are certain combinations of genes that make
learning a particular communication system impossi-
ble—an agent’s genes constitute the starting point
for learning, and the backpropagation algorithm is
sensitive to initial weights to a certain degree. Genetic

drift does occasionally result in small numbers of
agents being born whose genes are so good they
cannot learn fully ambiguous communication systems.
However, these agents must still communicate with
their neighbors, and if those neighbors use a fully
ambiguous system then using a better system to
communicate with them yields no benefit.7 The good
gene combinations do not survive for long due to inter-
breeding with agents whose genes allow them to
acquire fully ambiguous systems. Cultural transmis-
sion leads to cultural stagnation in the simulated
populations—the biases of the learners favor fully
ambiguous communication systems and natural
selection is powerless to counteract this.

4.1.1 Imitation Learning and Collapse Cultural
transmission not only prevents the development of an
optimal communication system in the simulated popu-
lations—it prevents the maintenance of such a system.
Figure 5 shows the average communicative accuracy
of populations of imitator agents who start out with a
shared, optimal, innate communication system—all the
agents in the initial population have a hand selected set
of genes that encode an unambiguous communication
system. For all simulations in Figure 5, e = 200. Various
amounts of selection pressure (b) are used. As in the
simulations in the previous section, t = 100. As can
be seen from Figure 5, all populations collapse from
using an unambiguous communication system to
using a fully ambiguous communication system
within 15,000 generations.
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Figure 5 Average communicative accuracy of imitator
populations over time, where t = p = 100.



As discussed above, learning in the phenotype
almost completely masks an agent’s genes but there
are certain combinations of genes that make learning a
particular communication system impossible. In each
simulation shown in Figure 5 an agent will eventually
be born whose genes are so bad that they cannot learn
the unambiguous communication system in use by the
rest of the population. This individual will learn a par-
tially ambiguous or fully ambiguous communication
system instead. Such agents will be unlikely to breed,
given that their fitness will usually be lower than other
agents in the population. Suboptimal communicators
do have a negative effect on the fitness of optimally
communicating agents, given that those optimally
communicating agents suffer a penalty for not under-
standing or being understood by suboptimal commu-
nicators, although, this will not usually depress the
population’s fitness enough to allow a suboptimal
communicator to breed. However, although such
individuals are unlikely to breed, their communication
systems will be observed and learned from by agents
in the next generation. 

Table 2 shows the percentages of agents with
random connection weights in the range [−1, 1] using
communication systems of the three levels of ambigu-
ity. Agents with random connection weights clearly
tend to have a fully ambiguous communication system.
This approximates the response of imitator agents to
training on conflicting communication systems—
training on conflicting data effectively randomizes the
connection weights in the agents’ network.

As discussed above, agents with bad genes will
occasionally occur in the population due to genetic
drift. The communication system of such agents will
be observed by other agents in the subsequent
generation. These individuals run the risk of acquiring
a suboptimal communication system due to the
randomizing effect of conflicting training data. If they
do acquire a suboptimal system they will be unlikely

to breed. Regardless of whether the suboptimal
communicators breed or not, their communication
systems will be observed by agents in the next gener-
ation. As increasing levels of ambiguity result in more
successful cultural transmission, suboptimal commu-
nication systems spread through the population like a
virus due to the processes of cultural transmission,
until the whole population converges on a fully
ambiguous communication system. Once again, nat-
ural selection is powerless to stop this process. 

Note that e = 200 represents the best-case scenario
for learning agents, because e = 200 results in the
highest level of learnability for unambiguous commu-
nication systems and also ensures that, at the early
stages of collapse, suboptimal communication systems
will constitute only a small part of an agent’s observa-
tions. In populations where e ≤ 2 the collapse
phenomenon does not occur, but as discussed above
the behavior of these populations is entirely deter-
mined by natural selection—they cannot truly be
called learning populations.

4.2 Selective Imitation Learning
and Natural Selection 

The phenomenon observed in the simulations outlined
in the previous section is purely a result of the bias of
the learners toward acquiring fully ambiguous com-
munication systems. In this section an additional
learning bias, a preference of learners to learn from
successful communicators, is added to the model.

Natural selection is implemented in this model by
only allowing the top b members of the population to
transmit their genetic information to the next generation
via breeding. Similarly, only the fittest t members of
the population transmit their communication systems
culturally to the next generation, through the process
of being observed and learned from. In the simulations
in the previous section t = p: All members of the pop-
ulation participate in cultural transmission, regardless
of fitness. However, in this section simulations are
described where t ≤ p: An agent’s participation in
cultural transmission depends to some extent on its
fitness.

