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Abstract. We present a mathematical model of cross-situational learn-
ing, in which we quantify the learnability of words and vocabularies.
We find that high levels of uncertainty are not an impediment to learn-
ing single words or whole vocabulary systems, as long as the level of
uncertainty is somewhat lower than the total number of meanings in
the system. We further note that even large vocabularies are learnable
through cross-situational learning.

1 Introduction

One of the design features of human language is the arbitrary relationship be-
tween words and their meanings [1] — they are not related iconically, through
perceptual similarity, but merely by convention. Learning word-meaning map-
pings is therefore far from trivial, yet when children acquire language, they learn
the meanings of a large number of words very quickly. This phenomenon is known
as fast mapping [2]. Precisely how children achieve this remains to be established.

The problem of referential indeterminacy in acquiring word–meaningmappings
was famously illustrated by Quine [3]. He imagined an anthropologist interacting
with a native speaker of an unfamiliar language. As a rabbit runs by, the speaker
exclaims “gavagai”, and the anthropologist notes that “gavagai” means rabbit.
Quine showed, however, that the anthropologist cannot be sure that “gavagai”
means rabbit; in fact, it could have an infinite number of possible meanings, such
as undetached rabbit parts, dinner or even it will rain.

Developmental linguists have proposed many mechanisms which children may
use to overcome referential indeterminacy in word learning (see [4,5] for over-
views). Tomasello, for instance, proposes that the core mechanism is joint atten-
tion [6,7]; children understand that adults use utterances to refer to things, and
upon hearing an utterance they attempt to attend to the same situation as their
caregivers. Establishing joint attention in this way reduces the number of po-
tential meanings a word might have, although Quine shows that this cannot be
sufficient. Researchers have proposed a number of representational biases (e.g.
the whole object bias [8] and the shape bias [9]) and interpretational constraints
(e.g. mutual exclusivity [10] and the principle of contrast [11]) which might act
to further reduce the indeterminacy problem.
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Further evidence suggests that children may learn the meaning of many words
more straightforwardly, by simply disambiguating potential meanings across
different occasions of use [12,13]. There is evidence that this process, known
as cross-situational learning, takes place from a very early age [14]. Cross-
situational learning is unlikely to provide a complete account of word learn-
ing, but does allow us to consider word learning in the absence of sophisticated
cognitive mechanisms.

Understanding how children learn the meaning of words is not only a key
question in developmental linguistics, but is also fundamentally an evolutionary
issue. Firstly, accounting for the design feature of arbitrariness requires us to
understand how the apparent problems introduced by arbitrary meaning-word
mappings might be resolved. Secondly, an account of the evolution of the capacity
for language must begin with a clear specification of the explanandum — for
example, must the capacity for language include domain-specific word learning
strategies? Finally, the indeterminacy of meaning is itself a important issue in
the literature on the computational modelling of linguistic evolution [15,16]

In this paper, we present a mathematical model of cross-situational language
learning and use it to quantify some basic properties of the learnability of words
and vocabularies. In the following section, we describe cross-situational learning
in more detail. Our formalisation is introduced in section 3, where we quantify
the learnability of individual utterances. In section 4, we extend the model to
quantify the learnability of a whole language. Finally, in section 5 we discuss
the study’s implications, and explore extensions of the model to address more
realistic treatments of language structure, use and learning.

2 Cross-Situational Learning

Cross-situational learning is a technique for working out the reference of an ut-
terance, based on multiple exposures to the utterance’s use in context. When an
utterance is produced, the context of its use will provide a number of candidate
meanings for that utterance. From a hearer’s point of view, each of these is in
principle equally plausible, and there is no obvious motivation for choosing be-
tween them. If the same utterance is produced in a different situation, however,
a different set of possible meanings may be suggested by that situation. The
hearer can make use of this, by taking the intersection of the two sets of possible
meanings, in order to (potentially) reduce the ambiguity of the utterance.

Cross-situational learning has been modelled computationally by Siskind [17],
who showed that it could indeed be used to learn word-meaning mappings. In
his model, a learner is exposed to a corpus of artificial sentences, each of which is
paired with a set of possible meanings. Initially, the learner associates each word
with all possible meanings. When hearing a word in a new situation, however, the
learner eliminates any existing meanings for that word which are not consistent
with the new situation.

