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Abstract

Human language is unique among the communication systems of the natural world. The vocabulary of human language is unique

in being both culturally transmitted and symbolic. In this paper I present an investigation into the factors involved in the evolution

of such vocabulary systems. I investigate both the cultural evolution of vocabulary systems and the biological evolution of learning

rules for vocabulary acquisition. Firstly, vocabularies are shown to evolve on a cultural time-scale so as to fit the expectations of

learners—a population’s vocabulary adapts to the biases of the learners in that population. A learning bias in favour of one-to-one

mappings between meanings and words leads to the cultural evolution of communicatively optimal vocabulary systems, even in the

absence of any explicit pressure for communication. Furthermore, the pressure to conform to the biases of learners is shown to

outweigh natural selection acting on cultural transmission. Human language learners appear to bring a one-to-one bias to the

acquisition of vocabulary systems. The functionality of human vocabulary may therefore be a consequence of the biases of human

language learners. Secondly, the evolutionary stability of genetically transmitted vocabulary learning biases is investigated using

both static and dynamic models. A one-to-one learning bias, which leads to the cultural evolution of optimal communication, is

shown to be evolutionarily stable. However, the evolution de novo of this bias is complicated by the cumulative nature of the

cultural evolution of vocabulary systems. This suggests that the biases of human language learners may not have evolved specifically

and exclusively for the acquisition of communicatively functional vocabulary.

r 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Sophisticated communication systems abound in the
natural world. Bees communicate the distance and
direction of nectar sources to other bees using an
elaborate dance (von Frisch, 1974). Various species of
birds use alarm calls to warn conspecifics of approach-
ing predators (for example, chickens, see Evans et al.,
1993), and songs to mark out territory and attract mates
(Catchpole and Slater, 1995). Similarly, alarm calls are
used by monkeys (for example, vervet and Diana
monkeys, see Cheney and Seyfarth, 1990; Zuberbuhler
et al., 1997) and certain species of gibbon use song for
territory maintenance, pair bonding and sexual adver-
tisement (Raemaekers et al., 1984). Chimpanzees use a
system of facial expressions and vocalizations to per-
form social functions (de Waal, 1989), augmented with a
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system of gestural communication (Tomasello and Call,
1997).

Among this dizzying array of communicative beha-
viour, human language appears to be unique—more
sophisticated, more expressive, more flexible, more
diverse. Hockett (1960) began the trend of identifying
design features of language, in an effort to characterize
the aspects of language which distinguish it from non-
human communication systems. Some important design
features of language are:

Recursion: An expression of a particular type can be a
subpart of a larger expression of that type. For example,
sentences can be embedded within other sentences, as in
[S I think [S he is rude]].

Compositionality: The meaning of an expression is a
function of the meaning of its parts and the way in
which they are combined. For example, the meaning of
the expression ‘‘John kicked Mary’’ is dependent on
the meanings of the subparts ‘‘John’’, ‘‘kick’’, the ‘‘-ed’’
suffix and ‘‘Mary’’.



ARTICLE IN PRESS
K. Smith / Journal of Theoretical Biology 228 (2004) 127–142128
Symbolicism: The form of a signal is arbitrarily
related to its meaning. For example, there is no iconic
relationship between the English word ‘‘apple’’ and the
fruit it denotes.

Cultural transmission: Language is learned from the
behaviour of other individuals, as opposed to being
genetically transmitted.

We see echoes of these design features in non-human
communication systems. The repeated subunits of bird
song and the long calls of the gibbon hint at a weak
form of conjunctive recursion. Bee dance is composi-
tional—the meaning of the dance (the direction and
distance to the food source) is dependent on the angle
(for direction) and length (for distance) of the straight
portion of the dance. Alarm call systems are generally
taken to be symbolic, in that there is an arbitrary
association between the form of an alarm call and the
predator that it denotes. Learning plays some role in
bird song formation. However, it has been argued (in,
e.g., Tomasello et al., 1997; Tomasello, 1999) that true
cultural transmission does not exist in non-human
species, and, with particular relevance to the study of
language, that there is no convincing evidence that
acoustic experience plays any role in the development of
call structure in primates (Hauser, 1996, p. 315 in
particular), although it may play some role in determin-
ing the response individuals make to calls, and also serve
to narrow the contexts in which calls are used (Seyfarth
and Cheney, 1997).

These design features of human language therefore
make it unique among naturally occurring communica-
tion systems—while we may draw parallels with the
design features of non-human communication systems,
the co-occurrence and ubiquity of these features singles
human language out. The emergence of this unique
communication system has been described as a major
transition in evolution (Maynard Smith and Szathm!ary,
1995)—the genesis of a new system of information
transmission.

How did language come to be, and why is it so
different from the communication systems of non-
human species? In an attempt to demonstrate that
well-understood processes of natural selection can be
extended to an account of the evolution of language,
Martin Nowak and colleagues have begun to expand the
standard assumptions of evolutionary game theory and
develop mathematical and computational models for
understanding the evolution of language and the
language faculty (see, e.g., Nowak et al., 1999, 2001;
Nowak and Komarova, 2001). A similar effort, primar-
ily based around computational modelling techniques,
has been underway in the field of evolutionary
linguistics for some time (see, e.g., Hurford, 1989,
1991; Kirby, 2002b).

A common element of these models has been a
primary focus on the evolutionary dynamics arising
from the cultural transmission of language. It has been
shown that the cultural transmission of linguistic form,
under circumstances where learners are exposed to input
data which underspecifies the target language, leads to
the emergence of recursive and compositional language
(Kirby, 2002a; Brighton, 2002). Using a rather different
approach, it has been shown that natural selection
acting on cultural transmission can lead to the cultural
evolution of lexical or grammatical coherence within a
population (Nowak et al., 1999, 2001).

In this paper I will present research relating to the
cultural evolution of vocabulary systems, and the
biological evolution of vocabulary acquisition strategies.
The research outlined here therefore represents an
investigation into some of the pressures at play in the
evolution of a communication system which is culturally
transmitted and symbolic—two of the design features of
human language. This paper centres around a computa-
tional model which can be considered as an extension of
the model introduced in Nowak et al. (1999) and further
analysed in, e.g. Komarova and Nowak (2001). Nowak
et al. assume that the cultural evolution of vocabulary
systems is driven by natural selection acting on cultural
transmission. I consider an alternative pressure acting
on vocabulary systems, arising from the biases of
learners. I then model the biological evolution of such
learning biases.

In Section 2 I introduce the model of vocabulary and
vocabulary acquisition. In Section 3 I discuss a range of
vocabulary acquisition biases. In Section 4 I compare
the forces arising from learner biases and natural
selection of cultural variants. The behaviour of popula-
tions experiencing both pressures is primarily deter-
mined by the biases of language learners—natural
selection is a secondary force. Finally, in Section 5 I
examine the evolution of learning biases.
2. Vocabulary, communication, and acquisition

A vocabulary is considered to be a system mapping
between a set of meanings M ¼ fm1;m2;y;mjMjg and a
set of signals S ¼ fs1; s2;y; sjSjg: Meanings and signals
are unstructured, atomic units. A linguistic agent is
defined by an association matrix A; an jMj � jSj matrix.
The entry aij from this matrix gives the strength of the
association between the ith meaning mi and the jth
signal sj : The production and reception behaviour of an
individual is determined by that individual’s association
matrix.