In these populations of discriminating learners
there are therefore three potential selection pressures
operating on the evolving populations and communi-
cation systems:
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Table 2 Percentage of initial population using systems
of each degree of ambiguity

System type % population

Unambiguous 2
Partially ambiguous 25
Fully ambiguous 73



1. Natural selection (when b < p), operating on
genetic transmission, favoring genes whose pheno-
type realizations are successful communicators

2. Cultural selection for learnability, operating on
cultural transmission, favoring communication
systems that conform to the learning bias for fully
ambiguous systems

3. Cultural selection for communicative success
(when t < p), operating on cultural transmission,
favoring communication systems that result in
successful communication

Selection pressures 1 and 3 are clearly related,
although operating on different modalities of trans-
mission. Selection pressures 2 and 3 operate in the
same modality of transmission but are in direct
competition. 

Figures 6–10 show the communicative accuracy
of the emergent communication systems in popula-
tions of size p = 100, for various values of b, t and e.

The addition of the cultural selection pressure for
communicative success has clearly failed to have a
significant impact on the emergent communication
systems—for e > 10 the populations’ communication
systems tend to be fully ambiguous. For very low
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Figure 6 Average communicative accuracy in
populations of imitator agents after 1,000 generations, for
various values of e and t (b = 100). Each point represents
the average of 10 simulations.

Figure 7 Average communicative accuracy in popula-
tions of imitator agents for various values of e and
t (b = 80).

Figure 8 Average communicative accuracy in popula-
tions of imitator agents for various values of e and
t (b = 60).

Figure 9 Average communicative accuracy in popula-
tions of imitator agents for various values of e and
t (b = 40).



values of t and high values of e partially ambiguous
communication systems do occasionally emerge.
However, the behavior of the population is still domi-
nated by the intrinsic learning bias of the agents,
which favors fully ambiguous systems.

4.2.1 Selective Imitation and Collapse Figure 11
shows the communicative accuracy over time of imita-
tor populations, for various values of b and t. In all of
these simulations, p = 100 and e = 200. As in the
simulations outlined in Section 4.1.1, initially the
populations are genetically converged on an optimal
communication system.

As can be seen from Figure 11, the addition of
selective imitation in the runs where t < 100 fails to
prevent the populations from moving away from the
initial optimal communication system—in three runs
the population converges on a fully ambiguous system
yielding chance levels of communicative accuracy,
whereas in two runs (b = t = 60 and b = t = 40) the pop-
ulation converges on a partially ambiguous communi-
cation system. 

The populations have failed to maintain the original
optimal system for the same reason as the populations
discussed in Section 4.1.1—shielding allows muta-
tions to accumulate in the population, those mutations
eventually prevent some agents acquiring the optimal
communication system and the observation of that
suboptimal behavior disturbs more individuals in sub-
sequent generations. This results in the rapid spread of
the communication systems that are easiest to acquire,

which happen to be suboptimal in terms of fitness.
Lower values of t makes it less likely that individuals
with suboptimal communication systems will transmit
those systems, therefore making it less likely that the
population will collapse. However, as Figure 11
shows, collapses can occur given a sufficient number
of mutation events in a single generation.

5 Tailoring the Learning Bias 

In the simulations outlined in the previous section
there were two learning biases—the intrinsic bias of
the learners, which favors increased ambiguity, and
the bias in favor of learning from successful commu-
nicators, which depended on t. In this section, the
model of a communicative agent is revised to build
in a learning bias toward optimal, unambiguous
communication systems. This bias results in the rapid
and reliable emergence of such systems.

5.1 The New Communicative Agent

As outlined in Section 3.2, the communicative agents
in all previous simulations were feed-forward neural
networks mapping from input meanings to output
signals. Signal production for these imitator agents was
merely a matter of propagating an input meaning
pattern of activation through the network to produce an
output signal. Reception was achieved by presenting all
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Figure 10 Average communicative accuracy in popula-
tions of imitator agents for various values of e and
t (b = 20).

Figure 11 Average communicative accuracy of imitator
populations over time.



communicatively relevant meanings and selecting the
meaning that maximizes confidence in the received
signal. These networks are strongly biased in favor of
acquiring fully ambiguous communication systems.