Variants of the cross-situational model have been used to simulate the evolu-
tion of lexicons in multi-agent systems [16,18], in which meanings are built up
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through interaction with the world and other individuals. In these experiments,
Smith [18] and Vogt [16] have separately shown that conventionalised vocabu-
laries can emerge and persist through cross-situational learning. Our focus in
this paper is similar to Siskind’s — we are interested in the learnability of an
existing vocabulary system, rather than the negotiation of shared vocabularies
in a population. However, our approach is different — rather than modelling
cross-situational learning computationally, we seek as far as possible an exact
mathematical characterisation of the properties of the system. This paper rep-
resents a preliminary stage in this process.

3 The Mathematical Model of Cross-Situational Learning

In this section, we describe a mathematical model which we can use to specify
the probability of a learner learning the meaning of a word cross-situationally. In
every episode of exposure to an utterance, the hearer observes a situation which
provides both the intended meaning of the utterance (the target meaning) and
a set of other meanings incidentally provided by the situation (the context).

Assume that the context has the same number of members C in each episode,
but the members are chosen at random and without duplication from the larger
set of M possible meanings.1 There are therefore

(
M
C

)
different possible

contexts.
Let the context in episode Ee be Ce. If, after e episodes, a non-target meaning

has occurred in every episode E1. . . Ee, then that meaning is called a confounder
— this recurring meaning is an equally plausible meaning for the utterance as
the target meaning, given that it too is present in all e situations where the
utterance is used. Let the number of confounders after e episodes be Ke, and let
us assume that the meaning of a word is successfully learned after e episodes if
there are no confounders left (Ke = 0) — when Ke = 0, the target meaning is
the only one which has occurred in every one of the e episodes.

3.1 An Illustration

Let us take a simple example, with C = 3 and M = 5. The 10 possible con-
texts are enumerated in Fig. 1, and we assume for this exposition that they
are equiprobable, and that each therefore occurs with a probability of

(
M
C

)−1
.

In the graphical notation in Fig. 1, each context is represented as a row of M
boxes, with each box representing a meaning. A cross in a box denotes that that
meaning is present in the given context.

Note that there are necessarily C confounders (K1 = C) after E1 — each of
the meanings in context C1 has occurred as often as the target meaning, namely
once. Let us now investigate what happens in episode E2, taking context E1 =
{m1, m2, m3} as an example, and combining it with each possible context which
1 Note that M is exclusive of the target meaning. In other words, there are M + 1

possible meanings, and any situation provides C + 1 unique meanings: the target
and C unique additional meanings.
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m1m2m3m4m5 m1m2m3m4m5 m1m2m3m4m5 m1m2m3m4m5 m1m2m3m4m5

m1m2m3m4m5 m1m2m3m4m5 m1m2m3m4m5 m1m2m3m4m5 m1m2m3m4m5

Fig. 1. Enumeration of
(

M
C

)
= 10 possible contexts, with C = 3 and M = 5

could occur in episode E2. Fig. 2 below shows the 10 resultant combinations,
the number of confounders K2, and the confounder meanings highlighted in
grey.

K2 = 3 K2 = 2 K2 = 2 K2 = 2 K2 = 2

K2 = 1 K2 = 2 K2 = 2 K2 = 1 K2 = 1

Fig. 2. Combinations of contexts after E2, with the number of confounders K2, and
the confounder meanings highlighted in grey

We can see in Fig. 2 that the set of confounders remaining after episode
E2 is dependent on the set of confounders from E1, and the meanings in C2.
We can ignore all meanings which did not occur in C1, as they can never be
confounders — a single non-occurrence in one episode is enough to rule out a
particular meaning as a confounder. More generally, the set of confounders Ke

after episode Ee depends on the set of confounders after the previous episode
Ee−1 , namely Ke−1, and the set of meanings chosen in context Ce.

Let the probability of having n confounders after e episodes P (Ke = n) be
Pn(e). The probability that a word is successfully learned after e episodes is
therefore P0(e). After E2, and assuming C1 = {m1, m2, m3}, we can see in Fig. 2
that P3(2) = 1

10 ; P2(2) = 6
10 ; P1(2) = 3

10 and P0(2) = 0
10 . Note in this case that

it is impossible to have learned a word after two episodes (P0(2) = 0), because
the context is larger than half of the number of possible meanings (C > M

2 ),
and so it is impossible to select disjoint sets for C1 and C2. It should be clear
that the choice of C1 = {m1, m2, m3} in this example is unimportant: the same
probabilities for each value of K2 are obtained for every possible choice for C1.

