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Abstract languages during their transmission. The classic exanfple o
Previous analytic results (Griffiths & Kalish, 2007) shovath this sgqond constraintis the mlsm_a'_[ch between the mﬂmte_e
repeated. learning and transr.niss.ior! of |.anguages in pd@u@t pressivity of Ianguages and the finite set of data from which
of Bayesian learners results in distributions of languagesh such languages must be learned. Triasmission bottleneck

directly reflect the biases of learners. This result poadigti : :
has profound implications for our understanding of the link favours languages which can be recreated from a subset via

between the human language learning apparatus and the dis- generalisation. Recursive compositionality is one suaf ge
trib_utti_on of Ia;ﬂguagesoilnlth(e W?]”?h- tltl is ShOWT hefef thattﬁ eralisation (e.g. Kirby, 2002; Brighton, 2002), and theref
variation on these moaels (suc at learners learn from the : H

linguistic behaviour of multiple individuals, rather tharsin- re_pr_esents an adap_tat_lon by language in response to FHe_SSW
gle individual) changes this transparent relationshipveen arising from transmission factors external to the humardmin
learning bias and typology. This suggests that inferrirgrie While this evolutionary process requires certain learigesds

ing bias from typology (or population behaviour from labora ¢ ¢ “apjlity to generalise), it does not arise as a conseme

tory diffusion chains) is potentially unsafe. £ th | ing bi | but i dulated by th
Keywords: language learning; iterated learning; Bayesian of these learning biases alone, but is modulated by the-trans

learning; cultural evolution; language universals mission bottleneck (Brighton, Smith, & Kirby, 2005). This
suggests that the biases of language learners can’t sireply b
I ntroduction read off from typological distributions.

What is the relationship between the biases of language-lear However, this transmission-mediated view of the relation-
ers and the observed distribution of languages in the world$hip between learning biases and typology has recently been
Under the standard generative account (e.g. Chomsky, 1965hrown into doubt by some modelling work in the Bayesian
a direct mapping is assumed between the mental apparat amework. As discussed below, Griffiths and Kalish (2007)
of language learners and language structure. In the stsongeshOW that iterated learning in populations of Bayesianiear
possible form (e.g. Baker, 2001), the claim is that we cad rea®rs produces outcomes which are solely determined by the
off the structure of the language faculty from the typolagic biases of language learners: in other words, in the linguis-
distribution of languages in the world. tic case, the relationship between learning bias and laygua

A second account which posits a similarly close match befyPology might be a transparent one after all.
tween the biases of language learners and the structune-of la Itis shown here that a variant of Griffiths & Kalish’s model
guage arises from considerations of cultural evolutiorrigsh ~ (Where each learner selects a single grammar after obgervin
tiansen & Chater, 2008). Rather than language structurdata produced bsnultipleindividuals, rather than a single in-
being strongly constrained by a highly restrictive domain-dividual) leads to a blurring of the relationship betweeiopr
specific learning apparatus, the idea is that languages hatdases of learners and outcomes of cultural evolution: popu
adapted over repeated episodes of learning and productidﬁ“or‘s of Bayesian agents converge on distributions of lan
in response to much weaker (and possibly domain-genera@uages which are dependent on both the biases of language
constraints arising from the biases of language learndvis. T learners and transmission factors (such as the diversity of
process is sometimes callé@rated learning the outcome Models a learner is exposed to).
of learning at one generat'|on provides the input to Iearmng Summary of iterated learning results for
at the next. While typologically unattested languages tigh )
be both possible and even learnable, the languages we see in Bayesian learners
the world will typically be selected from the restricted st Bayesian learners select a hypothdseccording to its pos-
highlylearnable languages: languages which are hard to leaterior probability in light of some date:
will tend to change, and those which are easy to learn will be P(d|h)P(h)
preserved, eventually yielding languages which are umifpr Phd)= ———~—+—
well-fitted to the biases of language learners. We have previ >nP(dInP(h)
ously termed this evolutionary pressundtural selection for P(d|h) gives the likelihood of datd being produced un-
learnability (Brighton, Kirby, & Smith, 2005). der hypothesis, andP(h) gives the prior probability of each

Are learner biases the only factor shaping the distribu-hypothesis. For models of iterated learning of language, th
tion of languages in the world? It has been argued (seset of hypotheses are interpreted as the set of possible gram
e.g. Kirby, 2002; Zuidema, 2003; Brighton, Kirby, & Smith, mars, data are sets of utterances from which learners must
2005; Kirby, Dowman, & Griffiths, 2007) that, at a minimum, induce a language, and the prior probability distributigaro
language must be seen as a compromise between two fagrammars arises from the bias (domain-specific or domain-
tors: the biases of learners, and other constraints acting ageneral, innate or learned) of learners.