The new model of a communicative agent has
exactly the same basic form as the imitator model, being
a three-layer feed-forward neural network. However,
the crucial difference is that the new networks, which
will be referred to as obverter (Oliphant & Batali,
1997)8 networks, map from input signals to output
meanings—the direction of the mapping has been
reversed. Production and reception in these obverter
networks operate as follows.

Production. Each of the set of possible signals
is propagated through the network, producing a real-
numbered output pattern of activation for each signal.
The signal that produces the meaning closest to the
meaning to be communicated, as determined by the
confidence measure outlined in Section 3.2.1, is used
to communicate the given meaning (as for imitator
reception). 

Reception. The received signal pattern is propa-
gated forward through the network and the output

pattern of activation is thresholded to produce a binary
pattern of activation corresponding to that agent’s
interpretation of the received signal (as for imitator
production). 

The learning biases of these agents are shown in
Tables 3 and 4. As can be seen from Table 3, these
agents are strongly biased against learning fully
ambiguous and partially ambiguous communication
systems. Somewhat surprisingly, learnability never
reaches 100%, even for unambiguous communication
systems. It appears that certain unambiguous systems
are unlearnable by obverter agents, whereas certain
unambiguous systems are 100% learnable. The pattern
to this learnable–unlearnable distinction is not impor-
tant in this article—the key point is that certain unam-
biguous systems are highly learnable whereas partially
ambiguous and fully ambiguous systems are less
learnable.

Table 4 shows that obverter networks with random
weight settings in the range [−1, 1] are strongly biased
toward unambiguous communication systems—as
discussed in Section 4.1.1, these random weight biases
approximate the response of networks to exposure to
conflicting communication systems.

5.2 Obverter Learning Results in Optimal
Communication

In the simulation runs plotted in Figure 12, the new
obverter learner is substituted for the imitator learner
used in previous sections. Excluding the change in
the agent model, all other simulation details are
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Table 3 Percentage success of obverter agents at acquiring various types of systems with various values of e

System type

e Fully ambiguous Partially ambiguous Unambiguous

1 0.1 0.2 0.3
2 0.2 0.2 0.4
3 0.1 0.4 0.4
4 0 0.3 0.6
5 0 0.5 0.6
10 0 1.0 1.6
25 0 4.6 7.8
50 0 8.9 31.3
100 0 11.1 53.9
150 0 11.0 51.7
200 0 18.0 55.0

Table 4 The percentage of population of obverter
agents with small, random weights using communication
systems of the given type

System type % population

Unambiguous 65
Partially ambiguous 33
Fully ambiguous 2



identical to the simulation runs described in
Section 4.1— specifically, p = 100 and t = 100.

Figure 12 shows a clear difference between simu-
lation runs with no selection pressure on breeding
(b = 100) and those with selection pressure on breeding
(b < 100). For the runs with no natural selection, com-
municative accuracy is low with low e and increases as
e increases. For e ≥ 100 the populations reliably
converge on optimal, unambiguous communication
systems. As shown in Table 3, a subset of the set of
unambiguous systems are highly learnable for these
values of e and have a significant learnability advan-
tage over ambiguous systems. As a result, ambiguous
systems are selected against during cultural transmis-
sion until the populations converge on unambiguous
systems. 

In the runs with selection pressure on breeding the
populations have higher communicative accuracy with
e < 100, due to the development of innate communi-
cation systems through natural selection. As e
increases, the communicative accuracy of the popula-
tion increases, indicating a positive interaction
between natural selection and learning. Natural selec-
tion favors genotypes that improve the learnability of
unambiguous communication systems in use in the
population via the Baldwin effect (Baldwin, 1896). As
e increases this interaction decreases, and when e ≥
100 the interaction all but disappears.

Furthermore, populations of obverter agents are
capable of maintaining such optimal communication

systems indefinitely—unlike the populations shown in
Sections 4.1.1 and 4.2.1 they do not suffer from the
collapsing problem, even in the absence of selection
pressure on breeding.

6 The Key Learning Bias

Imitator agents cannot create or maintain optimal
communication systems, even given a helping hand
from natural selection, and obverter agents can
construct and maintain optimal communication
systems, given sufficient exposure, without help from
natural selection. This is due to the inherent learning
biases of the two types of agents (summarized in
Tables 1–4). The relationship between these biases and
the structure of the networks is explored in detail in
Section 6.1. The key biases identified in Section 6.1
are discussed in terms of other models in Section 6.2.