During production, an individual is prompted with a
meaning and required to produce a signal. When
prompted with the meaning mi; the individual produces
a signal according to the production function pðmÞ:

pðmiÞ ¼ sðargmaxj ðaij ÞÞ; ð1Þ
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i.e. the agent produces the signal which has the strongest
association with meaning i: In the event that multiple
associations have equal weight, one is selected at
random from among the equally weighted alternatives.
By a similar process, on receiving the signal sj the agent
interprets that signal according to

rðsjÞ ¼ mðargmaxiðaij ÞÞ: ð2Þ

An individual’s A matrix therefore defines that indivi-
dual’s production behaviour p and reception behaviour
r: If p is interpreted as a probabilistic function pðsj jmiÞ;
which gives the probability of producing signal sj

given meaning mi; and r is similarly interpreted as a
probabilistic function rðmi jsjÞ then the communicative
accuracy between a speaker P using production function
pðsjmÞ and a hearer R using reception function rðmjsÞ is
given by

caðP;RÞ ¼

PjMj
i¼1

PjSj
j¼1 pðsj jmiÞrðmi jsjÞ

jMj
ð3Þ

assuming all meanings are equally frequent and equally
important. In other words, the communicative accuracy
between speaker P and receiver R is the average
probability of the speaker producing a signal for a
given meaning ms; and the hearer interpreting the
received signal as meaning mh ¼ ms: The two-way
communicative accuracy between two individuals A

and B acting in turn as speaker and hearer is then

ca0ðA;BÞ ¼
caðA;BÞ þ caðB;AÞ

2
: ð4Þ

The k-th individual’s communicative accuracy with
respect to a population of N individuals is given by

caðkÞ ¼
1

N 
 1

Xl¼N

l¼1

ca0ðk; lÞ

 !
; ð5Þ

where lak; i.e. the average communicative accuracy
of acting as speaker and hearer with each of the other
N 
 1 members of the population.

An individual arrives at its A matrix by sampling the
observable linguistic behaviour of other members of
the population. We consider observable behaviour to be
meaning–signal pairs. Based on the observation of
meaning mt paired with signal su; a learner updates its
A matrix according to

Daij ¼

a if i ¼ t and j ¼ u;

b if i ¼ t and jau;

g if iat and j ¼ u;

d if iat and jau;

8>>><
>>>:

ð6Þ

a therefore specifies how to change the strength of the
association between meanings and signals which co-
occur, b specifies how to change the association strength
between a meaning and a signal where the meaning
occurs in the absence of that particular signal, and so
on. The four-tuple ða b g dÞ defines a learning rule, which
specifies how the association matrix should be changed
according to observed linguistic behaviour.
3. Learning biases, synonymy and homonymy

An optimal communication system is a system which
will lead to perfect communication between two
individuals using it (ca0ðA;BÞ ¼ 1 if individuals A and
B use the optimal system). What properties must a
learning rule have if an individual using that learning
rule is to be capable of acquiring an optimal commu-
nication system? It has been shown (Smith, 2002a) that,
assuming jMj ¼ jSj; learning rules capable of acquiring
optimal systems must obey the property aþ d > bþ g;
i.e. in order to acquire an optimal system, associations
between meanings and signals which appear together or
are absent together must be strengthened more than
those between meanings and signals which do not co-
occur. For the purposes of this paper, I will restrict
myself to those rules which obey this property—optimal
communication should at least be a possibility for all
learners.

There is still a large range of variation within this set
of learning rules. If we restrict ourselves to the case
where a;b; g; dAf
1; 0; 1g there are 31 rules which meet
the property given above (Smith, 2002a). Each of these
rules has a learning bias—for each rule, vocabularies
with certain properties are easier or harder to learn
than other vocabularies. We are interested in learning
bias with respect to two properties: synonymy and
homonymy.

Synonymy occurs where one meaning can be ex-
pressed with two or more words (signals). It is debatable
whether true synonymy occurs at all in language—
different words tend to convey different meanings, even
if that difference is rather subtle (for example, the
difference between ‘‘buy’’ and ‘‘purchase’’ is largely one
of formality). In terms of meaning–signal mappings,
synonyms are one-to-many mappings from meanings
to signals.

The biases of A matrix learning rules with respect to
synonymy is determined by the relationship between a
and b: When a > b; the learning rule is biased against
synonyms. Consider a 2� 3 association matrix trained
on the meaning–signal pair /m1; s1S: Assuming asso-
ciation weights of 0 prior to learning, the matrix after
learning will be

a b b

g d d

 !
: ð7Þ

a > b ensures that only s1 will be produced for m1—one-
to-many mappings from meanings to signals are
avoided. If apb then synonyms are not avoided. If a ¼
b then s1; s2 and s3 will produced with equal probability
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for m1: If aob then s2 and s3 will be produced for m1: In
either case, synonymy (a one-to-many mapping from
meanings to signals) is introduced.

Homonymy occurs where multiple distinct meanings are
expressed using a single word, and is rife in language—
most words in a dictionary have several possible meanings,
some of which are apparently not related. In terms of
meaning–signal mappings, homonyms are many-to-one
mappings from meanings to signals.

The biases of learning rules with respect to homo-
nymy is determined by the relationship between g and d:
When d > g; the learning rule is biased against homo-
nymy. Consider the A matrix given in 7 above, formed
on the basis of the observation of the pair /m1; s1S:
When d > g s1 will not to be produced for m2—many-to-
one mappings from meanings to signals are avoided.
d ¼ g leads to neutrality with respect to homonymy—s1
may be produced for both m1 and m2: Finally, dog
leads to a bias in favour of many-to-one, homonymous
mappings—m2 maps to s1; which is associated with m1

in the observed meaning–signal pair.
As stated above, for an optimal system to be

learnable, the constraint aþ d > bþ g must hold.
However, when jSj > jMj the bias against synonymy
(a > b) must also hold. The bias against synonymy is
therefore critical: without it, optimal systems are
unlearnable, assuming that there are more possible
signals than meanings.1 The bias against homonymy is
not critical for optimal systems to be learnable,
assuming noise-free transmission. However, it will be
demonstrated later in the paper that the bias against
homonymy becomes important in the context of iterated
cultural transmission—learners should, ideally, be
biased against synonyms and against homonyms, and
in favour of one-to-one mappings between meanings
and signals.
4. The cultural evolution of vocabulary systems

In this section I will explore two possible pressures
driving the cultural evolution of vocabulary systems.
These pressures arise from (1) the biases of language
learners, and (2) natural selection.

The biases of learners lead to a pressure which favours
variants of the culturally transmitted trait which con-
form to the learner biases—in other words, if learners
prefer to acquire a particular cultural characteristic
1The cardinality of both sets in the real world is constrained by

factors such as the number of semantic distinctions which can be made

(which restricts jMj) and the maximum practical word length (which

restricts jSj). It is far from clear how the cardinality of these two sets

should then be set in the model. For the purposes of this paper I will

assume that jSjXjMj: The case where jSjojMj would require the

ability to prioritize over meanings, which is not a factor in this model.

This case will therefore be ignored.
then, over time, that characteristic will come to
dominate the population to the exclusion of other
characteristics. This has been termed cultural selection

(Cavalli-Sforza and Feldman, 1981) or directly biased

transmission (Boyd and Richerson, 1985). With respect
to the cultural evolution of vocabulary, we should
expect that the biases of learners will result in a
pressure for vocabulary systems which conform to those
biases.

