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Language arises from the interaction of three complex adaptive systems — biological evo-
lution, learning, and culture. We focus here on cultural evolution, and present an Iterated
Learning Model of the emergence of compositionality, a fundamental structural property
of language. Our main result is to show that the poverty of the stimulus available to
language learners leads to a pressure for linguistic structure. When there is a bottle-
neck on cultural transmission, only a language which is generalizable from sparse input
data is stable. Language itself evolves on a cultural time-scale, and compositionality is
language’s adaptation to stimulus poverty.
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1. Introduction

Human language is at the nexus of several complex adaptive systems [11]. But what
are these systems, and how did they interact to deliver up language, unique among
the communication systems of the natural world? In what we will call the standard
adaptationist model, language is seen primarily as a biological trait. Language can
then be explained in terms of the interaction between biological evolution of the
human “language instinct” [22] and individual learning of language.

The standard adaptationist model is based on the Chomskyan paradigm from
linguistics, which focuses on the innate linguistic knowledge of the speaker. However,
we argue that this de-emphasis of learning and cultural transmission obscures an
important dynamic in language evolution. Language itself functions as a complex
adaptive system, and the historical evolution of language interacts with individual
learning and biological evolution of the language faculty.

We believe that an understanding of language evolution will require a thorough
understanding of each of these three complex adaptive systems (biological evo-
lution, learning and culture), but also, crucially, an understanding of how they
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interact. In this paper we will focus on modeling the cultural evolution of composi-
tionality, one of the fundamental structural characteristics of language. We present
a computational model of the dynamics arising from the cultural transmission of
linguistic structure. We show that compositional language can emerge from an ini-
tially non-compositional system by cultural processes. The poverty of the stimulus
available to language learners drives the evolution of linguistic structure — lan-
guage itself evolves to be learnable, and compositionality is language’s adaptation
to the poverty of the stimulus problem. In our concluding remarks we will broaden
our focus to discuss how cultural evolution might interact with biological evolution
and learning.

2. Complex Systems and Language Evolution

2.1. The standard adaptationist model

The standard adaptationist model places the Chomskyan approach to language
within an evolutionary framework. In the Chomskyan paradigm (formulated and
developed by Noam Chomsky, see for example Refs. 7 and 10), which has been
highly influential in modern linguistics, language is viewed as an aspect of indivi-
dual psychology. The object of interest is the internal linguistic competence of the
individual, and how this linguistic competence is derived from the data the indivi-
dual is exposed to. External linguistic behavior is considered to be epiphenomenal,
the uninteresting consequence of the application of this linguistic competence to
a set of contingent communicative situations. From this standpoint, much of the
structure of language is puzzling — how do children, apparently effortlessly and
with virtually universal success, arrive at a sophisticated knowledge of language
from exposure to sparse and noisy data? In order to explain language acquisition
in the face of this poverty of the linguistic stimulus, the Chomskyan program pos-
tulates a sophisticated, genetically-encoded language organ of the mind, consisting
of a Universal Grammar (UG), which delimits the space of possible languages, and
a Language Acquisition Device (LAD), which guides the formation of linguistic
competence based on the observed data. Language learners are therefore viewed as
detached individuals [5], as illustrated in Fig. 1.

Linguistic
Competence

Primary
Linguistic

Data

acquisition

Fig. 1. The Chomskyan Paradigm. The focus is on an individual’s internal linguistic competence,
and how this competence is acquired based on the available data. Acquisition is constrained and
guided by an innate LAD and UG.
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Chomsky has been notoriously reluctant to offer an account of the evolution of
UG and the LAD, preferring instead to appeal to architectural and developmental
constraints:

“We know very little about what happens when 1010 neurons are crammed
into something the size of a basketball, with further conditions imposed
by the specific manner in which this system developed over time. It would
be a serious error to suppose that all properties, or the interesting proper-
ties of the structures that evolved, can be ‘explained’ in terms of natural
selection.” [8, p. 59]

However, others have been less reticent in attempting to integrate the Chom-
skyan paradigm with evolutionary theory. Pinker and Bloom present the classic
adaptationist account of language evolution, suggesting that “the ability to use a
natural language belongs more to the study of human biology than human culture: it
is a topic like echolocation in bats”[23, p. 707]. They argue that language is adapted
for the communication of propositional structures (in the internal representational
“language of thought”) over a serial channel. UG and the LAD have therefore
evolved to facilitate the acquisition of language which performs this function.