)
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Previous analytic and numerical results in this framework interest is the proportion of individuals in the population
(primarily Griffiths & Kalish, 2007; Kirby et al., 2007) show  using each grammar at a particular generation, which con-
that the relationship between the prior biases of learnsils a  verges to the prior over time.
the outcomes of cultural evolution depends critically omwho

learners select a grammar given the posterior probabibty d ) ) . i .
9 g P P Bty teresting and potentially important one, since it suggists

tribution over possible grammars. ) e . ;
When learners select a grammar with probability propor_We can obtain useful insights into the behaviour of reallgvor

. . . o : opulations by studying long thin diffusion chains (eitfear
tional to its posterior probability (known asamplingfrom P . S .
the posterior), the stable outcome of cultural evolutidre (t mally orin the laboratory: Griffiths, Kalish, & Lewandowsky

stationary distribution) is simply the prior distributi¢@rif- 2008).
fiths & Kalish, 2007). This is true regardless of the initial A two-grammar mode!

distribution over grammars or transmission factors such as_. T .
9 §;|ven the potential implications of these results, it wolél

the amount of data learners receive or the amount of nois : . .
Interesting to know whether the equivalence between chains

on transmission: iterated learning in populations of samspl ) A
ginpop and populations holds in situations where each learnemsear

results in convergence on the prior. As discussed abowe, th* . ) . .
. . . .~ from more than a single model, potentially including models
suggests a transparent relationship between the priowobias from the same genergtion A simpple two-gyrammar r?wdel can

learners and the observed distribution of languages in thEe used to explore (at present, numerically) this issue
world: the typological distribution exactly reflects thabés P P ' y '
of learners. M odel details

Onthe other hand, when learners select the hypothesis Wil assume that populations are infinitely large, and are or-
the maximum a posteriori probability (MAP selection), the yaniseq into discrete generation. Learners observe a $et of
relationship between prior bias and the stationary digtrib utterances, produced by (one or more) models selected from

tion is more complex (Griffiths & Kalish, 2007; Kirby et al., 6 immediately preceding generation of the populatiod, an

2007). The distribution of languages produced by cultural,psequently select a grammar with probability propogtion
evolution will reflect the ordering of hypotheses in the prio to its posterior probability in light of that data (i.e. thegm-

but differences in prior probability are magnified, suchttha ple from the posterior). Note that, importantly, learnems a

the a priori most likely hypothesis is overrepresented i th required to select a single grammar, despite potentiallyge

stationary distribution. Furthermore, different prioeidead \ijed with data produced by multiple grammars, an issue
to the same stationary distribution, and changing trar@ons |\« return to in the discussion.

factors (amount of data, noise, etc) can result in convergen There are two grammarso andh;, and two utterances
to a different stationary distribution. In MAP populatiose 4 24 q,  Individuals produce single utterances as follows

relationship between learner biases and typologicalildistr (wheree gives the probability of noise on production):
tions is therefore somewhat opaque.

These models suggest that the sampling / MAP opposition P(dlhy) = 1-—¢
is a critic_al one for undgrst_and_ing the relationship betwee P(dyulhe) = ¢ 2)
learner biases and the distribution of languages in thedworl
While the true nature of the human hypothesis selectiotrstra  Given that the population is infinitely large and there are
egy is ultimately an empirical question, it is worth probing only two grammars, we simply traq, which is the propor-
the assumptions behind the formal results presented aboviéon of individuals at generationwho select hypothesisy
Griffiths & Kalish’s sampling result holds in two cases: after learning (}- pr gives the proportion selectirtg).

If learners at generation+ 1 learn from asingle model

1. Populations are treated as long thin chains, with a singlgg|ected at random from generatiotthe proportion of indi-
individual per generation, and transmission occurring bey;iqyals usingno at timet + 1 will be

tween adjacent generations in the chain (in the classic iter

ated learning model configuration). In this case, the tem-
poral distribution of grammars over multiple generations Pt+1 = 2}_P(h0|d). P []P(Xho) + (1= po)- [ P(x(ha)

converges to the prior: while any grammar may be in use xed xed ()

in the chain at a particular generation, on average the usagghere the sum is over all possible data sets and the products
of the various grammars reflects their prior probability.  are gyer the individual utterances in each data set. In other

2. Populations are infinitely large, organised into diseret Words, each learner learns from lapmodel with probability

generations, and each individual learns from a single modg? and anh; model with probability 1- pr, and subsequently
at the previous generatidnin this case the distribution of Selectsho with probability determined by the data produced
by that model.