The second pressure arises from selection acting on
mature, enculturated individuals. If we assume that
individuals with different cultural variants differ in their
probability of surviving and acting as models for
learners, or differ in their probability of being chosen
as models by learners, then those cultural variants which
have the highest probability of being transmitted to the
next generation will tend to increase in number. Boyd
and Richerson (1985) term this natural selection of

cultural variants. With respect to the cultural evolution
of vocabulary, if we accept the view espoused by Pinker
and Bloom (1990) or Nowak et al. (1999) that natural
selection can see the consequences of communication
then we should expect natural selection of cultural
variants to favour communicatively functional vocabu-
lary systems.

The goal of this section is to address two questions.
Firstly, do learner biases result in significant cultural
evolution, and what kind of communication systems
evolve? Secondly, can natural selection acting on
cultural transmission optimize the communicative func-
tionality of a population’s vocabulary?

4.1. The iterated learning model

To investigate these question I will use an iterated
learning model (or ILM, a term introduced in Brighton
and Kirby, 2001). The ILM is an idealized model of the
cultural transmission of language. In the ILM indivi-
duals acquire their linguistic competence based on
observations of the linguistic behaviour of other
individuals. In this paper the linguistic behaviour of
interest is a vocabulary system, and individuals are
modelled using the association matrix model given
in Section 2. For all results presented in this paper,
there are 10 meanings and 10 signals ðjMj ¼ jSj ¼ 10Þ:
Assuming a generational model of population turnover,
the ILM proceeds as follows:

Initialization: Create an initial population at genera-
tion 0, popg¼0; of N individuals.2 Each individual has an
A matrix of the appropriate size with initial association
weights of 0. All initial individuals use a particular
learning rule, as discussed below.
2N ¼ 200 for all ILMs outlined in this paper.
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Iteration: The iteration process consists of five steps:

1. Evaluate the communicative accuracy of every
member of popg according to Eq. (5).

2. Create a new population popgþ1 of N individuals,
each with initial association weights of 0 and the
same learning rule as the rest of the population.

3. Each member of popgþ1 picks e cultural parents3 from
popg: Cultural parents are either chosen at random,
or are selected according to their evaluated commu-
nicative accuracy. In the second condition, the
probability of individual i being selected to act as a
cultural parent is caðiÞ=

P
j cað jÞ:

4. Each member of popgþ1 observes and learns from the
linguistic behaviour of its cultural parents. The
learner observes the complete set of meaning–signal
pairs generated by each of its cultural parents and
updates its A matrix according to its learning rule.
Meaning–signal pairs are generated by each parent
for every mAM; according to the production process
outlined in Section 2. Noise is added to each
meaning–signal pair4 with probability r:

5. Replace popg with popgþ1: Return to 1.

There are therefore three parameters of variation:
(1)
3e

qual
4 I

repla
5T

cont

Olip

(200
The learning rule that individuals in the population
use.
(2)
 The manner in which cultural parents are chosen.
This can be at random, or dependent on the
communicative accuracy of potential cultural par-
ents. In the latter case there is natural selection
acting on cultural transmission, in favour of
functional vocabulary systems.
(3)
 r; the probability of noise.
will present results for three learning rules. All of these
rules satisfy the constraint aþ d > bþ g; and individuals
using these rules are therefore capable of acquiring optimal
vocabularies. Furthermore, for all three rules a > b; and
learners using these rules are therefore biased against
acquiring synonyms. The rules vary in terms of their biases
with respect to homonymy. The three learning rules are:
(1)
 The hþ learning rule, biased in favour of homo-
nymy. For this rule, a ¼ 1; b ¼ 
1; g ¼ 1; d ¼ 0:
(2)
 The h? learning rule, neutral with respect to
homonymy. For this rule, a ¼ 1;b ¼ 0; g ¼ 0;d ¼ 0:
(3)
 The h
 learning rule, biased against homonymy.
For this rule, a ¼ 1;b ¼ 
1; g ¼ 
1; d ¼ 0:5
¼ 3 for all ILMs outlined in this paper. Different values of e yield

itatively similar results.

n order to add noise to a meaning–signal pair /mi ; sjS; sj is

ced with a randomly-selected skAS; where kaj:
his learning rule implements ‘lateral inhibition’, mentioned in the

ext of the evolution of vocabulary systems in, for example,

hant (1999), Steels and Kaplan (2002) and Vogt and Coumans

3).
For the results presented in the following two sections,
each population is initialized with one of these three
rules, and all individuals at subsequent generations use
the same learning rule as the initial population.
Populations are therefore homogeneous in this re-
spect—we are concerned for the moment in the cultural
evolution of vocabulary systems in a population with a
shared and fixed learning capacity.

4.2. Learning bias alone

The first step is to identify the consequences of the
biases of various learning rules in the context of iterated
cultural transmission. To this end, runs of the ILM
were carried out for each of the three learning rules
outlined above. Various levels of noise were used
ðrAf0; 0:05; 0:1gÞ: For all the results presented in this
section, learners select their cultural parents at random
from among the individuals in the previous generation—
an individual’s communicative success does not influ-
ence its chances of acting as a cultural parent, and
therefore there is no natural selection acting on cultural
transmission.

Fig. 1 presents the results of the computational
simulations. Ten runs of the ILM were carried out for
each set of conditions. The graphs plot the mean and
standard deviation of average communicative accuracy
ðð1=NÞ

P
i caðiÞÞ in each population, averaged over the 10

runs, against time in generations. Three results are
apparent from this figure.
(1)
 For populations of hþ learners, communicative
accuracy remains at chance levels. This reflects the
fact that populations of such individuals converge
on a fully homonymous communication system,
where every meaning is expressed using the same
signal.
(2)
 For populations of h? learners, communicative
accuracy reaches intermediate levels. Higher levels
of noise slightly reduce the final levels of commu-
nicative accuracy reached. The performance of h?
learners reflects their convergence on a partially
ambiguous vocabulary system, as discussed below.
(3)
 For populations of h
 learners, communicative
accuracy reaches optimal levels. This reflects the fact
that these populations converge on shared, one-to-
one mappings between meanings and signals. The
addition of noise does not prevent such systems
emerging.
The biases of individual learners therefore influence the
behaviour of the population as a whole—as predicted by
Cavalli-Sforza and Feldman (1981) and Boyd and
Richerson (1985), populations converge on cultural
characteristics which match their learning biases. In
populations of hþ learners, where individuals are
biased in favour of acquiring many-to-one, maximally
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Fig. 1. Cultural evolution as a consequence of learner biases, with

various levels of noise. (a) gives results for r ¼ 0; (b) gives results for
r ¼ 0:05; (c) gives results for r ¼ 0:1:
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homonymous vocabularies, such systems emerge over
iterated learning events, resulting in chance levels of
communicative accuracy. It has been shown that
populations of hþ learners are in fact incapable of even
preserving an optimal initial communication system
when r > 0—noise during transmission introduces
many-to-one mappings, which preferentially spread
through populations of hþ learners, destroying any
optimal initial system (Smith, 2002a).

In populations of h
 learners, individuals are biased
in favour of acquiring one-to-one mappings between
meanings and signals, and consequently a shared, one-
to-one system of mappings evolves over time, even in the
presence of noise. Such systems lead to optimal levels of
communicative accuracy.

Individuals who learn using a h? rule are neutral with
respect to homonyms—many-to-one mappings from
meanings to signals are as learnable as one-to-one
mappings. Consequently, the behaviour of populations
of h? learners is dependent on the initial, random system
of meaning–signal mappings embodied in the meaning–
signal pairs produced by the initial population. This
random assignment will become shared among the
population through the process of iterated learning.
While h
 learners remove the many-to-one elements of
the initial random system, and hþ learners add more
homonyms, h? learners simply preserve the initial level
of homonymy—the population’s eventual communica-
tion system will embody the same number of many-to-
one mappings as the initial random behaviour. Conse-
quently, the populations converge on systems yielding
the communicative accuracy we would expect given a
random assignment of signals from S to meanings from
M with replacement (from Oliphant, 1999):

caE 1
 1

1

jSj

	 
jMj
 !