Pinker and Bloom’s account calls upon the interaction between two complex
adaptive systems to explain the language capacity and linguistic structure. The
process of language acquisition, constrained by UG and guided by the LAD, deter-
mines an individual’s linguistic competence. This competence then contributes to an
individual’s reproductive fitness, resulting in selection in favor of an innate endow-
ment which (i) facilitates language acquisition and (ii) constrains the learner to
learning languages which are communicatively useful. Biological adaptation of UG
and the LAD then feeds back into the language acquisition process. This interaction
is illustrated in Fig. 2.

acquired change
fitness langscape

Languages
guides acquisition

Innate endowment

Biological Evolution

Learning

Fig. 2. The standard adaptationist model. Language is a consequence of the interaction between
biological evolution and learning. The innate language capacity guides language acquisition. The
functionality of the acquired language then has consequences for the biological evolution of the
language capacity.



January 12, 2004 9:29 WSPC/169-ACS 00105

540 K. Smith, H. Brighton and S. Kirby

2.2. Culture: A third complex system

Those working within the Chomskyan paradigm typically play down the role of
learning and the cultural transmission of language. For Chomsky, learning of a lan-
guage is “better understood as the growth of cognitive structures along an internally
directed course under the triggering and partially shaping effect of the environment”
[9, p. 34], while Piattelli–Palmarini has suggested that “we would gain in clarity
if the scientific use of the term [learning] were simply discontinued” [21, p. 2].
This devaluation of learning and, consequently, cultural transmission arises from
concerns based on poverty of the stimulus arguments. If the linguistic stimulus
available to the child is too impoverished to allow language acquisition, then much
of the structure of language must be prespecified, and learning and culture effec-
tively play no role. However, focusing on the nature of this innate knowledge, to
the detriment of the study of the cultural transmission of language, means that we
overlook an important dynamic which can help explain some of the fundamental
structural properties of language.

Following ideas developed by Hurford [15], we place an understanding of cul-
tural evolution at the heart of our explanatory approach. An individual’s linguistic
competence is derived from data which is itself a consequence of the linguistic com-
petence of other individuals. This view of language is illustrated in Fig. 3.

What consequences does this view of language have for evolutionary explana-
tions of language and the language faculty? The introduction of cultural transmis-
sion results in a third complex adaptive system, that of cultural evolution, operating
on what has been dubbed a glossogenetic [15] time-scale, intermediate between the
phylogenetic and ontogenetic time-scales. As in the standard adaptationist model,
language acquisition is guided by an individual’s innate endowment. The learner
attempts to acquire the language of their cultural parents. Differences between the

Linguistic
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acquisition production Linguistic
Behaviour
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Fig. 3. Language as a cultural phenomenon. As in the Chomskyan paradigm, illustrated in
Fig. 1, acquisition based on available data leads to linguistic competence. Importantly, however,
this competence in turn leads to linguistic behavior, which becomes the linguistic data for the
next generation of language learners.
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Fig. 4. Adding cultural evolution. Language is now a consequence of the interaction between
biological evolution, learning and cultural evolution. The innate language capacity guides language
acquisition. The cultural transmission of language leads to cultural evolution, which then has
consequences for the biological evolution of the language capacity.

language of the parent and the child results in the cultural evolution of language
itself. This cultural evolution further restricts the set of possible languages available
to language learners at subsequent generations. The particular language acquired
by a learner from the set of languages made available by this cultural evolution
then contributes to the reproductive fitness of that individual, resulting in selection
in favor of an innate endowment which (i) facilitates acquisition of those languages
present in the culture and (ii) constrains the learner to learning languages which
are communicatively useful. Biological adaptation of UG and the LAD then feeds
back into the language acquisition process. This interaction is illustrated in Fig. 4.

The structure of language is dependent on the interaction between these three
complex systems, and a full understanding of language evolution will require a
treatment of all three adaptive processes. However, it is prudent to develop an
understanding of each process in isolation before attempting to formulate a com-
plete, unified model of the evolution of language. In this paper we will develop an
account of the dynamics arising from the cultural transmission of language, then
draw inferences as to how this dynamic might interact with the complex systems
of individual learning and biological evolution.

3. The Iterated Learning Model

The Iterated Learning Model (ILM) provides a framework for studying the cultural
evolution of language on a glossogenetic time-scale [4, 18]. The ILM in its simplest
form is illustrated in Fig. 5. In this model Hi corresponds to the linguistic compe-
tence of individual i, whereas Ui corresponds to the linguistic behavior of individual
i and the primary linguistic data for individual i + 1.

We focus here on the cultural evolution of language in the absence of any func-
tional pressure for effective communication. While it has been suggested that func-
tional considerations have an impact on language acquisition and production (for
example, a preference by speaker/hearers for sentences which are easy to parse
[14]), ignoring such pressures allows us to make several simplifying assumptions.
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Fig. 5. The ILM. In the simplest case, the ith generation of the population consists of a single
agent Ai who has hypothesis Hi. Agent Ai is prompted with a set of meanings Mi. For each
of these meanings the agent produces an utterance using Hi. This yields a set of utterances Ui.
Agent Ai+1 observes Ui and forms a hypothesis Hi+1 to explain the set of observed utterances,
and the cycle repeats.

