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There are two possible sources of structure in languagdodioal evolution of the language
faculty, or cultural evolution of language itself. Two retenodels (Griffiths & Kalish, 2005;
Kirby, Dowman, & Griffiths, 2007) make alternative claimsoaib the relationship between in-
nate bias and linguistic structure: either linguistic stowe is largely determined by cultural
factors (Kirby et al., 2007), with strength of innate biasnierelatively unimportant, or the
nature and strength of innate machinery is key (Griffiths dista 2005). These two competing
possibilities rest on different assumptions about theniegrprocess. We extend these models
here to include a treatment of biological evolution, andssltitat natural selection for commu-
nication favours those conditions where the structure flage is primarily determined by
cultural transmission.

1. Introduction

Language is a consequence of two systems of transmissiotugidal and cul-
tural. The human capacity for language uncontroversialy some grounding
in specifically human biology — no other species uses a sirsifatem in the
wild. Language is also, again uncontroversially, socildgrned — we learn the
language of our speech community.

To what extent is the detailed structure of language detexdiby biology or
culture, and how have cultural and biological evolutioreddb shape language?
The position here is less clear. The standard accounttisihe structure of lan-
guage to the biological evolution of an innate languagelfg¢Rinker & Bloom,
1990). An alternative account, grounded in the computatiorodelling of cul-
tural transmission, allows a significant role for culturabkition (e.g. Kirby &
Hurford, 2002; Kirby, Smith, & Brighton, 2004): under this@unt, the structure
of language is explained primarily as a consequence of taptation of language
to the cultural transmission medium (e.g. partial, noisftequency-skewed data:



Kirby, 2001).

Two recent studies have sought to explicitly address the bietween lan-
guage structure, biological predispositions, and coimg@n cultural transmis-
sion (Griffiths & Kalish, 2005; Kirby et al., 2007). Both assa that learners
apply the principles of Bayesian inference to language iattpn: a learner’s
confidence that a particular gramniaaccounts for the linguistic datathat they
have encountered is given by
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and allows a contribution both from a prior (presumably tefdelief in each
grammar,P(h), and the probability that that grammar could have generihied
observed dataP(d|h). Based on the posterior probability of the various gram-
mars,P(h|d), the learner then selects a grammar and produces utterah@ss
will form the basis, through social learning, of languagetasition in others.

Within this framework, Griffiths and Kalish (2005) show thatltural trans-
mission factors (such as noise or the transmission bottleimeposed by partial
data) haveno effect on the distribution of languages delivered by calt@volu-
tion: the outcome of cultural evolution is solely deternari®y the prior biases
of learners, given byP(h).2 Kirby et al. (2007) demonstrate that this result is
a consequence of the assumption that learners select a gramitih probability
proportional taP(h|d) — if learners instead select the grammar which maximises
P(h|d), then cultural transmission factors play an important ioldetermining
the distribution of languages delivered by cultural eviolut for example, dif-
ferent transmission bottlenecks lead to different distitns. Furthermore, for
maximising learners, the strength of the prior bias of legsns irrelevant over a
wide range of the parameter sp&ce.

These models suggest two candidate components of the ilamagage fac-
ulty: firstly, the prior bias,P(h), and secondly, the strategy for selecting a gram-
mar based o (h|d) — sampling proportional t&(h|d), or selecting the gram-
mar which maximise®(h|d). We can therefore straightforwardly extend models
of this sort to ask how we might expect the evolution of theglsage faculty to
unfold: does biological evolution favour sampling or maidimg learners, strong
or weak priors?

Specifically, we are interested in asking which selectioatsgies and priors
are evolutionarily stable (Maynard Smith & Price, 1973; 8mR004): which
strategies and priors are such that a population adoptatgtrategy or prior will

aGriffiths and Kalish (2005) point out that the prior need netessarily take the form oflanguage
specificinnate bias in the traditional sense.

bFor a treatment of both sampling and maximising learners Guiffiths and Kalish (2007), who
provide similar results to those of Griffiths and Kalish (8p@nd Kirby et al. (2007).



not be invaded by some other strategy or prior under the infei@f natural se-
lection? This breaks down into two sub-questions: (1) wéwaglage will a popu-
lation consisting entirely of individuals with a particulstrategy and prior have?;
(2) what level of communicative accuracy will some indivédiinserted into such
a population have? The first question is answered by the woékiffiths and
Kalish (2005) and Kirby et al. (2007), which shows the relaship between prior,
selection strategy, cultural transmission factors anttidigion of languages in a
population. Answering the second requires some additima&hinery, described
in Section 3.