: ð8Þ

For jMj ¼ jSj ¼ 10 this evaluates to a communicative
accuracy of approximately 0:651: The average final
communicative accuracy for the runs where r ¼ 0 and
r ¼ 0:05 are 0:66 and 0:656; respectively, which corre-
sponds closely to this expected level of communicative
accuracy. The average final communicative accuracy for
the case where r ¼ 0:1 is 0.616; reflecting the fact that a
high level of noise introduces further many-to-one
mappings, which are not eliminated by h? learners.

To summarize, the biases of language learners are
important. The population’s vocabulary system will be
shaped by those learner biases, with systems which
conform to the biases of individual learners being more
likely to be successfully transmitted, and therefore
coming to dominate the population.

4.3. Learning bias plus natural selection

From the perspective of functionality of a popula-
tion’s vocabulary system, having the correct learning
bias (a homonymy-avoiding bias) is important when
individuals learn from randomly selected cultural
parents. But can the incorrect learning bias be remedied
by natural selection of cultural variants? In other words,
if learners preferentially acquire the communica-
tion systems of successful communicators, can the
populations converge on optimal communication sys-
tems in spite of a suboptimal learning bias?
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To investigate this question, runs of the ILM were
carried out using the same three learning rules as
described above. Various levels of noise were used
ðrAf0; 0:05; 0:1gÞ: For all ILMs presented in this section,
learners select their cultural parents according to the
communicative accuracy of those potential parents—the
probability of an individual being selected to act as a
cultural parent is given by caðiÞ=

P
j cað jÞ:

Fig. 2 presents the results of the computational
simulations. As before, 10 runs of the ILM were carried
out for each set of conditions.

Three results are apparent from this figure:

generation

1

(a)
(1)
0.8

h- learners
Populations of hþ learners continue to converge on
fully homonymous communication systems, yield-
ing chance levels of communicative accuracy,
despite natural selection.
h? learners
(2)
0.4

0.6

ca
Populations of h? learners continue to converge on
systems which yield intermediate levels of commu-
nicative accuracy, although the addition of natural
selection leads to slightly increased average com-
municative accuracy.
0.2
h+ learners
(3)
(b)

0
0 20 40 60 80 100

generation
Populations of h
 learners continue to reach
optimal levels of communicative accuracy, reflect-
ing the emergence of a shared, one-to-one mapping
between meanings and signals.
(c)

0
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Fig. 2. Cultural evolution as a consequence of learner biases and

natural selection of cultural variants, with various levels of noise.

(a) gives results for r ¼ 0; (b) gives results for r ¼ 0:05; (c) gives results
for r ¼ 0:1:
Populations of hþ and h
 learners essentially behave in
the same way regardless of whether increased commu-
nicative success impacts on an individual’s chances of
becoming a cultural parent or not. Natural selection
does impact on the performance of populations of h?
learners, acting to eliminate individuals using vocabul-
aries with higher levels of homonymy from the pool of
potential cultural parents. The addition of noise also
plays an important role in this process—as with natural
selection acting on genetic transmission, natural selec-
tion of cultural variants requires variation within the
population (Boyd and Richerson, 1985), and noise acts
to reintroduce the variation that selection eliminates. It
may be that stronger selection pressure or a certain noise
level can improve the performance of populations of h?
learners further still.

4.4. Summary

To summarize the results presented in this section, the
biases of learners have consequences for a culturally
transmitted vocabulary system, and learning bias is the
key determinant of cultural evolution even when natural
selection acts on cultural transmission. Populations of
learners with absolutely the wrong learning bias
(the hþ bias) converge on communication systems
which yield very poor communicative accuracy, regard-
less of whether they learn from randomly chosen
cultural parents, or selectively from the population’s
better communicators. Populations of learners with a
homonymy-neutral learning bias (h? learners) converge
on intermediate levels of communicative accuracy,
although natural selection of cultural variants can
improve the functionality of communication systems in
such populations, given appropriate levels of noise.
Finally, populations of learners with a bias in favour of
one-to-one mappings (h
 learners) always converge on
optimal communication systems, regardless of noise and
even without the help of natural selection. A similar
result, for a different learning model, is presented in
Smith (2002b).
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There are in fact good reasons for expecting learning
bias to be a more powerful force than natural selection
of cultural variants. Natural selection requires variation
in the population—natural selection becomes irrelevant
in a completely homogeneous population. Cultural
selection resulting from learning bias is also dependent
on variation to a certain extent—for example, in a
population of hþ learners converged on an optimal,
one-to-one vocabulary system, variation must be
introduced before the learner bias in favour of homo-
nymy can take effect. However, learning bias can also
introduce variation. In a population of h
 learners
converged on an all-to-one, maximally homonymous
vocabulary, variation is immediately introduced—no
h
 learner can acquire such a system, and will acquire
some other system, immediately introducing variation.
Furthermore, the variation introduced by learning bias
tends to be the right kind of variation. h
 learners will
tend to introduce new one-to-one mappings, which is
the right kind of variation in terms of their learning bias,
and hþ learners will introduce new many-to-one
mappings, the type of mapping they prefer to acquire.
Biased learning therefore introduces variation which it
itself can feed off, and furthermore introduces variants
which are likely to persist. Natural selection has no such
advantage—variation must be provided by some other
source (mutation, or errors during learning), and
variants which are introduced are not guaranteed to be
the kind which will persist (notwithstanding the
debate on directed mutation, see, e.g., Sniegowski and
Lenski, 1995).
6 In the interest of brevity I will omit the analysis for the case when

cultural transmission is noise-free. Firstly, noise-free transmission is

unlikely. Secondly, the analysis for noise-free transmission produces

results which are broadly similar to those for noisy transmission.
5. The evolution of learning bias

The results outlined in the previous section indicate
that having the right learning bias is crucial—in
populations with the wrong learning bias, functional
communication systems never emerge, whereas in
populations with the appropriate learning bias, optimal
systems always evolve through cultural processes.

Can the appropriate learning bias evolve for the
communicative payoff it offers? To be more precise, will
natural selection acting on genetic transmission lead to
the evolution of learning biases which result, through
cultural processes, in the emergence of optimal commu-
nication systems?

5.1. A static analysis

The first step in answering this question is to identify
which learning biases are evolutionarily stable (May-
nard Smith and Price, 1973; Harley, 1981; Maynard
Smith, 1982)—which learning biases are such that a
population adopting that learning bias will not be
invaded by some other learning bias under the influence
of natural selection? This breaks down into two sub-
questions: (1) what language will a population consist-
ing entirely of individuals with a particular learning bias
have?; (2) what level of communicative accuracy will
some individual inserted into such a population have?

Question 1 has been addressed in Section 4. Popula-
tions of hþ learners converge on fully homonymous
vocabularies, yielding chance levels of communicative
accuracy. Populations of h? individuals converge on
vocabularies exhibiting some intermediate level of
homonymy, yielding intermediate levels of communica-
tive accuracy. Populations of h
 individuals converge
on unambiguous, one-to-one vocabularies, yielding
optimal communicative accuracy.