_ !t is worth noting that a number of non-Bayesian, population " Alternatively, if a learner learns fromultiple modelseach
biology inspired models of language evolution similarleds on . - - .
situations where learners learn from a single model (6.gwakp  Utterance in their data set may be produced by a different in-

Komarova, & Niyogi, 2001). dividual, possibly using a different grammar. We will asgum

This equivalence between chains and populations is an in-
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that the model for each item of data is independently sedecte single —6—  multiple —e—

from the population at the preceding generation, whichgjive a) 1 b
the following expression for the proportion of individuaks-
lectinghg at generatiom+ 1: 0.8 1
E 0.6 4
Pri1= Zp(ho|d)- [ (Pt-P(xIho) + (1= pr).P(x/h1)) . (4) g
xed S 04
o
Again, the sum is over all possible sets of data, and the
product is over the items in each data set, where each utter- 02 1
ance is produced by an individual using either gramhgaor 0 .
h (according to the proportions of those two grammars in the o 50 100 150 200
population). t
Results P >0.4465 —a— p,<0.4465 &
The main result (see Figure 1a) is that, when learners learfP) 1 ‘ ‘
from multiple models, the proportion of individuals using 1
each grammar (after cultural evolution has run its course) i 0.8 4
no longer the same as the prior distribution. Rather, one lan ° 4
guage predominates, with the winning language being deter- ’g 0.6 4
mined by the starting proportions of the two grammars and £ 4
their prior probability? g 041
Figure 1b shows this sensitivity to initial proportions bét = 4
two languages in a little more detail. There is a criticalreal 0.2 4
of the initial proportion oty (at around 0.4465 for this com- 9
bination of parameters): for initial proportions belowstfi; 0 ‘ ‘ ‘ ‘ ‘
0 5 10 15 20 25 30

eventually dominates, otherwisg dominates. This sensi-
tivity to initial conditions is not found in the single model
treatments discussed above.

t

. . .. Figure 1: P(hg) = 0.6, b= 3, £ = 0.05. (a) When individ-

When learners learn from multiple models, the insensitiv- Is | f inal | th lati

ity to transmission factors such as amount of ddfanr- uals ‘earn from a singie model, the popu atlon converges o
the prior. When learners learn from (potentially) multiple

mally seen in populations of samplers also disappears. Thirsnodels opulations converge to one of two stable states, de
is illustrated in Table 1. Notice that the effect of incredse » POP 9 '

amounts of data (highds) runs in the opposite direction pending on initial conditions. (b) When learners learn from

0 that seen in MAP populations: whereas in the chains 0Pﬂultlple models, the eventual distribution is sensitivette

MAP learners described in Kirby et al. (20d@&$sdata gives starting proportions of the two grammars.

greater exaggeration of the prior, heneredata gives greater

exaggeration of the prior preference fer Note also that, as _ )

bincreases, the impact of the strength of prior preference fo'able 1: Stable proportions &f for various values of(ho)
ho on the final proportion ofg in the population diminishes andb. Populations initialised with equal proportions laf

— in essence, wheb > 3, the population converges ¢y~ andhy, € =0.05.

regardless of strength of prior bias in favour of that gramma b
This is reminiscent of the MAP phenomenon of insensitivity P(ho) | 1 2 3 4 5
to strength of prior bias, but is modulated oy 051 1051 0548 0978 0989 0997

{is clapariurs fom the Known sampler resuis? mamued 09 | 0 0822 0983 0992 0998
L L . o i 0.7 0.7 092 0.986 0.994 0.998
population, increasing _|nc,ree}ses _th_e dlversqy of Iear_ner_s 0.8 08 0961 099 0996 0999
sample of the population’s linguistic behawour (unlike in 0.9 09 0983 0993 0.998 0.999
the case where learners learn from a single model, when
they simply receive an increasingly accurate reflectiorhef t
grammar of that model). Consequently, if one grammar pre-
dominates in the population, this is likely to be reflected in How do Bayesian learners respond to mixed samples? The
the data learners see. grammar which matches with the majority of the data has
2See Niyogi (2006) for a number of more general analytic tesul higher posterior probability and is therefore likely to & s