What happens, however, when there are fewer than C confounders at the
previous timestep (Ke−1 < C)? To examine this situation we have to look at
a further episode, E3. Let’s take C1 = {m1, m2, m3} , C2 = {m1, m2, m4} as an
example, giving K2 = 2, and combine it with all possibilities for C3, as depicted
in Fig. 3.

We can see that for K2 = 2, given C1 = {m1, m2, m3} and C2 = {m1, m2, m4},
the probabilities are P2(3) = 3

10 , P1(3) = 6
10 , P0(3) = 1

10 . The choice of C1 and C2
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K3 = 2 K3 = 2 K3 = 2 K3 = 1 K3 = 1

K3 = 1 K3 = 1 K3 = 1 K3 = 1 K3 = 0

Fig. 3. Combinations of contexts after E3,with the number of confounders (K3), and
the confounder meanings highlighted in grey

is again unimportant, as the same probabilities for each value of K3 are obtained
for each combination where K2 = 2. Similar calculations can be carried out for
K2 = 1, by choosing (for instance) C1 = {m1, m2, m3} and C2 = {m1, m4, m5}.

3.2 Calculating Semantic Inferrability

In general, the transition probability Q(x|y), i.e. that there will be x con-
founders after episode e, given that there were y confounders after episode e−1,
is:

Q(x|y) =
(

y

x

)
×

(
M − y

C − x

)
×

(
M

C

)−1

(1)

The first term
(

y
x

)
is the number of ways of correctly selecting confounders: y

is the number of confounders at time e − 1 (call this the confounding set), and
x is the number of confounders we want to have at time e. There are therefore(

y
x

)
ways in which the desired number of confounders x can be chosen from the

confounding set y. The second term
(
M−y
C−x

)
is likewise the number of ways of

correctly selecting non-confounders: M − y gives the number of meanings which
are not confounders at time e − 1 (call this the non-confounding set). Recall that
every context has C members, so if there are x confounders in a valid context,
then we must also select C − x non-confounders from the non-confounding set.
There are clearly

(
M−y
C−x

)
ways of choosing the desired number of non-confounders

C − x from the non-confounding set M − y, as shown in Fig. 4. The number
of valid contexts which satisfy the desired condition is the product of these two
expressions, divided by the total number of possible contexts, to produce the
overall transition probability Q.

Therefore, the probability Pn(e), that there will be n confounders after e
episodes is:

Pn(e) =
C∑

i=n

Pi(e − 1) × Q(n|i) . (2)

We have already seen, however, that if e = 1, then the number of confounders
is necessarily C, so for completeness (2) should be extended to cover the case
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y M − y

x C − x

pick x
from y

pick C − x
from M − y

Fig. 4. Building a context of size C, made up of x confounders chosen from the y
members of the confounding set, and C − x non-confounders chosen from the M − y
members of the non-confounding set.

where e = 1:

Pn(e) =






1 if e = 1, n = C,
0 if e = 1, n #= C,

C∑

i=n

Pi(e − 1) × Q(n|i) otherwise.

(3)

In Appendix A, we solve (3) to give the following explicit formula for Pn(e):

Pn(e) =
(

C

n

) C∑

i=n

(−1)i−n

(
C − n

i − n

)
(pi)e−1 (4)

where

pi =

(
M−i
C−i

)
(M

C

) =

{
1 for i = 0

C(C−1)...(C−i+1)
M(M−1)...(M−i+1) for i > 0 (5)

is the probability that a particular subset of i members of the C confounders in
the first episode E1 appear in any subsequent episode.