We can treat the population at any given generation as consisting of a single agent.
This means that we can focus fully on vertical cultural transmission, and ignore for
the moment horizontal, within-generation transmission. We can also ignore inter-
generational communication. However, the ILM does not rule out a focus on the
communicative function of language within or between generations in a population
(see, for example, Ref. 25) or the role of horizontal transmission (see Ref. 2 for an
ILM where transmission is purely horizontal).

The ILM provides a powerful framework for investigating the cultural evolution
of language. We have previously used the ILM to examine the emergence of word-
order universals [17], the regularity–irregularity distinction [18] and recursive syntax
[19]. Here we will focus on the cultural evolution of compositionality, one of the
characteristic structural properties of language.

4. Modeling the Evolution of Compositionality

4.1. Compositionality

In a compositional communication system the meaning of a signal is a function
of the meaning of its parts [20]. The morphosyntax of human language is highly
compositional. For example, the relationship between the sentence John walked and
its meaning is not completely arbitrary. The sentence is made up of two components:
a noun (John) and a verb (walked). The verb is also made up of two components:
a stem and a past-tense ending. The meaning of John walked is thus a function of
the meaning of its parts. Compositionality, in combination with recursive syntax,
allows language users to produce and comprehend an infinite range of sentences.

Compositional language can be contrasted with non-compositional, or holistic
communication, where a signal stands for the meaning as a whole, with no subpart of
the signal conveying any part of the meaning in and of itself. Animal communication
is typically viewed as holistic — no subpart of an alarm call or a mating display
stands for part of the meaning “there’s a predator about” or “come and mate
with me.”
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How can we explain the compositionality of language? In the standard adap-
tationist model, compositionality must be viewed as a consequence of a biological
adaptation of the unique human language organ — natural selection has favored
an innate endowment which restricts language learners to learning compositional
systems. However, we demonstrate that compositionality can arise through purely
cultural processes, as a result of the adaptation of language in the face of pressure to
be learnable. This lifts some of the burden of explanation from the postulated lan-
guage organ — cultural processes acting on a (possibly domain-general) biological
substrate result in compositional language.

4.2. An analysis of stable states

Brighton has developed a mathematical analysis of the relative stability of composi-
tional and holistic language over cultural time [4]. Brighton considers only perfectly
compositional and completely holistic language. Addressing the question of relative
stability allows us to predict when we should observe linguistic structure — when
compositional and holistic language are equally stable we should expect them to
emerge with equal frequency over cultural time, whereas when one type of lan-
guage is more stable than the other we should expect that language to emerge
more frequently and persist for longer.

One of Brighton’s observations is that, in an iterated learning scenario, stability
of a language over cultural time relates to the expressivity of learners exposed
to that language. Consider the problem faced by a learner attempting to learn
a holistic language. Given the lack of structure in the holistic language, the best
strategy for the learner is simply to memorize meaning-signal pairs. The learner,
when called upon to produce an utterance, will only be able to faithfully reproduce
meaning-signal pairs that it itself has observed. Parts of the language which have
not been observed cannot be expressed and will therefore be lost or will change —
holistic language is only stable when the learner observes, and is therefore able to
express, the complete language of the previous generation.

In contrast, the structure of a compositional language means that learners can
acquire and express the complete language based on observation of a subset of that
language. Consider a learner presented with a perfectly compositional language. In
such a language each element of meaning will map onto a particular part of signal
(for example, an affix or a word). The best strategy here is to memorize the associa-
tion between elements of meaning and parts of signal. When called upon to produce
an utterance for a given meaning, an individual is not restricted to reproducing
meaning-signal pairs it itself has observed. A meaning will be expressible if every
element of that meaning has been observed paired with its associated linguistic unit.
A learner of a compositional language can therefore generalize from observed exam-
ples to express parts of the language that it has not actually observed — incomplete
exposure to the target language does not result in a shortfall in expressivity, and
therefore the language will remain stable.



January 12, 2004 9:29 WSPC/169-ACS 00105

544 K. Smith, H. Brighton and S. Kirby

Brighton’s key result is to show that the stability advantage of compositional
language over holistic language is at a maximum when there is a bottleneck on cul-
tural transmission. The transmission bottleneck occurs when learners only observe
a subset of the language of the previous generation. This is one aspect of the poverty
of the stimulus problem — the set of utterances of any human language is arbi-
trarily large, but a child must acquire their linguistic competence based on a finite
number of sentences. The severity of the transmission bottleneck is given by the
proportion of the language of the previous generation that a learner will observe.