2. The model of learning and cultural transmission

We adopt Kirby et al.’s (2007) model of language and languegming. A lan-
guage consists of a system for expressingneanings, where each meaning can
be expressed using one bimeans of expression, callethssege.g., meanings
might be verbs, signal classes might be alternative inflaetiparadigms for those
verbs). We will assume two types of prior bias. Embiasedearners, all gram-
mars have the same prior probability’(h) = 1/k™. Biasedlearners have a
preference for languages which use a consistent means ossxpn, such that
each meaning is expressed using the same class. Followiby &i al. (2007),
this prior is given by the expression

P =4 krm+ka HF””O‘

wherel'(z) = (x — 1)!, n; is the number of meanings expressed using class
j anda determines the strength of the preference for consistdoayx gives a
strong preference for consistent languages, highleads to a weaker preference
for such languages.

The probability of a particular data sé{consisting ofh meaning-form pairs)
being produced by an individual with gramniais:

P(h) = [ Pwl, h)—
(zy)ed
where all meanings are equiprobahblds a meaningy is the signal class associ-
ated with that meaning in the data, aRdy|z, h) gives the probability of; being
produced to convey given grammakh and noise:

| 1—€ ifyisthe class correspondingtain h
Pylz, h) _{ =  otherwise

Bayes’ rule can then be applied to give a posterior distidoutver hypotheses
given a particular set of utterances. This posterior distidns is used by a learner



to select a grammar, according to one of two strategies. Bagriparners simply
select a grammar proportional to its posterior probabiliB, (h|d) = P(h|d).
Maximising learners select the grammar with the highestgpims probability:

1 if P(h|d) > P(h'|d) forall h/ # h
0 otherwise

Pk = {

A model of cultural transmission follows straightforwardlom this model of
learning: the probability of a learner at generatioarriving at grammak,,, given
exposure to data produced by gramrhar ; is simply

P(hy =ilhn-1 =34) = Pr(hy = ild)P(d|hn—1 = )
d

The matrix of all such transition probabilities is known d® ) matrix
(Nowak, Komarova, & Niyogi, 2001): entrg);; gives the transition probabil-
ity from grammar; to grammat. As discussed in Griffiths and Kalish (2005) and
Kirby et al. (2007), the stable outcome of cultural evolat{thestationary distri-
butionof languages) can be calculated given fisnatrix, and is proportional to
its first eigenvector. We will denote the probability of gnauawi in the stationary
distribution asy);.

Table 1 gives some example prior probabilities and statiodsstributions,
for various strengths of prior and both selection straegids shown in Table
1, strength of prior determines the outcome of cultural etoh for sampling
learners, but is unimportant for maximising learners ag lassome bias exists.

Table 1. P(h) for three grammars given various types of bias (unbiasedkw@s fx = 40], strong
bias [ = 1], denoted byu, bw andbs respectively), and the frequency of those grammars in the st
tionary distribution for sampling and maximising learngsammars are given as strings of characters,
with the first character giving the class used to express thienfieaning and so on.

h P(h) Q*, sampler Q*, maximiser

u bw bs u bw bs u bw bs
aaa | 0.0370 0.0389 0.1 | 0.0370 0.0389 0.1 | 0.0370 0.2499 0.2499
aab | 0.0370 0.0370 0.0333 0.0370 0.0370 0.0333 0.0370 0.0135 0.0135
abc | 0.0370 0.0361 0.0167 0.0370 0.0361 0.0164 0.0370 0.0014 0.0014

3. Evaluating evolutionary stability

In order to calculate which selection strategies and paocesevolutionarily stable
we need to define a measure which determines reproducticessicWe make
the following assumptions: (1) a population consists ofsavsubpopulations;

CAll results here are fom = 3, k = 3,b = 3, e = 0.1. Qualitatively similar results are obtainable
for a wide range of the parameter space.