Assuming that there is noise on cultural transmission
ðr > 0Þ;6 a static analysis suggests that there are two
evolutionarily stable learning biases—h? and h 
 : The
hþ bias cannot be evolutionarily stable. A population of
hþ individuals will have a maximally homonymous
communication system, and chance levels of commu-
nicative accuracy. Any h? learners inserted into this
population will acquire this system, and will therefore
attain equal levels of communicative accuracy—h?
individuals can invade a hþ population by drift. Any
h
 learners inserted into this population will be unable
to acquire the population’s vocabulary, due to their bias
against homonymy, and will acquire a random system of
mappings between meanings and signals. However, this
random system will yield the same (chance) level of
communicative accuracy as the hþ population’s maxi-
mally ambiguous system, so h
 individuals can also
invade a hþ population by drift.

A population of h? individuals will converge on a
partially homonymous system. Any hþ individuals
introduced into such a population will, due to their
bias in favour of homonyms and noise on transmission,
fail to learn the partially homonymous system and
instead acquire a more homonymous vocabulary.
Consequently, hþ individuals will have lower commu-
nicative accuracy and will be selected against. h

individuals introduced into h? populations will suffer
the opposite problem—they will be unable to acquire
certain highly homonymous parts of the population’s
vocabulary. They will therefore have lower commu-
nicative accuracy than h? individuals, and will be
selected against. It therefore seems, under a static
analysis, that the h? bias is evolutionarily stable.

Is the h
 bias evolutionarily stable? h
 populations
will converge on unambiguous vocabularies. Any hþ
individuals introduced into such a population will
preferentially acquire any homonymous mappings
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Table 1

Static numerical analysis, r ¼ 0:1

Majority genotype Minority genotype

hþ h? h


hþ 0.1 0.1 0.1

h? 0.45 0.63 0.61

h
 0.88 0.98 1.0

Entries give average values (over 1000 tests) of ca0ðA;BÞ; where

individual A has the minority genotype and B has the majority

genotype, both being exposed to the same vocabulary. The case where

the minority and majority genotypes are the same shows the expected

communicative accuracy accruing to an individual with the same

genotype as the majority genotype—this is the baseline value which

determines whether mutant genotypes will be selected for or against. h?
and h
 are both evolutionarily stable.

7N ¼ 200 for all EILMs outlined in this paper.
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introduced by noise, will suffer reduced communicative
accuracy and will be selected against. h? individuals will
acquire (neutrally, rather than preferentially) homon-
ymous mappings introduced by noise and will also be
selected against. The h
 bias should therefore also
constitute an ES learning bias.

A numerical analysis confirms these expectations.
Table 1 gives the expected communicative accuracies of
an infinitely small proportion of individuals with a
particular learning bias after exposure to the vocabulary
system of a population of individuals with another
learning bias when communicating with individuals who
possess the majority learning bias. The majority
population is assumed to have converged on the type
of vocabulary system which its bias favours (fully
homonymous systems for populations of hþ learners,
partially homonymous systems for populations of h?
learners, unambiguous vocabularies for populations of
h
 learners). The results in the tables are based on 1000
evaluations for each possible combination of majority
and minority genotype. As can be seen from the table,
hþ does not constitute an ES learning bias—individuals
with some other learning bias communicate as well as
individuals with the majority learning bias, and there-
fore will not be selected against. h? and h
 are
evolutionarily stable—individuals with some other
learning bias introduced into populations in which these
rules are in the majority suffer from reduced commu-
nicative accuracy, and will be selected against.

5.2. A dynamic analysis

Is this static analysis sufficient? There are two reasons
for thinking that it is not. Firstly, the payoff associated
with the different learning biases is frequency-depen-
dent—it may be that, given a certain proportion of
invading mutants, biases which appear to be evolutio-
narily stable in the static analysis given above are in fact
unstable. Frequency dependence is common in social
coordination problems (see, e.g., Cavalli-Sforza and
Feldman, 1983).

Secondly, and more significantly, cultural evolution in
populations is cumulative, and the payoff associated with
different learning biases is therefore time dependent.
Vocabularies develop over time in populations, and the
communicative payoff a particular individual receives will
be dependent on the vocabulary system that it is
attempting to acquire, which is in turn dependent on
the learning biases of individuals in preceding generations
of the population. To take a concrete example, the
communicative payoff accruing to an individual with the
h
 bias will be dependent on the learning biases which
have been present in the population it is born into, and
how long those biases have been present. A h
 individual
born into a population which has previously contained
only hþ learners will have low communicative accuracy
when communicating with another h
 individual born
into the same population—both will use random systems,
due to their difficulty in learning completely ambiguous
vocabularies, and will therefore communicate with
chance levels of accuracy. Two h
 individuals in the
initial generation of a fully h
 population will be in a
similar position—as there will be no established vocabu-
lary in a such a population, they will be unlikely to arrive
at overlapping vocabularies. However, another two h

individuals born into the same population a few
generations later will be in a very different situation—
the population’s vocabulary will have been shaped, by the
biases of the previous generations, so as to fit their own
learning bias. Consequently, they will communicate more
successfully with one another.

Does the cumulative effect of cultural evolution alter
the picture when we consider which learning strategies
are evolutionarily stable? To investigate this question,
the ILM described in Section 4 was modified to allow
the genetic transmission of learning biases to be
investigated. In the evolutionary iterated learning model
(EILM) the learning rule an individual uses is con-
sidered to be genetically transmitted, and populations
can be genetically heterogeneous. The EILM proceeds
as follows:

Initialization: Create an initial population popg¼0 of
N individuals.7 Each individual has an A matrix of
appropriate size with initial association weights which
are either (a) set so as the individual produces some
predefined vocabulary V or (b) all zero, so as the agent
produces every meaning–signal pair with equal prob-
ability. The proportion of the initial N individuals which
have the hþ; h? and h
 rules is a parameter of variation.

Iteration: The iteration process consists of 5 steps:

1. Evaluate the communicative accuracy of every
member of popg according to Eq. (5).
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Table 2

Dynamic analysis with converged culture, r ¼ 0:1

Majority genotype Minority genotype

hþ h? h


hþ NA 0.1 2 0 0.28 4 4

h? 0.63 0 0 NA 0.68 2 2

h
 0.99 0 20 0.99 0 20 NA

Each cell gives the average final communicative accuracy in the twenty
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2. Create a new population popgþ1 of N individuals with
initial association weights of 0. Each of the N

individuals in popgþ1 inherits its learning rule from
a member of popg: Biological parents are selected
according to their evaluated communicative accu-
racy, with the probability of individual i being
selected to act as a biological parent given by
caðiÞ=

P
j cað jÞ:

3. Each member of popgþ1 picks e cultural parents8 from
popg: Cultural parents are chosen at random.

4. Each member of popgþ1 observes and learns from the
linguistic behaviour of its cultural parents. The learner
observes the complete set of meaning–signal pairs
generated by each of its cultural parents and updates
its A matrix according to its inherited learning rule.
Meaning–signal pairs are generated by each parent for
every mAM; according to the production process
outlined in Section 2. Noise is added to each meaning–
signal pair with probability r:9

5. Replace popg with popgþ1: Return to 1.

Note that an individual’s cultural parents are selected at
random in the EILM—individuals do not preferentially
learn from more successful communicators, nor do
individuals necessarily learn from their biological
parent. As shown in Section 4, natural selection of
cultural variants is weak in comparison to the pressure
arising from learning bias, and in the interests of
simplicity we will therefore not consider natural selec-
tion acting on cultural transmission in the EILM.