Holistic languages cannot persist over time when the bottleneck on cultural
transmission is tight — learners can only faithfully reproduce parts of the language
which they have observed, and if they observe only a small subset of the language
then the language will be unstable. In contrast, compositional languages are general-
izable, due to their structure, and remain relatively stable even when a learner only
observes a small subset of the language of the previous generation. Brighton shows
that the poverty of the stimulus “problem” is actually a requirement for linguistic
structure — were there no poverty of the stimulus, compositional language would
have no advantage over unstructured holistic language.

4.3. A model of language dynamics

Brighton’s result is a fundamental one. However, by considering only perfectly com-
positional or completely holistic languages, Brighton is restricted to examining the
Lyapounov stable states, places in language space that, if we start near, we stay
near [12]. The model cannot explain the dynamics that occur when we move away
from the extremes of compositionality, although insights taken from the model prove
relevant to understanding the behavior of dynamic models.

What happens to languages of intermediate compositionality during cultural
transmission? Can compositional language emerge from initially holistic language,
through a process of cultural evolution? We can investigate these question using a
multi-agent computational implementation of the ILM. A simple model of language
as a mapping between meanings and signals is given in Sec. 4.3.1. A neural network
model of a linguistic agent capable of learning and producing such languages, based
on a simple model designed to investigate the cultural evolution of vocabulary
systems [25], is outlined in Sec. 4.3.2. This agent is inserted into the ILM, along
with a model of environments (Sec. 4.3.3), allowing us to model the dynamics arising
from the cultural transmission of language.

4.3.1. The language model

We treat language as a mapping between meanings and signals. A compositional
language is a mapping which preserves neighborhood relationships — neighboring
meanings will share structure, and that shared structure in meaning space will
map to shared structure in signal space. A holistic language is one which does
not preserve such relationships — as the structure of signals does not reflect the
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structure of the underlying meaning, shared structure in meaning space will not
necessarily result in shared signal structure.

In order to model such systems we need representations of meanings and signals.
Meanings are represented as points in an F -dimensional space where each dimension
has V discrete values, and signals are represented as strings of characters of length
1 to lmax, where the characters are drawn from some alphabet Σ.a More formally,
the meaning space M and signal-space S are given by:

M = {(f1 f2 · · · fF ) : 1 ≤ fi ≤ V and 1 ≤ i ≤ F} , (4.1)
S = {w1w2 · · ·wl : wi ∈ Σ and 1 ≤ l ≤ lmax} . (4.2)

Utterances, the units of observable behavior that individuals acquire their com-
petence from, are considered to be meaning-signal pairs 〈m, s〉, where m ∈ M and
s ∈ S. We therefore assume that learners are able to deduce the communicative
intentions of others during language acquisition. This is obviously an oversimplifi-
cation — if the meaning of every signal was self-evident then the signal itself would
serve little purpose. However, we can make several points in defence of this idealiza-
tion. Firstly, children do seem to have various strategies for deducing the meaning
underlying an observed signal. Central to these abilities is the capacity to establish
joint attention and perform intentional inference [1, 3]. Secondly, computational
simulations show that linguistic structure can be preserved if this idealization is
weakened, so that learners observe only partially-specified meanings in conjunc-
tion with signals [16]. Finally, a strand of research parallel and complementary to
our own abandons this idealization completely (see, for example, Refs. 24, 26, 27
and 28). This work shows that shared linguistic structure can still emerge in the
absence of explicit meaning transfer during learning.

F and V specify the degree of structure in the semantic representations avail-
able to agents. These semantic representations must have some minimum degree of
structure if compositional language is to be a possibility — in compositional lan-
guages the structure of signals reflects the structure of underlying meanings, and
if the underlying meanings are unstructured then compositionality is immediately
ruled out. Structured semantic representations therefore form a necessary, but not
sufficient, condition for the cultural evolution of compositional language.b

We make a fundamental distinction between meanings and signals. An alter-
native approach is presented by Hashimoto [13], who also treats language as a
dynamical system but makes no distinction between the meanings of words and
the words themselves. From this standpoint, the meaning of a signal is defined in
terms of the relationship between that signal and other signals — the mesh of word-
word associations constrains and guides the interpretation of signals. Language lies
somewhere between these two extremes.

aFor all results presented in this paper, F = 3, V = 5, lmax = 3, |Σ| = 10.
bWhile these semantic representations are structured, they are not hierarchical. Kirby has shown
that hierarchically-structured semantic representations can lead to the cultural evolution of hier-
archical syntactic structures [19].
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4.3.2. A network model of a linguistic agent

Representation Agents are modelled using networks consisting of two sets of nodes
NM and NS and a set of bidirectional connections W connecting every node in NM

with every node in NS . Nodes in NM represent meanings and partial specifications
of meanings, while nodes in NS represent partial and complete specifications of
signals.