6.1 The Learning Bias Explored

In the terms of this article, optimal communication
systems are unambiguous mappings from meanings
to signals—one-to-one (or injective) functions.
Suboptimal systems are many-to-one or all-to-one
functions. In terms of production and reception func-
tions p(m) and r(s), in an optimal communication
system

1. p(m) should be an injective function.
2. r(s) should be a superset of the inverse of p(m).

These two restrictions guarantee that every mean-
ing is expressed using a distinct signal and that the
reception process maps signals back onto the mean-
ings they were originally intended to convey.

Feed-forward neural networks learn many-to-one
functions. Due to the deterministic nature of the feed-
forward propagation of activation values, they cannot
learn one-to-many mappings. The easiest function for
a network to acquire is therefore an all-to-one map-
ping from inputs to outputs, the hardest learnable
function is an injective (one-to-one) function and one-
to-many mappings are unlearnable. The reversal
process used to model reception behavior for imitators
and production behavior for obverters is similarly
biased—it generates a function, which may be
injective or many-to-one, based on the function the
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Figure 12 Average communicative accuracy in popula-
tions of obverter agents after 1,000 generations, for vari-
ous values of e and b (t = 100). Each point represents the
average of 10 simulations.



feed-forward network has acquired. In general, if the
network has acquired a function f (x) that has a range
y, then the reversal process ensures that element yi ∈ y
will map onto a single element xi ∈ x such that f (xi) =
yi. In simple terms, the reversal process deterministi-
cally reverses the function acquired by the network.

In imitator agents, the feed-forward network
learns functions from meanings to signals—it learns
p(m). Since it is a feed-forward network it will be
biased toward acquiring a many-to-one or all-to-one
p(m). As illustrated in Figure 13, the maximally stable
p(m) for imitator agents is therefore an all-to-one fully
ambiguous function. Imitators therefore do not have a
bias in favor of the first feature (above) of an optimal
system. Reception in imitators will be based on their
acquired p(m)—as shown in Figure 13, in the case of
an all-to-one p(m), in r(s) the signal si that constitutes
the range of p(m) will map onto a single element from

m. Therefore a population of imitator agents will tend
to produce the same signal for every meaning and
interpret the ambiguous signal as communicating one
arbitrary meaning. This situation results in perfor-
mance equivalent to random guessing. 

In obverter agents the feed-forward network
learns functions from signals to meanings—it learns
r(s). As illustrated in Figures 14 and 15, the only
culturally stable system has an injective p(m) (point 1
above) and an r(s) that includes at least the inverse of
p(m) (point 2 above). Obverter agents are therefore
strongly biased in favor of acquiring systems with the
properties of optimal communication systems.

6.2 Other Models 

As mentioned in Section 2, there are several other
models where cultural processes result in the

Smith The Evolution of Communication 39

Figure 13 (a) Representation of an imitator agent’s feed-forward network encoding an all-to-one
p(m) mapping three meanings onto a single signal, s2. The function from a domain of real numbers
(input unit activations) to a codomain of real numbers (output unit activations) is represented by two
lines, the lower line representing the domain, the upper representing the codomain. Squares repre-
sent particular points on the line corresponding to binary meanings or signals. Associations are
shown with solid lines between elements in the domain and elements in the codomain. (b) The con-
fidence-measuring step of the reversal process for the network underlying (a). To decide r(s2), the
real-number values of p(m1), p(m2) and p(m3) are calculated. These real-numbered mappings are
represented by dotted lines in (b). (c) The r(s) derived from applying the reversal process to (a).
r(s2) = m2 because m2 mapped closer to s2 than any other m in (b). The other associations are effec-
tively random. The random nature of these mappings is represented by dashed lines. (d) The function
acquired by an imitator network exposed to behavior generated by (a)—as it is an all-to-one function
between meanings and signals it is easily learned by imitator agents. This is in fact the only stable
function for imitators.



emergence of optimal communication. Do the learning
mechanisms used in these models include biases in
favor of the two properties outlined above? This kind
of analysis often requires a great deal of familiarity
with the model involved. However, this bias can be
identified in certain other models. 

Beginning with the models involving cultural
transmission and no natural selection, the two key
biases can be observed in the auto-associator networks
of Hutchins and Hazelhurst (1995), the “obverter”
learner of Oliphant and Batali (1997), which is capable
of constructing an optimal system of communication
from random behavior (but not the “imitator”, which is
not), and in the “constructor” agents of Smith  (2002),
capable of constructing an optimal system, but not in

any nonconstructor agents. The class of constructor
agents in this article includes the Hebbian learner
of Oliphant (1999), also capable of constructing an
optimal system. The neural networks in Batali (1998)
are essentially obverter agents, although the impor-
tance of their inherent bias is not identified.