3.3 Word Learnability Results

Using either (3) or (4), therefore, we can quantify the learnability of an indi-
vidual word — the probability that an individual word will be learned, P0(e)
— which depends on M , C, and e. Fig. 5 shows word learnability for M = 50,
for various values of C. Two basic results are apparent: (i) A word cannot be
learned when C = M , as confounders can never be eliminated; (ii) For all other
cases, learnability increases over time, although it may be the case (for example,
when C is high) that learnability remains at zero for a number of exposures,
before becoming non-zero.
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Fig. 5. Word learnability given M = 50, for various C

We can also quantify the number of episodes e∗ required to learn a word with
probability 1 − ε. Fig. 6 (a) shows e∗ given M = 50, with ε = 0.01, for various
context sizes. Expected values are derived from Eqn. (3), exact values by Monte
Carlo simulation2. It is clear that the results from the Monte Carlo simulation
closely match the results from the mathematical model. In addition, we see that
(iii) the smaller the context size, the quicker a word can be learned; (iv) as C
approaches M , it takes a long time to learn a word, as confounders are only
rarely eliminated. Fig. 6 (b) shows e∗ given C = 5, with ε = 0.01, for various
M . We can see that (v) words can be learned more rapidly as the number of
meanings increases; as M increases, it becomes less likely that any one meaning
will recur in every context with the target meaning.

4 Quantifying the Learnability of a Whole Language

The model described in the previous section only considers the learnability of
a single word. One conclusion is that, given a fixed context size, the meaning
of a particular word is easier to learn if that word is part of a large system for
conveying a large number of distinct meanings (M is large). This suggests that
we need to consider the learnability of a whole vocabulary system consisting of
a number of words, each of which conveys a particular meaning, rather than
considering word learnability in isolation.

In order to do this, we must first introduce a minor change to our notation.
When considering the learnability of a single word, we were concerned with the
number of meanings other than the target meaning, and the number of meanings
in the context other than the target meaning. We denoted these as M and C
respectively. When quantifying the learnability of a whole set of words, we are
necessarily interested in cases where the target meaning for a particular word
may also occur as a non-target meaning for some usage of some other word. Let
2 In the simulation, a learner works through a series of exposures, eliminating candi-

date meanings. e∗ is the number of episodes required to achieve learnability of 1− ε
averaged over 1000 such simulations.
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Fig. 6. The number of episodes required to learn a word with probability 0.99 varies
with the number of meanings and the context size; (a) shows e∗ given M = 50, for
various C, (b) shows e∗ given C = 5, for various M . Lines are expected values, points
are actual (Monte Carlo simulation) values.

us therefore call the total number of lexicalised meanings in a vocabulary system
M̄ . In every episode of exposure to an utterance conveying one of these meanings,
the hearer observes a situation which provides both the target meaning and a
context of other meanings. The number of meanings involved in the context,
inclusive of the target meaning, is given by C̄. The C = C̄−1 non-target meanings
in the context are chosen at random and without duplication from the larger set
of M = M̄ −1 possible meanings. In other words, M̄ and C̄ are inclusive, rather
than exclusive, of the target meaning.

It is convenient, at least initially, to consider the situation where only W of
the total number of possible meanings M̄ are ever chosen as the target. We
seek now RW (e), the probability that all W of these words have been learned
after e episodes; the probability that the whole language has been learned is
then given by the special case W = M̄ . To obtain this, we must average over
all W e sequences of utterances. Some particular sequences may, or may not, be
equivalent to one another depending on what inferences are made by the learner.
If, for example, the learner assumes that different words do not have the same
meaning, then the order with which the words are presented matters. Under
this assumption, if the word for a meaning is learned then that meaning can no
longer act as a confounder for the remaining meanings. This induces non-trivial
interactions between episodes in which different words are uttered. On the other
hand, if the learner entertains the possibility that two words may have the same
meaning, then they must wait until all meanings other than the target have been
ruled out. In this latter case, the probability that a meaning has been learned
is independent of the order in which the words are presented, and thus depends
only on the number of times a particular meaning has been chosen as the target.
In this much simpler case, which we will focus on here, only the number of times
a word is uttered is important: order of presentation does not matter.

In this case, the probability of learning all W words is given by

RW (e) = 〈P0(e1)P0(e2) · · ·P0(eW )〉 (6)
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where the angle brackets denote an average over the probability distribution of
sequences of e episodes in which the first word of interest is the target e1 times,
the second e2 and so on. This distribution is the multinomial distribution

1
W e

(
e

e1e2 · · · eW

)
≡ 1

W e

e!
e1!e2! · · · eW !

constrained such that
∑

i ei = e. The functions P0(ei) appearing in Eqn. (6) are
as given by Eqn. (4). It is possible to calculate this average exactly; unfortunately,
the expression that results is rather unwieldy and extremely difficult to interpret.
We thus derive instead an approximation to RW (e) that admits a clearer insight
into the learnability of an entire language.