providing the dynamics of transmission in populations eisted  |€Cteéd. Importantly, under a wide range of conditions, the
with various non-Bayesian learning algorithms. grammar matching the more common datalisproportion-
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ately preferred. Given a data set consisting df items and The mode

j di items,i > |, the ratio of likelihoods>(d|ho)/P(d|h1) is | this more complex model, a language consists of a sys-
(4%)"). This quantity is generally greater than the corre-tem for expressingy meanings, where each meaning can be
sponding ratio of data itemg/(j) for low noise rates. In other expressed using one &fmeans of expression, callsignal
words, learners exposed to a mixed sample and required {9asses In a perfectly regular (or systematic) language the
select a single grammar are disproportionately likely tkpi  same signal class will be used to express each meaning — for
the more frequently represented grammar, making Bayesiagkample, the same compositional rules will be used to con-
learning in this context a type of conformist frequency-giryct an utterance for each meaning. Following Kirby et al.
dependent learning (Boyd & Richerson, 1985). The well-(2007), we assume that learners have a preference for lan-
know consequence of conformist learning is the rich-getyyages which use a consistent means of expression, such that

richer behaviour seen here, with the mismatch in frequenciegach meaning is expressed using the same signal class. This
of the two grammars increasing generation on generation. prior js given by the expression

Conformity bias is not, however, the whole story. Increas-
ing b has a second effect: as well as increasing the repre- I (ka) k
sentativeness of the sample of the population’s lingulstic P(h) = W I_Lr(ni +a) ®)
haviour, it also increases the fidelity of transmission @& th =
majority grammar in a sample of a fixed diversity (holding wherer (x) = (x— 1)

o . o e = I whenx is an intege?, nj is the number
i/] constant, increasinlgincreases the quantity- j). Both of meanings expressed using clagsida > 1 determines the

these effects lead to an increase in the dominant grammar’sirength of the preference for regularity: longives a strong

share of the population. The impact of the two effects caryeference for regular languages, highdeads to a weaker
be probed by implementing a minor extension to the mode, reference for such languages.

outlined above, where learners learn from a specified numb " The probability of a particular meaning-form pa, y)

of models ¢€), with b/c data items from each parent. Table (consisting of a meaning and a signal clasg) being pro-
2 shows the eventual proportion bf in converged popula- duced by an individual with grammaris:
tions for variousc andb (for convenience we only consider '

cases wherb/c yields integer values). As can be seen from

the table, increasingor b independently increases the dom- 1 1-¢ ifyistheclassfokinh
- o s Py ) = =4 “e -

inance of the winning grammar. Importantyydiversity of m 1 Otherwise

models € > 2) results in a single grammar winning out. For _ _ B _
b= 2, the grammar favoured by the prior wins out in situa-Wheree gives the noise probability on production and all
tions where learners received perfectly mixed input, amd fomeanings are equiprobable (hence the scaling/iog) 1

b > 2 the conformity effect outlined above also comes into We can then plug this production model into the two pop-
play. ulation learning models outlined abovey; gives the pro-

portion of individuals at generationwho selecth; (again,
learners are required to select a single grammar). If learne
Table 2: Stable proportion &b for variousc andb. P(hg) = at generation+ 1 learn from asingle model

0.6, & = 0.05, both grammars initially equally frequent.
Pitr1= g > P(hild).pj¢. [ P(xhy) @)
] xed

(6)

b

i é 6 (2) 6 32) 6 40 6 60 6 80 6 13 6 where the sums are over all possible data sets and all pessibl

' ' ' ' ' ' ’ model grammars, and the products are overlhems in
20 0822 - 0.964 0993 0.999 1 each data set. If a learner learns fraomltiple models
3| - - 0.983 - 0.999 - 1 ' p
4] - - - 0.992 - 1 1

Pit+1= ;P(hﬂd)- I <Z Dj,t-P(X|hj)> : (8)
xed \ ]
A more complex model Results

. . The main features of the two-grammar model are preserved
While the results for the two-grammar model are potentially;, \he more complex model: sensitivity to initial conditmym

interesting, one might r(_aasonably worry that they are mélia ependency oh, and an interaction between strength of prior
on some feature of the simplest possible two-grammar mode ndb

Of particular interest are the models in the literature Wwhic

allow multiple grammars with equal prior probability. With mars for strong and weak prior preferences in favour of regu-

_this in mind, the grammar model from K"bY et al. (2007) larity, for various values db. Forb = 1 the standard sampling
is adopted here: similar results can be obtained for the 260-

grammar model of Griffiths and Kalish (2007). 3wWe will only consider the case whetetakes integer values.