The key bias can also be observed in the model
outlined in Kvasnic∨a and Pospíchal (1999), which
involves cultural transmission and natural selection.
Given that the neural networks used by Kvasnic∨ka and
Pospíchal are practically identical to the obverter
network outlined in this article, the behavior of their
populations can probably be explained purely in terms
of cultural processes. The absence of a contrastive
learning bias or variance in natural selection pressure
in their model obscures this fact. The models of
MacLennan and Burghardt (1994) and Kirby and
Hurford (1997) do have learning biases that are specif-
ically directed toward optimizing acquired systems,
but these models either model communication at a dif-
ferent level (Kirby & Hurford, 1997) or can be criti-
cized for their use of reinforcement learning
(MacLennan & Burghardt 1994). Finally, it is worth
pointing out that the theoretical models proposed in
Pinker and Bloom (1990) and Dor and Jablonka
(2000) do not take into account the role of learning
biases in cultural evolution. The computational model
outlined in this article suggests that the consequences
of such biases, which may not be obvious, need to be
taken into consideration.

The two key biases appear to be common, or at
least recurring, in learning mechanisms capable of
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Figure 14 (a) An all-to-one r(s) encoded in an obverter agent’s feed-forward network. As obverters
map from signals to meanings this is the most learnable r(s). (b) The confidence-measuring step of
reversing this r(s) to generate a p(m)—as before, real-number mappings are shown as dotted lines.
(c) The p(m) derived from (a). p(m2) = s3 as s3 mapped closest to m2 in (b). The other associations
are essentially random.The p(m) in (c) produces the meaning-signal pairs {(m1, s1), (m2, s3), (m3, s3),}.
The order of the meanings and signals in these pairs are reversed to train the next generation of
obverter networks. (d) The r(s) resulting from training an obverter network on the signal–meaning pairs
{(s1,m1), (s3,m2), (s3,m3),}. r(s1) = m1, as expected. However, feed-forward networks cannot learn
one-to-many mappings so r(s3) is effectively randomly assigned to a meaning, in this case m2. As s2
and s4 are not represented in the training set they are effectively randomly assigned mappings. Notice
that the mapping in (a) has been destroyed in (d)—(a) is not a culturally stable mapping.

Figure 15 Only an unambiguous p(m) is stable for
obverter agents. (a) An obverter agent’s r(s). (b) The p(m)
derived from reversal of (a)—it is an injective function. (c)
The r(s) resulting from training the next generation of
agents on data produced by (b) is effectively similar to (a)
and will therefore lead to (b) once again—(a) and (b) are
culturally stable. The only unstable aspect is the floating
synonym s4. This synonym is highly unlikely to interfere
with the mapping in (b) and the floating synonym
phenomenon can be observed in the other obverter
models outlined in the main text.



constructing optimal communication systems in the
modeling literature. Oliphant (1999) claims that this
kind of bias is in fact widespread in the natural world.
But is there evidence that any species is actually biased
in favor of learning one-to-one mappings in the domain
of communication? As mentioned in Section 2, it is
doubtful whether experience plays a role in determin-
ing the structure of communication in any nonhuman
primate. However, the sole species in which experi-
ence definitely plays some role (humans) does appear
to exhibit this bias. It has been suggested that vocubu-
lary acquisition in humans is guided by the contrast
principle (Clark, 1988), a bias in favor of one-to-one
mappings between meanings and words. While Bloom
(2000) suggests this principle is part of the human
theory of mind, it can be conceived of as a communi-
cation-specific learning bias. This model suggests
that some of the nature of the human communication
system may be explicable in terms of cultural
processes resulting from the iterated application of
human learning biases. The role of such a learning bias
in the evolution of syntax is a possible subject for future
research—is such a bias sufficient for the cultural
evolution of syntax, as well as simple communication?
If not, what other components are required? 

7 Conclusions

This article outlines a computational model of the
emergence of communication in a population of com-
municative agents. As previous work suggests, natural
selection alone is capable of evolving optimal, innate
communication systems in such populations.
However, the addition of cultural transmission of com-
munication systems does not necessarily assist the
emergence of optimal communication systems. The
biases of the learners involved in the cultural trans-
mission process result in cultural selection—commu-
nication systems that conform to the biases of the
learners are more likely to be successfully transmitted
than communication systems that do not.