As summarized above, each meaning is a vector in F -dimensional space where
each dimension has V values. Components of meanings are (possibly partially
specified) vectors, with each feature of the component either having the same value
as the meaning, or a wildcard. More formally, if cm is a component of meaning m,
then the value of the jth feature of cm is:

cm[j] =
{

m[j] for specified features ,
∗ for unspecified features ,

(4.3)

where ∗ represents a wildcard. Similarly, components of signals of length l are
(possibly partially specified) strings of length l. We impose the additional constraint
that a component must have a minimum of one specified position. For example, the
components of the meaning represented by the vector (1 2) are (1 2), (1 ∗) and (∗ 2),
but not (1 3) (value of feature 2 does not match) or (∗ ∗) (no specified features).
Similarly, the components of the signal represented by the string bd are bd, b ∗ and
∗ d, but not e ∗ (first character does not match), ∗ ∗ (no specified characters) or a
(not of correct length).

Each node in NM represents a component of a meaning, and there is a single
node in NM for each component of every possible meaning. Similarly, each node in
NS represents a component of a signal and there is a single node in NS for each
component of every possible signal.

Learning During a learning event, a learner observes a meaning-signal pair 〈m, s〉.
The activations of the nodes corresponding to all possible components of m and all
possible components of s are set to 1. The activations of all other nodes are set to 0.
The weights of the connections in W are adjusted according to the weight-update
rule:

∆Wxy =






+1 if ax = ay = 1 ,
−1 if ax '= ay ,
0 otherwise ,

(4.4)

where Wxy gives the weight of the connection between nodes x and y and ax gives
the activation of node x. The learning procedure is illustrated in Fig. 6.

Production An analysis of a meaning or signal is an ordered set of components
which fully specifies that meaning or signal. More formally, an analysis of a meaning
m is a set of N components {c1

m, c2
m, . . . , cN

m} that satisfies two conditions:

(i) if ci
m[j] = ∗, ck

m[j] '= ∗ for some choice of k '= i,
(ii) if ci

m[j] '= ∗, ck
m[j] '= ci

m[j] for any choice of k '= i.
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Fig. 6. Storage of the meaning-signal pair 〈(2 1), ab〉. Nodes with an activation of 1 are repre-
sented by large filled circles, and are labelled with the component they represent. For example,
M(2 ∗) is the node which represents the meaning component (2 ∗). Small filled circles represent
weighted connections. During the learning process, nodes representing components of (2 1) and ab
have their activations set to 1. Connection weights are then either incremented (+), decremented
(−) or left unchanged.

The first condition states that an analysis may not consist of a set of components
which all leave a particular feature unspecified — an analysis fully specifies a mean-
ing. The second states that an analysis may not consist of a set of components where
more than one component specifies the value of a particular feature — analyses do
not contain redundant components. Valid analyses of signals are similarly defined.

During the process of producing utterances, agents are prompted with a meaning
and required to produce a meaning-signal pair. Production proceeds via a winner-
take-all process. In order to retrieve a signal si ∈ S based on an input meaning
mi ∈ M every possible signal sj ∈ S is evaluated with respect to mi. For each
of these possible meaning-signal pairs 〈mi, sj〉, every possible analysis of mi is
evaluated with respect to every possible analysis of sj . The evaluation of a meaning
analysis-signal analysis pair yields a score g. The meaning-signal pair which yields
the analysis pair with the highest g is returned as the network’s production for the
given meaning. The score for a meaning analysis (which consists of a set of meaning
components) paired with a signal analysis (a set of signal components) is given by:

g
({

c1
m, c2

m, . . . , cN
m

}
,
{
c1
s, c

2
s, . . . , c

N
s

})
=

N∑

i=1

ω(ci
m) · Wci

m,ci
s
, (4.5)
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Fig. 7. Retrieval of three possible analyses of 〈(2 1), ab〉. The relevant connection weights are
highlighted in grey. (a) g for the one-component analysis 〈{(2 1)}, {ab}〉 depends on the weight
of the connection between the nodes representing the components (2 1) and ab. (b) g for the
two-component analysis 〈{(2 ∗), (∗ 1)}, {a∗, ∗b}〉 depends on the weighted sum of two connections,
marked as i. The g for the alternative two-component analysis 〈{(2 ∗), (∗ 1)}, {∗b, a∗}〉 is given by
the weighted sum of the two connections marked ii.
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where N is the number of components in the analysis of meaning and signal, Wci
m,ci

s

gives the weight of the connection between the nodes representing the ith compo-
nent of the meaning analysis and the ith component of the signal analysis and
ω(x) is a weighting function which gives the non-wildcard proportion of x. The
production process is illustrated in Fig. 7.

4.3.3. Environments

The world, which provides communicatively relevant situations for agents in our
model, consists of a set of objects, where each object is labelled with a meaning
drawn from M. We will refer to such a set of labelled objects as an environment.
The number of objects in the environment gives the density of that environment —
environments with few objects will be termed low-density, whereas environments
with a large number of objects will be termed high-density. When meanings are
assigned to objects at random we will say the environment is unstructured. When
meanings are assigned to objects in such a way as to minimize the average inter-
meaning Hamming distance we will say the environment is structured. Sample low-
and high-density environments are shown in Fig. 8.