There are two main parameters of variation in the
model. Firstly, the initial agents either have a certain
shared pre-configured vocabulary V ; or they have no
shared vocabulary. Secondly, the genetic makeup of the
initial population can be varied. In the following two
sections, the impact of these two parameters will be
explored. In Section 5.2.1, the case where initial popula-
tions are pre-converged on some predefined vocabulary
is explored. In this situation, can a small proportion of
individuals with a particular learning rule invade a
population using some other learning rule? In Section
5.2.2, the case where initial populations have no estab-
lished vocabulary is explored. In this situation, can a small
proportion of individuals with a particular learning rule
invade a population using some other learning rule, and
how does this biological evolution interact with ongoing
cultural evolution in the population?

5.2.1. A dynamic analysis with converged culture

Runs of the EILM were carried out to establish
whether a small proportion of individuals with a
particular learning rule could invade a population using
8As in the ILMs outlined in the previous section, e ¼ 3 for all

EILMs outlined here.
9As for the static analysis, I assume that cultural transmission is not

noise-free—r ¼ 0:1:
some majority learning rule, where that majority
population is pre-converged on some shared vocabulary
V which is optimal in terms of the learning bias of the
majority population. To this end, populations were
initialized such that 90% of individuals in that popula-
tion had genotypes encoding a particular learning rule,
with the remaining 10% having another learning rule.
All possible pairwise combinations of majority and
minority populations were investigated. Majority popu-
lations of hþ individuals are pre-converged on a fully
homonymous vocabulary, majority populations of h?
individuals are pre-converged on partially homonymous
vocabularies, and majority h
 populations are pre-
converged on unambiguous vocabularies.

Twenty runs of the EILM were carried out for each
experimental condition. The results of these simulations
are summarized in Table 2. The tables display the
average final communicative accuracy of the popula-
tions (the average value of ð1=NÞ

P
i caðiÞ for the final

generation of 20 simulations, where each simulation run
was allowed to proceed to a stable state), the number of
populations diverging from the majority genotype (i.e.
the number of successful invasions), and the number of
simulation runs converging on an optimal system.

As can be seen from Table 2, the results for majority
h
 populations are in line with the static model—h

populations are evolutionarily stable. The results for
majority hþ and h? populations deviate somewhat from
the predictions for the static model.

Majority hþ populations can be invaded through drift
by h? individuals (as predicted by the static analysis),
and this does not change the population’s vocabulary
system. hþ populations are also invaded by h

individuals. However, this invasion occurs more fre-
quently, and always results in the invaded population
converging on an optimal vocabulary system. In the
cases where the h
 genotype comes to dominate the
population, the minority subpopulation of h
 learners
fail to acquire the majority vocabulary and instead
converge, through cultural processes, on a partially
shared, somewhat functional vocabulary system, due
to their bias in favour of one-to-one mappings. This
populations, the number of populations converging on the minority

genotype, and the number of populations converging on a commu-

nicatively-optimal vocabulary. Majority h
 populations are comple-

tely stable, while majority h? populations are occasionally invaded by

h
 individuals.



ARTICLE IN PRESS

relative ca

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 50 100 150 200

h-proportion ca h-

generation
50 100 150 200

h-proportion ca h-

generation

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0

relative ca

(a) (b)

Fig. 3. The evolution of learning biases in a majority hþ population converged on a fully homonymous system. (a) shows a run where drift eliminates

h
 learners before the cultural construction process gets underway. (b) shows a run where drift preserves h
 learners in sufficient numbers for their

learning bias to take effect. They are then selected for, and the population converges on an optimal vocabulary system.
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partially shared system gives them higher communicative
accuracy than individuals with the hþ genotype, who
prefer to acquire ambiguous, many-to-one systems.
Consequently, the h
 genotype is selected for and comes
to dominate the population. The population then
converges on a shared optimal communication system
resulting in maximal levels of communicative accuracy.
Due to noise on transmission, hþ learners cannot acquire
such a system and continue to be selected against.

Why does the h
 genotype not always invade
populations of hþ learners? The scenario outlined above
requires that the numbers of h
 learners are maintained
during the early stages of the process of cultural
evolution—prior to arriving at a partially shared,
partially functional communication system, h
 indivi-
duals have no communicative advantage over hþ
individuals. Genetic transmission in the population
during the early stages is therefore random, and the
h
 genotype is prone to elimination through drift. In
cases where this genotype is not eliminated by drift,
individuals with the h
 genotype eventually receive a
communicative payoff and come to dominate the
population. However, when drift drives down the
numbers of h
 individuals the process of cultural
evolution is impeded, and the h
 genotype drifts out
of the population.

This process is illustrated in Fig. 3, which shows two
sample runs of the EILM, with a majority of hþ
individuals in the initial population. Time in generations
is plotted against the population’s average communica-
tive accuracy, the proportion of individuals with the h

genotype, and the relative communicative accuracy of
h
 individuals.10

Fig. 3(a) shows a run where drift eliminates the h

genotype before cumulative cultural evolution resulting
from the h
 bias gets underway—the relative commu-
nicative accuracy of h
 individuals remains around 1
until they are eliminated.
10Relative communicative accuracy is the average communicative

accuracy of individuals with the h
 genotype divided by the average

communicative accuracy of individuals with the hþ genotype.
Fig. 3(b) illustrates a run where the population
converges on the h
 genotype and an optimal commu-
nication system. During the first 50 generations of the
simulation, genetic transmission is random—the relative
communicative accuracy of h
 individuals hovers around
1, and consequently individuals with the h
 genotype are
no more likely to breed than hþ individuals. However,
drift happens to maintain the h
 genotype in the
population. After 50 generations, the subpopulation of
h
 individuals begins to converge on a partially shared
vocabulary, and h
 individuals show slightly improved
relative communicative accuracy. h
 individuals are
selected to breed with greater frequency, and the
proportion of individuals with the h
 genotype increases.
This in turn leads to a greater communicative payoff for
individuals with h
 genotypes, as a functional vocabu-
lary begins to take shape. The h
 genotype comes to
dominate the population, and an optimal vocabulary is
constructed as a consequence of the h
 learning bias.

As indicated by the results in Table 2, a similar
process allows h
 individuals to invade h? populations.
However, this invasion occurs less frequently (in two
runs as opposed to four). This is due to the fact that it
takes longer for a h
 population to converge on a
system which is more communicatively functional than
the vocabulary already in place in the majority popula-
tion. In majority hþ populations this process is fairly
rapid—the baseline level of communicative accuracy in
such populations is low. However, in majority h?
populations the level of communicative accuracy which
must be reached is higher, and consequently the h

minority is more likely to be eliminated by drift or weak
selection prior to this baseline being reached.

5.2.2. A dynamic analysis with random initial culture

The results outlined in the previous section illustrate
that the static analysis breaks down due to the cumulative
nature of cultural evolution. The static analysis is based on
the expected communicative accuracy of the first genera-
tion of invaders relative to the majority population. As the
dynamic model demonstrates, the communicative accu-
racy that a particular learning bias leads to changes over
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Table 3

Dynamic analysis with random initial culture, r ¼ 0:1

Majority genotype Minority genotype

hþ h? h


hþ NA 0.1 1 0 0.55 10 10

h? 0.23 2 0 NA 0.87 8 8

h
 0.99 0 20 0.99 0 20 NA

Only the h
 bias is evolutionarily stable.

11The ability of biased learning rules to change a population’s

culture to their own advantage constitutes a cultural analogue of niche

construction (Odling-Smee et al., 1996).
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time, dependent on the biases in the population at
previous generations. Learning biases which appear to be
evolutionarily stable in the static analysis can therefore
turn out to be unstable, as is the case with the h? strategy.
Furthermore, in certain situations the static analysis
suggests that selection will be neutral, where in fact the
dynamic model shows that certain learning biases can
change the population’s culture so as to generate a
selective advantage for themselves, as happens in the case
where h
 genotypes invade majority hþ populations.