(2) each subpopulation has converged on a single gramnmarghrsocial learn-
ing, with the probability of each grammar being used by a splofation given
by that grammar’s probability in the stationary distriloutj (3) natural selection
favours learners who arrive at the same grammar as theis j)eex particular
subpopulation, where peers are other learners exposed tarthuage of the sub-
population. Given these assumptions, the communicatigeracy between two
individuals A andB is given by:

ca(A,B) =Y Qi-Qi Qi
h h'

where the superscripts dghindicates that learner$ and B may have different
selection strategies and priors. Ttedative communicative accura®f a single
learnerA with respect to a large and homogeneous population of iddals of
type B is therefore given byca(A, B) = ca(A, B)/ca(B, B). Where this quan-
tity is greater than 1 the combination of selection stratgy prior (thdearning
behaviouy of individual A offers some reproductive advantage relative to the pop-
ulation learning behaviour, and may (through natural seleacting on genetic
transmission) come to dominate the population. Whereivel@ommunicative
accuracy is less than 1 learning behaviduwill tend to be selected against, and
when relative communicative accuracy is 1 both learningabigturs are equiva-
lent and genetic drift will ensue. Following Maynard SmitidaPrice (1973), the
conditions for evolutionary stability for a behaviour oténest,, are therefore:
1) rea(J,I) < 1forall J # I; or (2)rca(J,I) = 1 for someJ # I, butin each
such caseca(I, J) > 1. The second condition covers situations where the minor-
ity behaviour.J can increase by drift to the point where encounters betwgen t
J individuals become common, at which point typéndividuals are positively
selected for and the dominance of behavibis re-established.

Table 2. Relative communicative accuracy of each stratdégyed off against all alternatives. s
denotes sampling, m maximising, bias types are as for TalBades in which the minority learning
behaviour can potentially invade the population via drié lboxed. Cases where the minority learning
behaviour will be positively selected for are boxed and sbdad/alues are given to two decimal places
unless rounding would obscure a selection gradient.

Majority behaviour

(s, (s,bw (s,bg (my (m,bw (m,bg

N X} - 0.9997 0.81 0.88 038 0.38
2 (sbw | 099998 — 0.82 0.88 0.38 0.38
8 (s,b3 0.98 0.99 — 0.86 0.60 0.60
f‘;’ (m,u) 112 112 0.92 - 0.45 0.45
§ {m,bw) 1.12 1.14 1.39 1.00 — 1.00
£

(m,b3 1.12 1.14 1.39 1.00 ‘ 1.00 ‘ —




Table 2 gives the relative communicative accuracies of Blag behaviours
when played against each other: two selection strateg$haee types of prior
bias. Several results are apparent. Firstly, none of thekagnbehaviours are
evolutionarily stable: all are prone to invasion by biaseakimisers, and all but
the strongly biased samplers are subject to invasion byagedimaximisers.

Secondly, abstracting away from strength of prior, maxingiss an ESS: sam-
plers entering a maximising population have low relativeomnicative accuracy.
In other words, natural selection prefers maximisers, astleinder the fitness
function described above. Maximisers boost the probgtitiat the most likely
grammar will be learned, and are consequently more likebrtive at the same
grammar as some other learner exposed to the same datatj@mpeource.

Thirdly, strength of prior is relatively unimportant. Inregling populations
(where the stationary distribution is determined by stteraf prior), it is best to
have the same strength of prior as the rest of the populattdedst given the large
difference between strong and weak priors used here). If gdar is stronger
than the norm, you will be less likely to learn the less comramguages from
the stationary distribution, if it is weaker you will be mdileely to misconverge
on those minority languages, which are themselves ledy ligeccur due to the
stronger bias of the population.