4.3.4. Measuring compositionality

As discussed above, a compositional mapping preserves neighborhood relations
when mapping between meanings and signals, whereas a holistic mapping does
not, unless by chance. Our measure of compositionality, c, captures this and is
calculated based on the set of meaning-signal pairs in an agent’s language. c is
the Pearson’s Product-Moment correlation coefficient of the pairwise distances be-
tween pairs of meanings and the distance between the corresponding pairs of signals.
We use the Hamming and Levenstein (string edit) distance measures to quantify
inter-meaning and inter-signal distances respectively. c ranges between −1 and 1.
A perfectly compositional language will have a c of 1, whereas c ≈ 0 for holistic
languages.

Fig. 8. We will present results for the case where F = 3 and V = 5. This defines a three-
dimensional meaning space. We highlight the meanings selected from that space with grey. (a) is
a low-density, unstructured environment. (b) is a low-density, structured environment. (c) and (d)
are unstructured and structured high-density environments.
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5. Results

The network model of a linguistic agent outlined above is plugged into the ILM
framework described in Sec. 3. We will vary three key parameters — the presence
or absence of a bottleneck on cultural transmission, and the density and structure
of the environment.

5.1. No bottleneck on cultural transmission

First, runs of the ILM were carried out in the absence of a bottleneck on cultural
transmission — each learner is presented with the complete language of the agent
at the previous generation.c The initial agents have all their connections weights set
to 0, and therefore produce every meaning-signal pair with equal probability, giving
a random initial language. Subsequent agents have connection weights of 0 prior
to learning. Runs were allowed to progress until a stable state was reached, where
agent Ai and Ai+1 produced identical languages. At this point, in the absence of a
bottleneck, further language change is impossible.

Figures 9 and 10 plot compositionality by frequency for the initial and final,
stable languages for low-density and high-density environments. These results are
based on 1,000 independent runs of the ILM for each environment.
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Fig. 9. The relative frequency of initial and final systems of varying degrees of compositionality,
where there is no bottleneck on cultural transmission. The results shown here are for the low-
density environments given in Fig. 8. The initial languages are largely holistic. Partially compo-
sitional languages do emerge, but highly compositional languages are infrequent.

cLearners observe the meaning-signal pairs produced by the agent at the previous generation for
every object in the environment.
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Fig. 10. The relative frequency of initial and final systems of varying degrees of compositionality,
where there is no bottleneck on cultural transmission. The results shown here are for the high-
density environments given in Fig. 8. Both the initial and final languages are holistic.

Three results are apparent from these figures:

(i) highly compositional systems are infrequent;
(ii) compositional systems only occur when the environment is low-density;
(iii) highly compositional systems only occur when the environment is structured.

The random initial languages in all environments tend to be holistic. Previous
results [4] suggest that, with no bottleneck on cultural transmission, such systems
will be highly stable. This seems to be the case for the majority of runs reported
here, particularly in the high-density environments. The emergence of partially or
highly compositional systems in the low-density environments then seems somewhat
surprising.

Individual simulation runs can be split into three groups — those where the final
languages have the same level of compositionality as the initial languages (cinitial =
cfinal), those where the final compositionality is different from the compositionality
of the initial language but not high (cinitial '= cfinal, cfinal < 0.9), and those where the
final systems are highly compositional (cinitial '= cfinal, cfinal ≥ 0.9). Table 1 gives
the mean and standard deviations of the compositionality of the initial languages
from the simulation runs, organized into these three groups.

As can be seen from the second column of the table, runs in all environments
have a mean value of cinitial of approximately 0. However, these initial values are
much more tightly distributed around the mean in the high-density environments.
The third column gives the mean cinitial for simulation runs where cinitial = cfinal.
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Table 1. Sensitivity to initial conditions. Environments are specified by a density — low-density
(ld) or high-density (hd), and a degree of structure — unstructured (u) or structured (s). Simu-
lation runs can be split into three groups, according to the values of cinitial and cfinal. The table
gives the means (µ) of the initial language of the simulation runs, broken down by group. Standard
deviations (σ) are given once as σ for each subgroup is approximately the same as σ for the runs
in that environment as a whole.