These factors are likely to be particularly pronounced
when a population is not pre-converged on a particular
vocabulary system. The set of EILM simulations outlined
in the previous section were repeated, with the initial
population having a random vocabulary—all association
strengths for each individual in the initial populations
were set to 0, so that each initial individual produces each
meaning–signal pair with equal probability. Under this
set of circumstances, with a clean slate for cultural
evolution, which learning biases are evolutionarily stable?

As before, twenty runs of the EILM were carried out
for each experimental condition. The results of these
simulations are summarized in Table 3.

Dealing first with majority hþ populations, the results
from the full dynamic model are broadly similar to the
case where the initial population is pre-converged on a
fully homonymous language. hþ populations are prone
to invasion by both h? and h
 individuals, and h

individuals are more likely to successfully invade hþ
populations due to their ability to shape the population’s
culture so as to give themselves a selective advantage.

The results for majority h? populations are somewhat
different. h? populations are prone to invasion by both
hþ and h
 individuals. The average final communica-
tive accuracy of h? populations is largely determined by
the bias of the invading genotype. When the invaders
have the hþ bias, communicative accuracy is low. This is
due to the impact of hþ individuals in the early stages of
the simulations—hþ individuals, even in small numbers,
tend to introduce homonyms which h? individuals
cannot eliminate. In extreme cases, the mixed popula-
tion will converge on a maximally homonymous
vocabulary. The eventual genetic makeup of the
population depends on the level of homonymy that the
population converges on in the early stages of cultural
evolution. If the population converges on a partially
homonymous vocabulary then hþ individuals cannot
invade—hþ individuals cannot acquire such systems
and therefore suffer decreased communicative accuracy.
However, if the presence of small numbers of hþ
individuals causes the population to converge on a fully
homonymous vocabulary, hþ learners can invade by
drift—hþ individuals can acquire the maximally
homonymous system, do not suffer any communicative
disadvantage, and will not be selected against. This
happens in 2 of the 20 simulations carried out.
When a small number of h
 individuals are intro-
duced into majority h? populations the final commu-
nicative accuracy is significantly higher, due to the
elimination of homonyms in the early stages of the
simulation, resulting from the h
 learning bias. h

individuals also frequently invade majority h? popula-
tions when there is no pre-established culture—
h
 subpopulations converge on less ambiguous com-
munication systems which lead to more successful
communication and result in selection for h
 genes.
As with the case for the h
 genotype invading hþ
populations, this selective advantage is dependent on
drift in the early stages of the runs preserving h
 genes
in sufficient numbers for cumulative cultural evolution
resulting from the h
 learning bias to take effect.

Finally, majority h
 populations resisted invasion by
hþ and h? individuals in all simulations carried out.
During the early stages of these runs, the majority h

individuals begin to converge on a functional commu-
nication system. The presence of cultural variability in the
population, resulting in part from noise and in part from
the fact that the population has not yet converged on a
vocabulary, impedes the acquisition performance of hþ
and h? individuals, who tend to acquire homonyms, and
therefore h
 individuals are selected for.

5.3. Summary

The main result presented in this section is that only
the h
 learning bias is evolutionarily stable under a wide
range of circumstances. The static analysis suggests that
the h? bias should also be evolutionarily stable.
However, the static analysis ignores the cumulative
nature of the cultural evolution of vocabularies. The two
dynamic analyses reveal that this cumulative cultural
evolution can lead to shifts away from learning biases
which appear stable under the static analysis—hþ
individuals can invade h? populations under certain
circumstances, and h
 individuals can invade hþ and h?
populations under a wide range of circumstances, due to
their ability to change the population’s culture to their
own advantage.11 This suggests that a learning bias in



ARTICLE IN PRESS
K. Smith / Journal of Theoretical Biology 228 (2004) 127–142 139
favour of one-to-one mappings between meanings and
signals can evolve biologically.

However, the evolution of the h
 learning bias in
populations where it is not initially dominant is always
dependent on an initial phase of genetic drift. Subpopula-
tions of h
 individuals converge on shared, functional
vocabulary systems, but the cultural evolution of such
systems is cumulative and takes time. During the early
stages of the cultural construction process individuals
with the h
 genotype receive no communicative advan-
tage relative to individuals with other genotypes, and
consequently do not enjoy increased reproductive success.
The h
 subpopulation is therefore prone to elimination
by drift during the early stages, and optimal communica-
tion systems will only evolve if drift preserves h
 genes in
sufficient numbers for the construction process to get
underway—the h
 bias may be evolutionarily stable once
established, but its evolution is not straightforward.
6. Discussion

This paper presents research on the evolution of
culturally transmitted, symbolic vocabulary systems. This
investigation is based on an abstract model of vocabulary
systems and vocabulary acquisition, introduced in Section
2. In Section 3 I identify the properties of rules which are
capable of acquiring optimal communication systems.
Such rules must be biased against acquiring synonyms,
one-to-many mappings from meanings to signals. There
are a range of biases regarding homonymous, many-to-
one mappings from meanings to signals—learning rules
can be biased in favour of acquiring homonyms, or neutral
with respect to homonymy, or biased against acquiring
homonyms. The combination of a bias against synonyms
and a bias against homonyms amounts to a bias in favour
of one-to-one mappings between meanings and signals.

In Section 4 I investigate the cultural consequences of
these learning biases. A population’s communication
system changes over time to fit the biases of individual
learners. In populations of learners biased in favour of
acquiring homonymous vocabularies (hþ learners), this
pressure arising from learning bias leads to the evolution
of maximally ambiguous communication systems, which
provide only chance levels of communicative accuracy.12

In contrast, in populations of learners who are biased in
favour of acquiring one-to-one mappings between
12 It could in fact be the case that ambiguity would lead to

communication which is worse than chance. We could imagine a

scenario where hearers waste time attempting to resolve the intended

reference of ambiguous signals, therefore reducing their evaluated

communicative efficiency. This possibility is not considered in the model

outlined here—the only penalty associated with homonymy is a loss of

communicative accuracy arising directly from the ambiguity. Ferrer i

Cancho and Sol!e (2003) investigate how such considerations of hearer

and speaker effort might impact on the structure of vocabulary systems.
meanings and signals (h
 learners), communicatively
optimal, unambiguous communication systems evolve
through cultural processes. In populations of learners
who are neutral with respect to homonymy (h? learners),
partially ambiguous communication systems evolve,
which offer intermediate levels of communicative
accuracy. These results hold regardless of whether
learners learn from randomly-chosen cultural parents,
or selectively learn only from more successful commu-
nicators—natural selection of cultural variants is weak
in comparison to the pressures arising from the biases of
individual learners.

Finally, in Section 5 I describe an investigation into
the evolution of learning biases themselves. Learning
rules, and therefore learning biases, were assumed to be
genetically transmitted, with natural selection acting on
genetic transmission. Under this set of circumstances, a
learning bias in favour of unambiguous, one-to-one
vocabulary was found to be the most stable—no other
learning biases were evolutionarily stable, being prone
to invasion by individuals with the one-to-one bias,
while the one-to-one bias was evolutionarily stable
under a wide range of circumstances. However, the
evolution of one-to-one learning biases, and conse-
quently optimal communication, is dependent to some
extent on genetic drift—in a population pre-converged
on a suboptimal communication system, or with no
established communication system, there is no immedi-
ate advantage to the one-to-one bias.