The situation regarding the evolution of priors in maximéspopulations is
slightly more complex. Strong and weak biases for maximsisern out to be
equivalent: for the parameter settings used here (and aratdge of other param-
eter settingsjx = 1 anda: = 40 generate equivale@ matrices (and hence equiv-
alent stationary distributions, as shown by Kirby et al.020 Strong and weak
biases in maximising populations are therefore equivadkem¢rms of commu-
nicative accuracy, and can invade each other by drift: tbeyfan evolutionarily
stable set (Thomas, 1985).

In unbiased maximising populations, all levels of bias aterchangeable:
all languages are equally probable, and the preferencesébilearners for con-
sistent languages is counterbalanced by their difficultgdquiring the equally
probable inconsistent languages. Unbiased maximisinglptipns can therefore
be invaded by drift by biased maximisers. However, unbiasagimisers can-
not in turn invade biased maximising populations: in sucpybations, as can be
seen in Table 1, the distribution of languages is skewedvauiaof consistent
languages, and it therefore pays to be biased to acquire ldweguages. Unbiased
maximisation is therefore not an ESS, by condition 2 of thinden.

If we assume that strong prior biases have some cost, thereoaditions
under which only weak bias would be evolutionarily stabl&efie will be some
high value ofe, which we will calla*, for which: (1) the prior is sufficiently weak
that its costs relative to the unbiased strategy are low gimtaallow the(m,a*)
behaviour to invadém,u) populations by drift; (2) the prior remains sufficiently
strong that thelm,a*) population is resistant to invasion gyn,u), due to the



selection asymmetry discussed above.

Under such a scenaridm,a™) becomes the sole ESS: evolution will favour
maximisation and the weakest possible (but not flat) pridre &ctual value of
«o* will depend on the cost function used. For example, if we laEsthat higher
values of« are associated with decreasing costs, but higsaya = 100, which
yields a) matrix identical to that forv = 40 under the parameters used here) has
a cost very close to that associated with a flat prior, tfrax = 100) becomes
the sole ESS: it benefits from both low costs and a skeweastaly distribution.
While a more principled cost function is desirable, the irssvity of the station-
ary distribution tax for maximising learners and the factorial in the expres&on
P(h) means we have been unable to explore sufficiently large safie under
more complex treatments of cost.

4. Discussion and conclusions

The main result from this analysis of evolutionary stapilg that maximising
is always preferred over sampling: combining this with timgiings of Griffiths
and Kalish (2005) and Kirby et al. (2007), we can concludé ékalution prefers
precisely those circumstances in which strength of priaslhias least effect and
cultural evolution (driven by transmission factors suclhasbottleneck and utter-
ance frequency) has the greatest scope to shape the lingyistem.

The second result to highlight is that the strength of therpis relatively
unimportant from the perspective of biological evolutiom the (disfavoured)
sampling strategies, it is best to have the same bias asghefréne population.
In maximising populations some bias is better than no biasstvength of that
bias is unimportant. Furthermore, if we assume that stréggpls have some cost,
then evolution will prefer the weakest bias possible. Wittiie latter result runs
counter to the phenomenon known as the Baldwin effect (sgg Briscoe, 2000)
whereby initially learned traits tend to become nativisgd,note that this model
is not designed to elicit the Baldwin effect — nativisatidragarticular language
is not allowed by our definition of prior bias, and the Baldwifect requires that
learning be costly, whereas in our model it is costless.

The model described above deals with a limited range of iegimehaviours.
Strength of prior, given by, is a continuous parameter and amenable to a more
fine-grained analysis. Similarly, the dichotomy betweemléing and maximis-
ing can be recast into a continuum by a means suggested iy &tidd. (2007): if
Py, (h|d) is proportional to P(d|h) P(h)]", then a range of strategies lie between
sampling (given by = 1) and maximising (infinitely large). Preliminary analy-
sis of this much larger space yields results broadly sinhil&#hose presented here:
higher values of- are preferred, and exhibits large-scale neutrality in popula-
tions with any maximising tendency (Smith & Kirby, in preption). The general
picture remains that natural selection for communicatamotirs those conditions
where cultural transmission factors plays a significang inlshaping language,



and strength of innate predispositions is relatively urongmnt.
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