Initial compositionality

cinitial &= cfinal, cinitial &= cfinal,

Environment All cinitial = cfinal cfinal < 0.9 cfinal ≥ 0.9

ld, u µ = 0.0013, σ = 0.1246 µ = −0.0512 µ = 0.0160 NA

ld, s µ = −0.0029, σ = 0.1246 µ = −0.0136 µ = 0.0536 µ = 0.1603

hd, u µ = −0.0004, σ = 0.0470 µ = −0.0047 µ = 0.0209 NA

hd, s µ = −0.0011, σ = 0.0457 µ = −0.0017 µ = 0.0306 NA

These values are somewhat lower than the overall mean, and are lower than the
mean cinitial for simulation runs which move away from initial value. The mean
cinitial for simulation runs which converge on highly compositional languages is
higher still. Also note that the mean value of cinitial is lower for unstructured envi-
ronments than for structured environments for the case where cinitial '= cfinal.

These results suggest that, in the absence of a bottleneck on cultural trans-
mission, there is a degree of sensitivity to the compositionality of the initial, ran-
dom language. Where this initial system exhibits compositional tendencies, yielding
cinitial above the mean, there is an increased likelihood of the system moving, over
iterated learning events, towards more compositional regions of language space. The
compositional tendencies of the initial system spread to other parts of the system
over time, resulting in an increase in compositionality. For the high-density environ-
ments, highly compositional systems do not emerge due to the fact that the initial
systems tend to be clustered more tightly around the non-compositional mean.
When the environment contains few meanings the initial system may, by chance,
exhibit some compositional tendencies. However, when the environment contains
a large number of meanings such tendencies are likely to be drowned out by the
majority non-compositional mapping.

Why does environment structure impact on the compositionality of languages
in the low-density environments? This is related to the previous point. In the low-
density environments, as discussed above, compositional tendencies in the initial
system spread, over time, to other parts of the system. In structured environments,
distinct meanings tend to have feature values in common with a large number of
other meanings. In unstructured environments distinct meanings have feature values
in common with few other meanings. If the initial random system has a tendency
to express a given feature value with a certain substring then this can spread to
cover all meanings involving that feature value — the system becomes consistent
with respect to that feature value, which can have knock-on consequences for other
values at that feature and other features. In structured environments the potential
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for spread of the substring associated with a particular feature value is wider than
is the case in unstructured environments, given that more meanings will share that
feature value. Any initial compositional tendency will therefore spread more widely
in structured environments, with more possible follow-on consequences, resulting
in the more frequent emergence of highly compositional languages.

However, while shared feature values allow the possibility of the spread of com-
positionality, they also inhibit it — in a structured environment, any compositional
tendency in the initial random mapping has to cover a large number of mean-
ings which share feature values. If only some of these meanings share a character
for a particular feature value, then the other meanings, which do not share the
character, are likely to outweigh the slight compositional tendency. In contrast,
in unstructured environments fewer meanings share feature values, therefore the
initial random system has to be less ‘lucky’ in the assignment of characters to fea-
ture values. This is reflected in the fact that the mean cinitial has to be higher in
structured environments before cfinal moves away from cinitial, and also in the fact
that the average cfinal in unstructured environments is higher (see Fig. 9). In struc-
tured environments, the initial compositional tendency has to be strong to escape
the attraction of the overall non-compositional mapping, but once this attraction
has been escaped highly compositional systems can emerge. In contrast, in un-
structured environments the attraction of the initial non-compositional mapping is
weaker, due to the reduced degree of feature-value sharing, but the potential spread
of compositionality is reduced.

5.2. Bottleneck on cultural transmission

Next, runs of the ILM were carried out with a bottleneck on cultural transmission —
each learner is presented with a subset of the language of the agent at the previous
generation. The number of utterances produced by agents was set so that language
learners observed utterances for approximately 40% of the language of the previous
agent.d

While in the absence of a bottleneck runs were allowed to proceed until a stable
state was reached, in the bottleneck condition runs were terminated after a fixed
number of generations (200). The random selection of objects from the environment
for which to produce utterances means that, as with any stochastic system, a highly
skewed distribution of objects could lead to the loss of structure. However, the
results reported here accurately reflect the behavior of the system — allowing the
runs to proceed for several hundred more generations gives a similar distribution
of languages.

Figures 11 and 12 plot the compositionality by frequency of the initial and
final languages for unstructured and structured low and high-density environments.

dLearners observe the meaning-signal pairs produced by the agent at the previous generation for
40% of the objects in the environment, selected at random.
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Fig. 11. The relative frequency of initial and final systems of varying degrees of compositionality,
where there is a bottleneck on cultural transmission. The results shown here are for the low-
density environments. The initial languages are largely holistic. Partially and highly compositional
languages emerge with high frequency, and highly compositional languages are most frequent when
the environment is structured.
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Fig. 12. The relative frequency of initial and final systems of varying degrees of compositionality,
where there is a bottleneck on cultural transmission. The results shown here are for the high-
density environments. The initial languages are largely holistic. Highly compositional languages
emerge with high frequency, and are most frequent when the environment is structured.
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These results are based on 100 independent runs of the ILM for each environment.
Fewer runs are required as the transmission bottleneck reduces the sensitivity to
initial conditions.