What do these models tell us about the evolution of
vocabulary systems, and in particular the evolution of
culturally-transmitted vocabulary in humans? There are
two main issues. Firstly, the iterated learning model
outlined in Section 4 highlights the importance of the
biases of individual language learners in shaping a
culturally transmitted communication system. Secondly,
the evolutionary iterated learning model outlined in
Section 5 highlights some factors likely to be at play
in the evolution of learning biases such as those found in
humans.

What biases do human language learners bring to the
vocabulary acquisition task? It has been suggested that
language learners have a general expectation that
language should embody a one-to-one mapping between
underlying semantic structures and surface forms. It has
been argued that this learning bias derives from a maxim

of clarity (Slobin, 1977), a preference for transparency

(Langacker, 1977) or a preference for isomorphism

(Haiman, 1980). This general bias manifests itself at all
levels of linguistic structure (in morphology, in the
lexicon, and in syntax).

The application of such biases to the acquisition of
lexical items has received empirical verification. Biases
against synonymy in human infants have been demon-
strated in a series of experiments (e.g., Kagan, 1981;
Markman and Wachtel, 1988). This bias against
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rapid, meaning that the period of benevolent drift required in a small

population is shorter than that required in a large population. An

evaluation of the impact of genetic and cultural population size is given

in Smith (2003, Chapter 4).
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synonyms has been called the Mutual Exclusivity bias
(Markman and Wachtel, 1988; Markman, 1989) or the
Principle of Contrast (Clark, 1988, 1990). Biases against
homonymy have also received attention, and it has been
experimentally demonstrated that children are biased
against acquiring homonymous lexical items (e.g.,
Beveridge and Marsh, 1991; Mazzocco, 1997).

There is therefore good empirical evidence that
children are biased against acquiring synonyms and
homonyms—in sum, it appears that human infants are
biased in favour of one-to-one mappings between
meanings and words. If this is the case, then why is it
that language apparently exhibits no synonyms, but
homonymy is common?

Firstly, these biases are not envisaged as being
absolute—they are an initial expectation on the part of
the child, which can be overridden given sufficient
evidence in the linguistic stimulus. Secondly, we should
expect other pressures acting on the vocabulary of
language to affect synonyms and homonyms in different
ways. Langacker (1977) suggests two other pressures
acting on vocabulary—a speaker preference for signal

simplicity (that is, minimizing articulatory effort during
speech) and a learner preference for code simplicity

(minimizing the distinct number of surface forms which
must be memorized). The preference for signal simplicity
will act to introduce homonyms—minimization of
articulatory effort will reduce the number of available
distinct words, therefore increasing the likelihood that
distinct meanings will come to be expressed by a
homonymous word. A pressure for code simplicity will
also tend to introduce homonymy—if a single surface
form can be used to refer to multiple meanings, then this
reduces the number of distinct words which must be
memorized. Interestingly, code simplicity disfavours

synonymy—memorizing two distinct words to express
a single meaning increases the learning burden, perhaps
unnecessarily. Therefore, even if we expect language
learners to be equally biased against synonyms and
homonyms, other pressures can act to reintroduce
homonyms and further weed out synonyms.

It seems likely that human language learners are
biased in favour of acquiring vocabulary systems which
associate meanings with signals in a one-to-one fashion,
although other factors counteract this bias, leading to
the observed vocabulary systems of language, which are
not perfectly one-to-one. We should therefore expect the
human vocabulary acquisition bias to lead, through
cultural processes, to communicatively optimal vocabu-
lary systems (in the absence of competing pressures), or
systems which are at least communicatively functional
(when there are competing pressures, such as pressures
for signal and code simplicity). This brings us to a
second question—is this vocabulary acquisition bias in
humans a language-specific adaptation which evolved
for the communicative payoff it potentially yields?
The evolutionary iterated learning models outlined in
Section 5 sheds some light on this issue. There are two
points to be made. Firstly, the h
 bias in favour of one-
to-one mappings between meanings and signals is the
most stable evolutionarily—small numbers of indivi-
duals with this learning bias can invade majority
populations of homonym-neutral (h?) or homonymy-
preferring (hþ) learners, and majority populations with
this bias are resistant to invasion by other learning
biases. In this sense, the h
; one-to-one learning bias is
the most likely bias to evolve.

However, the EILM simulation results also illustrate
a negative point—if populations are converged on a
suboptimal communication system, or there is no
established communication system present in the popu-
lation, natural selection will not favour individuals who
are predisposed to learn an optimal system. In the
simulation results shown here, a benevolent period of
genetic drift is required to break the cycle of suboptimal
communication, at which point a functional system
begins to emerge and being biased to acquire an optimal
communication system becomes advantageous. The
division of large populations into multiple competing
groups might increase the likelihood that one subpopu-
lation would arrive, by drift, at the optimal bias and
subsequently out-compete other populations (as sug-
gested by the shifting balance theory, see, e.g., Wright,
1931; Coyne et al., 1997; Whitlock and Phillips, 2000).13

It is also possible that kin selection might play some role
in facilitating the spread of the optimal bias—kin
selection is frequently invoked in the explanation of
the evolution of cooperative behaviour (see, e.g.,
Oliphant, 1996). However, the point remains that, in a
suboptimally communicating population, being able to
learn an optimal communication system confers no
immediate advantage. Biases tailored to the acquisition
of an optimal system must be preserved in sufficient
numbers for cumulative cultural evolution to begin if
they are to come to dominate such populations. If the
preservation of appropriate biases in a population is
unlikely, either due to their low initial numbers or some
cost associated with that bias, appropriate biases are
unlikely to evolve.

This conclusion casts doubt on the view that the
human vocabulary-learning bias is a domain-specific
adaptation. This however does not force us to conclude
that human vocabulary-learning biases arose through
extra-adaptive mechanisms. An interesting possibility
is that the bias is a consequence of a domain-general
cognitive capacity, which arose as a consequence of
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multiple benefits it provided, including a communi-
cative payoff. What would such a general cognitive
capacity be?

One possibility is that the one-to-one bias is a
consequence of the evolution of a sophisticated theory

of mind, an understanding of other individuals as
intentional agents. Tomasello (e.g., Tomasello and Call,
1997; Tomasello, 1999) argues that the human capacity
for this type of reasoning is uniquely sophisticated
among the primates. Tomasello argues that this
cognitive capacity could have evolved under an array
of selection pressures, including selection for commu-
nication, cultural learning in general, cooperation, and
tool use. This view ties in well with the literature on
human language learning biases, which typically view
such biases as a consequence of a child’s theory of mind
and their understanding of the nature of the commu-
nicative act. Armed with such an understanding,
children should expect language to exhibit a one-to-
one mapping between meanings and signals, and this
indeed appears to be their initial expectation. In other
words, the human vocabulary acquisition bias may not
have evolved specifically and exclusively for the acquisi-
tion of communicatively functional vocabulary, but
rather be a consequence of a more general cognitive
capacity which evolved due to a raft of benefits it
provided, including perhaps communication.

How well do the results presented here extend from a
simple model of vocabulary to a fuller treatment of the
evolution of sophisticated, syntactically structured
language? This remains to be seen. However, this paper
highlights two factors. Firstly, the biases of learners
have a significant impact on the structure of culturally
transmitted communication systems, and pressures
deriving from learner biases potentially outstrip other
pressures, such as natural selection of cultural variants.
Secondly, formal computational or mathematical mod-
els constitute a framework which can profitably be
applied to the study of the evolution of language, one of
the defining characteristics of our species.
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