This approximation is obtained by focusing on the regime where the language
is learnt to a high probability, i.e., where RW (e) = 1 − εW and the parameter
εW is small. For example εW = 0.01 corresponds to having learned the words
with 99% certainty. In Appendix B, we present the details of this approximate
approach which results in the following expression for the probability of learning
W of M̄ words after e episodes:

RW (e) ≈
W∑

k=0

(
W

k

)
(1 − M̄)k

[
1 − k

W

(
M̄ − C̄

M̄ − 1

)]e

. (7)

Since each term in the series is progressively smaller, and the relative size of each
term is roughly equal to the absolute size of the previous term, the series can be
truncated at k = 1 as long as εW is sufficiently small. Inverting this truncated
expression gives an indication of the time taken to learn the whole language with
probability 1 − εW . It reads

e∗ ≈ ln[εW ] − ln[W (M̄ − 1)]

ln
[
1 − 1

W

(
M̄−C̄
M̄−1

)] . (8)

Since various approximations have been made to arrive at this formula, it is
worth testing its validity by comparing with data from Monte Carlo simulations.
Fig. 7 shows the match between expected and actual (obtained from simulation)
values given various values of ε, C̄ and M̄ = W . As can be seen from the
figures, there is close agreement between the actual and expected values as long
as εW is not large (Fig. 7 (a)) and C̄ is not small (Fig. 7 (b)). The former
condition is easily understood, since εW was assumed to be small throughout
the derivation of (7) and (8). Meanwhile, a closer analysis of the approximations
used in Appendix B to derive these expressions shows that strong fluctuations
in the number of episodes required to learn a single word lead to the breakdown
of the approximation when C̄ is small.

Fig. 7 (b) shows e∗ given M = 50, εW = 0.01, for various context sizes. It is
apparent that (i) the smaller the context size, the quicker a whole vocabulary
can be learned; (ii) as C̄ approaches M̄ , it takes a long time to learn a word,
as confounders are only rarely eliminated. In other words, C̄ does not have to
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Fig. 7. The number of episodes needed to learn a whole vocabulary with probability
1 − εW . (a) shows e∗ given M̄ = 50, C̄ = 25, for various εW . (b) shows e∗ given
M̄ = 50, εW = 0.01, for various C̄. (c) shows e∗ given C̄ = 25, εW = 0.01, for various
M̄ . Lines are expected values, points are actual (Monte Carlo) values. Note log scales
on (a) and (b).
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be very small for a vocabulary to be learned in a reasonable time, as long as it
is fairly small relative to M̄ . Fig. 7 (c) shows e∗ given C̄ = 25, εW = 0.01, for
various M̄ . Here we see that (iii) it is easiest to learn a whole language when C̄
is less than M̄ and both are relatively small.

Fig. 7 (c) further suggests that, once M̄ is significantly greater than C̄, e∗

increases linearly with M̄ . In fact, putting W = M̄ in Eqn. (8) suggests that the
rate of increase is slightly greater than linear. Specifically, one finds that once
M̄ has greatly exceeded the larger of C̄ and ln εW ,

e∗ ∼ 2M̄ ln M̄ . (9)

In other words, (iv) while the time taken to learn a vocabulary of a particular
size increases superlinearly with respect to the size of that vocabulary, there is no
critical value of M̄ beyond which e∗ increases dramatically — large vocabularies
are learnable through cross-situational learning.

5 Discussion

We have outlined a mathematical formulation of cross-situational learning, and
presented some basic results linking word and vocabulary learnability to the
size of the vocabulary system, the number of candidate meanings provided by a
context of use, and the amount of time for learning. Based on these results, it
is tempting to speculate on the human case, particularly from an evolutionary
perspective — for example, we might claim that humans have a long period of
developmental flexibility to allow them time to learn a large vocabulary system,
or that humans have evolved a number of biases for word-learning to reduce the
effective context size during word learning and make large vocabularies learnable
in a fairly short period of time.

However, several shortcomings in the model as it stands need to be addressed
before such speculations can be entertained (if at all). Firstly, and most im-
portantly, we have considered both words and meanings to be unstructured
atomic entities. The model as it stands is therefore better interpreted as quanti-
fying the learnability of a holistic system. In compositional systems, such as lan-
guage, meanings are structured objects and utterances are structured sequences
of words. We are currently extending this model to explore such a situation,
in order to contrast the learnability of words in systems of different structural
kinds.