Figure 2 shows the final stable distribution over all gram-
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result for learning from a single cultural parent is retedy
For highb, the majority of the population converges on one
of the a priori more likely grammars (with the identity of the
winning grammar depending on the initial frequencies). In-
deed, forh = 10 the strength of the prior preference in favour

of regularity makes little difference to the final distrikmrt. T O_ g T O= g
Finally, there appears to be a critical valuetofequired % %
for the population to converge on a single majority grammar. < = _ s - _
Forb below this critical value, the would-be dominant gram- &= a=1, prior 0520, prior
mar suffers from a lack of transmission fidelity: learnerste = =
to receive data sets which underspecify the target language- =& - .
and the posterior probabilities of the various languages ar . s T ==
therefore heavily constrained by the prior. Note, however, . ]
that the stable distribution is not identical to the priohet _— S
differences in prior probability are smoothed out somewhat = == a=1 b=1 = 4=20. b=1
Above the critical value ob (which is around = 2m, but is = ’ = '
somewhat sensitive to), transmission fidelity becomes suf- o -
ficiently high to allow one grammar to dominate through the — == - =
processes discussed for the two-grammar model. This CONy  smmm— T
straint onb is analogous to the coherence threshold described = S
in Nowak et al. (2001). . .
= = s =
. . — a=1, b=3 — 0=20, b=3
Discussion = =
The two models described above represent a first attempt tau E 4 E
explore the impact of population structure on the outcomes —
of iterated learning in populations of Bayesian agents.lgvhi T = T =
much remains to be done, they show that the analytic result S=___ =
provided by Griffiths and Kalish (2007) can break down un- s £ s =
der some model configurations. Before considering the im- S 471,06 &  0720.b=6
plications of this finding, it is worth considering some oéth = =
model's more serious limitations. 2 B o =
Learners are required to select a single grammar based - - _
on exposure to a potentially diverse sample (or equivatentl " v
learners use each grammar probabilistically, with prababi - | -
ities determined by their posterior probability). It may be = |
that there are more sophisticated treatments of the hypothe i a=1, b=10 =  0720,b=10
sis selection task for which the Griffiths and Kalish (2007) = -
= - i

result can be retrieved. One obvious possibility is to cbersi
cases where learners have a structured model, such that they
appreciate that their data potentially comes from multipie
dividuals who may (or may not) use different grammars an(JF:
e B ot e OUar Grammars, L ar e o reguiary grammars, e
: rammars of intermediate regularity). Th row giv
this type of learner, and can therefore be used to explore thee grammars of intermediate regularity) € top row gives

evolutionary consequences of learning from multiple medel prior probability distributions for two values af. The re-
. y conseq o gtror P€ maining rows give the stable proportions for various values
in a more satisfying (and cognitively plausible) fashioarth

that described here. of b. In all cases the population is initialised with one regu-

lar grammar having a slightly boosted frequency and allrothe

. The po_pulation mpdel usgd here also offers only a minimabrammars being equally frequent. All proportions have un-
mcrease_m_gomplexny overits pr_edecessors. A_Ithouthsa dergone a square root transformation to show the varigbilit
the possibility of learners learning from multiple (eqyall among the less frequent grammars

weighted) models, it entirely ignores horizontal (within-

generation) transmission. Populations also lack anyester
ing internal structure. Transmission in real-world popiolas
takes place over complex social networks, with implicadion
for language structure (see e.g. Kerswill & Williams, 2000)

igure 2: m= 3,k =3, = 0.05. Stable proportions of all
7 grammars, grouped by prior probability (H are the highly
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a phenomenon little explored in the modelling literature. pological distributions of languages in the world. The t&su
The results presented here suggest that caution muptresented here show that this modelling result is dependent
(at least at present) be used when extrapolating from culen learners learning from a single model. When this idealisa
tural evolution in convenient one-individual iteratedrigiag  tion is relaxed, the straightforward mapping from priorsbia
chains to larger populations. While diffusion chain experi to typology breaks down.
ments provide a powerful tool for identifying the prior bégs
of learners, in real populations those prior biases arerfed i Acknowledgements
to a population dynamic whose consequences are largely ndhanks to Dan Dediu, Mike Dowman, Tom Griffiths, Mike
understood. Exploring transmission in larger and more comKalish, Tim O’Donnell and Jelle Zuidema for helpful com-
plex laboratory populations may prove necessary. ments.
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