The results of simulations in which cultural selec-
tion is in direct conflict with natural selection are out-
lined in Section 4.1. In these circumstances, cultural
selection resulting from the intrinsic biases of the
agents proves to be the determining factor in the emer-
gent behavior of the simulated populations. This is a
clear case of what Durham (1991) would term

gene–culture opposition. In Section 4.2, a second
cultural selection pressure was introduced that was in
direct conflict with the intrinsic learning biases of the
simulated agents. This secondary pressure failed to
override the intrinsic biases of the learners. In
Section 5, the model of the learning agent was modi-
fied to build in a bias toward optimal communication
systems. In populations of such agents, optimal com-
munication systems rapidly and reliably emerge, due
to the cultural selection pressures arising from the
learners’ biases. As discussed in Section 6, these
learning biases can be explained terms of the networks’
structure. 

This model has several limitations. The model of
communication used, with three unstructured mean-
ings and eight unstructured signals, is very simple,
although there is no reason to expect these results not
to hold for more complex models of communication.
The absence of any environment outwith the agents
means that communicative accuracy must be measured
at the agent-internal representations. Although this is
not unreasonable for referential communication
systems, a behavior-based measure of communicative
success would be more appropriate for modeling
nonreferential communication. Finally, natural selec-
tion has a fairly limited role to play in this model, a
matter that is discussed further below. 

These results have implications for both computa-
tional modeling of gene–culture interactions and
research into the origins and evolution of language. For
computational modelers, the clear implication is that a
particular choice of agent model or learning model can
have a fundamental impact on the behavior of the sys-
tems as a whole. This suggests that modelers should be
aware of how specific their results are to their model of
learning and be prepared to justify their model of learn-
ing and its associated biases in terms of the real-world
system that is being modeled. The bias in favor of one-
to-one mappings associated with the obverter agent
corresponds to a learning bias observed in humans (the
contrast principle, as discussed in Section 6.2), sug-
gesting that, in terms of learning bias, the obverter
model is preferable to the imitator model as a model of
human language learning. 

More generally, the simulations outlined in this
article suggest that research into the origins and evolu-
tion of language should not underestimate the role of
cultural selection in this process. These simulations
give an illustration of the fact that the learning biases of
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individual learners can have profound and far-reaching
effects when placed in the context of iterated cultural
transmission, and that in certain circumstances these
cultural processes can effectively nullify the influence
of natural selection during genetic transmission.

This is not to say that natural selection can have no
role in the explanation of the evolution of language. In
the simulations outlined in this article, natural selection
is restricted to tinkering with the starting point for the
learning process. In a more realistic model, all aspects
of the learning apparatus would be genetically transmit-
ted. It would therefore be possible for natural selection
to develop learning algorithms, and therefore modify
learner biases and determine the precise nature of cul-
tural selection occurring during cultural transmission.
Under these circumstances, can natural selection iden-
tify learning algorithms that result in cultural selection
for optimal communication? Preliminary modeling
work in this area (Smith, 2001; Smith, in preparation)
suggests that natural selection may be unable to identify
such biases reliably due to the significant delay between
the appearance of the beneficial genes and the estab-
lishment of widespread beneficial culture. The story of
the evolution of language may therefore be best told in
two parts, with the development of the necessary
preadaptation of an appropriate learning mechanism
occurring on a geological time scale, and the develop-
ment of language parasitic on this learning mechanism
occurring on a historical time scale.

Notes

1 Note that this assumes that meanings are functionally
distinct. For example, if two meanings mi and mj result
in the same behavior on the part of the receiver and
r(p(mi)) = mj then the communication would be measured
as a failure but could, at the behavioral level, be considered
a success.

2 f = 6 for all simulations outlined in this article.
3 For all simulations outlined in this article Pcross = 0.95.
4 For all simulations outlined in this article Pmutation =

= 0.0042, where Lg is the length of the genome. 

5 This mutation operator, in conjunction with the unre-
stricted range of alleles, allows the possibility of the emer-
gence of extremely large-valued alleles. However, in
practice such alleles do not occur. In the simulations
outlined in this article all alleles remain within the range
[−5.41, 5.29].

6 A learning rate of 0.5 and momentum of 0 were used.

7 Preferred interaction with genetically related individuals
might alleviate this problem somewhat, but was not inves-
tigated here. 

8 Obverter networks are the equivalent of what Hurford
(1989) termed Saussurean learners.
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