Two results are apparent from Figs. 11 and 12:

(i) highly compositional systems are frequent,
(ii) highly compositional systems are most frequent when the environment exhibits

structure.

Brighton’s mathematical model predicts that, in the presence of a bottleneck
on cultural transmission, compositional language will be more stable than holistic
language [4]. The results from the computational model bear this out, but also show
that it is possible to move from an initially holistic system to a highly composi-
tional system over time. Figures 13 and 14 illustrate the dynamics of the transition
from holistic to compositional language. In structured environments (of low or high-
density) there is a single attractor at c = 1. Systems reaching this point are highly
stable, and any perturbation away from the attractor is quickly reversed. In con-
trast, in unstructured environments the attractor either occurs at a lower level of
compositionality (as in the low-density unstructured environment), or the attractor
occurs at c = 1 but is approached more slowly and has a slight repellent effect (as
in the high-density unstructured environment).

Why are compositional languages so strongly preferred when there is a bottle-
neck on transmission? Holistic languages cannot persist in the presence of a
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Fig. 13. The dynamics of language change in low-density environments. Arrows represent the
direction and magnitude of change of languages of a given level of compositionality, c. The origin
of the arrow gives the compositionality of the language at time t. The direction and length of
the arrow corresponds to the mean directionality and magnitude of change in compositionality for
those systems at time t+1. (a) Dynamic in the low-density unstructured environment. There is an
attractor, around c = 0.7, corresponding to the peak of the distribution given in Fig. 11. Magnitude
of change decreases as this attractor is approached. (b) Dynamics in the low-density structured
environment. There is consistent movement towards the attractor at c = 1, corresponding to the
peak in Fig. 11. Again, magnitude of change decreases as this attractor is approached.
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Fig. 14. The dynamics of language change in high-density environments. In both the unstructured
(a) and structured (b) environments there is overall movement towards c = 1, corresponding to
the peaks of the distributions given in Fig. 12. However, in the unstructured environment the
speed of movement towards this point is lower, and there is a slight tendency to be repelled from
c = 1. In the structured environment, movement towards the attractor is more rapid and there is
no significant repulsion.

bottleneck. The meaning-signal pairs of a holistic language have to be observed to
be reproduced. When a learner only observes a subset of the holistic language of the
previous generation then certain meaning-signal pairs will not be preserved — the
learner, when called upon to produce, will produce some other signal for that mean-
ing, resulting in a change in the language. In contrast, compositional languages are
generalizable, due to their structure, and remain relatively stable even when the
learner observes a small subset of the language of the previous generation. Over
time, language adapts to the pressure to be generalizable. Eventually, particularly
when the environment is structured, the language becomes highly compositional,
highly generalizable and consequently highly stable.

In a structured environment the advantage of compositionality is at a maximum.
As discussed above, in such environments meanings share feature values with several
other meanings. A language mapping these feature values to a signal substring
is highly generalizable. When the environment is unstructured, meanings share
feature values with few or no other meanings. In the most extreme case, a meaning
may have a value for a particular feature which no other meaning has. The signal
associated with that meaning cannot then be deduced from observations of the
signals associated with other meanings, and has to be observed to be learned.
Consequently, compositional language in an unstructured environment is less stable
through the transmission bottleneck.

6. Conclusions

We have presented a simulation model which demonstrates that compositional lan-
guage can emerge from initially non-compositional language through purely cultural
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processes. Compositional language emerges when there is a bottleneck on cultural
transmission — compositionality is an adaptation by language which allows it to
slip through the transmission bottleneck. The advantage of compositionality is at
a maximum when language learners perceive their world as structured — when
the objects in the environment relate to one another in structured ways then a
generalizable, compositional language is highly adaptive.

We are not, however, arguing that compositionality can be understood purely in
terms of cultural evolution. The complex adaptive systems of learning and biological
evolution still have a role to play. In the models described here, after exposure to
a small set of utterances a learner’s knowledge remains fixed. In the real case,
however, an individual’s knowledge and use of language is constantly changing and
adapting, and this may impact on cultural evolution.

Similarly, we have offered no account of the biological evolution of the semantic
and linguistic capacities of our simulated agents. Whereas the standard adapta-
tionist model would hypothesize a complex, language-specific component of the
brain designed to deal with compositionality, we make much weaker assumptions —
a simple associative learning mechanism, in combination with structured semantic
representations and a capacity to infer the communicative intentions of others, is
sufficient to allow the cultural evolution of compositional language. It is not clear
that these capacities are language specific, and an evolutionary account of their
origins and development might be domain-general or exaptationist in flavor. The
interaction between the evolution of this mental capacity and the ongoing cultural
evolution of language is an exciting topic for future research, and computational
modeling techniques will continue to be an invaluable tool in such endeavors.
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