Secondly, we assume that all meanings occur with uniform probability. This is
unlikely to be exactly true, and it may be that the frequency of communicatively-
relevant situations is highly non-uniform, possibly Zipfian [19]. How does this
affect word learnability? Again, we are extending our model to allow us to in-
vestigate such questions.

Finally, as discussed in section 4, we have assumed that the meaning of each
word is learned independently — learning something about the meaning of one
word tells you nothing about the meaning of another word. We know, however,
that this assumption is not true for humans, who instead appear to assume that
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if one word has a particular meaning, then no other word will have that same
meaning — this is mutual exclusivity [10]. How much, if at all, does mutual
exclusivity simplify the learning of words in holistic or structured systems? We
are also investigating this question using a Monte Carlo version of our model.

The model outlined here is, we feel, an important first step on the path to a
more thorough and formal understanding of the developmental and evolutionary
problem of word learning.
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A Exact Solution for the Single Word Case

The exact solution given in Eqn. (4) can be obtained in two ways: (i) by diago-
nalisation of the matrix of transition probabilities Q(x|y); or (ii) by applying the
“inclusion-exclusion” principle (or sieve method) from combinatorics. In this Ap-
pendix, we outline the latter approach which, as explained by Wilf [20, p.110], is
useful when “it is relatively easy to see how many objects have at least a certain
number of properties and maybe more”. The sieve method, he goes on to explain,
converts this “at least” information into the desired “exactly” information.

In our application, we seek Pn(e), the probability that n of the initial C con-
founders are present in each of a number e of episodes. The “at least” information
here is the probability pn that a specific subset of n confounders appears in each
of e episodes, along with maybe some other confounders. This probability is
given by pe−1

n Eqn. (5), since the desired subset is always present in the first
episode (by definition), and then with probability pn in subsequent episodes.

The sieve method then states that the probability of having a subset of N
confounders present in every episode is given by the sum

Pn(e) =
C∑

i=n

(−1)i−n

(
i

n

) ∑

i-subsets of C confounders
pe−1

i (10)

=
C∑

i=n

(−1)i−n

(
i

n

)(
C

i

)
pe−i

i (11)

where we have used the fact that there are
(
C
i

)
distinct subsets of size i contained

within a set of C objects. The result (4) then follows from the fact that
(

i
n

)(
C
i

)
=(

C
n

)(
C−i
i−n

)
, as can be verified by writing the binomial coefficients explicitly in

terms of factorials.

B Approximate Solution for the Multiple Word Case

We are interested in determining the probability RW (e) that W of M̄ meanings
have been learnt after a total number of e episodes in the regime where RW (e) ≈
1. Our approach rests on the following observation: if all W words are to be learnt
with certainty 1−εW (εW being a small parameter), each of the factors P0(ei) in
Eqn. (6) should contribute an amount approximately equal to 1 − εW

W . That is,
every word has to be learnt (on average) to a higher level of certainty; the value
of ε for a single word (ε1) is approximately equal to εW

W . Looking at Fig. 5, we
see that to achieve this high level of single-word learnability, many utterances of
each individual word are required in order to eliminate all confounding meanings.
The upshot of this is that, since ei is expected to be large, the expression for
P0(ei), Eqn. (4), is well approximated by the first two terms in the series. We
henceforth assume that we can write

P0(ei) ≈ 1 − (M̄ − 1)
(

C̄ − 1
M̄ − 1

)ei

. (12)
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Using this approximation in Eqn. (6) we find

RW (e) ≈
〈

W∏

i=1

[
1 − (M̄ − 1)

(
C̄ − 1
M̄ − 1

)ei]〉
(13)

=
W∑

k=0

(
W

k

)
(1 − M̄)k

〈(
C̄ − 1
M̄ − 1

)e1+e2+···+ek
〉

. (14)

The average over the multinomial distribution can then be computed by noting
the identity

∑

e1

∑

e2

· · ·
∑

eW

(
e

e1e2 · · · eW

)
ue1

1 ue2
2 · · ·ueW

W = (u1 + u2 + · · · + uW )e (15)

which yields Eqn. (7). As we note in the text, the approximation (12) holds as
long as fluctuations in the number of episodes in which a particular meaning is
the target are small relative to the mean.
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